首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

A laboratory study was conducted to examine the effects of five insecticides on microbial and enzymatic activities important to fertility in sandy soil. Cyfluthrin significantly increased bacterial populations after 2 wks. Imidacloprid showed an inhibitory effect on fungal numbers after 2 wks incubation while the others did not affect fungal population. No inhibitory effect was observed on nitrification of soil indigenous nitrogen. All treatments stimulated S‐oxidation after 4 wks. With the exception of cyfluthrin and imidacloprid after 2 wks, denitrification in sandy soil indicated that all treatment inhibited denitrification throughout the experiment. No inhibitory effects on biomass‐c were observed during 2‐wk periods. An inhibitory effect was observed on amylase after 1 wk while significant recovery was observed after 3 wks. With the exception of HgCl2, no effect was observed on reducing sugar formation for 2 wks with all treatments. Formazan formation resulting from dehydrogenase activity was significantly greater with tebupirimphos and Aztec for 1 wk. All treatments supressed phosphatase activity for 1 wk, while none of the treatments suppressed phosphatase activity after 2 wks. Amitraz, tebupirimphos and Aztec inhibited urease activity for 1 wk. With the exception of tebupirimphos, no treatments affected N2‐fixation in soil. Although short‐lived inhibitory effects on activities of microbes and enzymes were caused by the insecticides, the soil indigenous microbes can tolerate the chemicals used for control of soil pests.  相似文献   

2.
Abstract

A laboratory study was conducted to determine the effect of four experimental insecticides, DOWCO429X, DPX43898, tefluthrin and trimethacarb, on enzyme activities and levels of adenosine 5'‐triphosphate (ATP) in mineral and organic soils. DOWCO429X decreased urease activity in organic soil after 7 days while a stimulatory effect was observed with most treatments after 14 days. No inhibition on acetylene (C2H2) reduction by nitrogenase was evident with any of the insecticides in either soil. With the exception of DOWCO429X and tefluthrin at 7 days in organic soil, none of the insecticide treatments inhibited dehydrogenase activity in either soil. Dehydrogenase activity, measured by formazan formation, was greater in many samples in sandy loam than the control throughout the experiment. No inhibitory effect was observed on amylase activity after 2 or 3 days in sandy soil. A stimulatory effect was apparent in many samples after 2 days in organic soil. All insecticide treatments in sandy soil reduced invertase activity at 2 days. However, none of the experimental insecticides inhibited invertase activity after 3 days. A stimulatory effect in invertase activity was apparent in most cases at 2 days in organic soil and no difference was observed after 3 days. Phosphatase activity in insecticide treated samples was equal to or greater than that of control in sandy soil after 2 h. With the exception of DPX43898, the insecticides depressed phosphatase activity in most organic soil samples. The insecticides did not affect ATP levels in either soil. Results indicated that the chemical treatments at the levels tested did not significantly affect activities of enzymes or level of ATP in both soils.  相似文献   

3.
Several amendments were tested on soils obtained from an arsenopyrite mine, further planted with Arrhenatherum elatius and Festuca curvifolia, in order to assess their ability to improve soil's ecotoxicological characteristics. The properties used to assess the effects were: soil enzymatic activities (dehydrogenase, β-glucosidase, acid phosphatase, urease, protease and cellulase), terrestrial bioassays (Eisenia fetida mortality and avoidance behaviour), and aquatic bioassays using a soil leachate (Daphnia magna immobilisation and Vibrio fischeri bioluminescence inhibition). The treatment with FeSO4 1 % w/w was able to reduce extractable As in soil, but increased the extractable Cu, Mn and Zn concentrations, as a consequence of the decrease in soil pH, in relation to the unamended soil, from 5.0 to 3.4, respectively. As a consequence, this treatment had a detrimental effect in some of the soil enzymatic activities (e.g. dehydrogenase, acid phosphatase, urease and cellulase), did not allow plant growth, induced E. fetida mortality in the highest concentration tested (100 % w/w), and its soil leachate was very toxic towards D. magna and V. fischeri. The combined application of FeSO4 1 % w/w with other treatments (e.g. CaCO3 1 % w/w and paper mill 1 % w/w) allowed a decrease in extractable As and metals, and a soil pH value closer to neutrality. As a consequence, dehydrogenase activity, plant growth and some of the bioassays identified those as better soil treatments to this type of multi-contaminated soil.  相似文献   

4.
ABSTRACT

This study evaluates the dissipation of terbuthylazine, metolachlor, and mesotrione at different depths in soils with contrasting texture. The field trial was conducted at the Padua University Experimental Farm, north-east Italy. The persistence of three herbicides was studied in three different soil textures (clay soil, sandy soil, and loamy soil) at two depths (0–5 and 5–15 cm). Soil organic carbon content was highest in the clay (1.10%) followed by loam (0.67%) and sandy soil (0.24%); the pH of soils was sub-alkaline. Terbuthylazine, metolachlor, and mesotrione were applied on maize as a formulated product (Lumax®) at a dose of 3.5 L ha?1. Their dissipation in the treated plots was followed for 2 months after application. The concentrations of herbicides were analyzed by liquid chromatography-mass spectrometry. The dissipation of terbuthylazine, metolachlor, and mesotrione could be described by a pseudo first-order kinetics. Terbuthylazine showed the highest DT50, followed by metolachlor and mesotrione. Considering the tested soil, the highest DT50 value was found in clay soil for terbuthylazine and metolachlor, whereas for mesotrione there was no difference among soils. Significant differences were found between the two soil depths for terbuthylazine and metolachlor, whereas none were found for mesotrione. These results suggest that soil texture and depth have a strong influence on the dissipation of terbuthylazine and metolachlor, whereas no influence was observed on mesotrione because of its chemical and physical properties.  相似文献   

5.

Compost was prepared from wheat straw enriched with Rajasthan rock phosphate and Aspergillus awamori. The resulting phospho-compost along with phosphorus enriched FYM, mineral fertilizer (rock phosphate) and super phosphate were evaluated for their individual contribution in improving organic matter status, P availability, and enzymatic activities of soil under wheat crop grown in a micro plot. The results showed that total organic carbon, nitrogen, microbial biomass, and humus content (an index of organic matter status of soil) of soil was highest when farmyard manure (FYM) after its enrichment with 12.5% rock phosphate was applied. Microbial enriched phospho-compost was the product yielding highest soil available phosphorus, phosphorus uptake, urease, and cellulase activities. However, FYM amended with 25% rock phosphate resulted in the greatest enhancement of β-glucosidase. Measured parameters indicated a sure improvement of chemical and biological activities of soil after the application of phosphorus enriched organic amendments compared to the commercial fertilizer commonly used by the Indian farmers.  相似文献   

6.
Abstract

This study was aimed to evaluate the effect of a mixture of flufenacet?+?isoxaflutole on counts of microorganisms, ecophysiological diversity index (EP), colony development index (CD) and on the enzymatic activity of soil and maize growth. The experiment was conducted with sandy clay, to which the tested herbicide was administered in doses of: 0.25, 5.0, 10, 20, 40, 80 and 160?mg/kg. Soil without the addition of the mixture served as the control. Results demonstrated that the tested mixture contributed to a decrease in numbers of Azotobacter, organotrophic bacteria, actinobacteria and fungi. The negative effect of the herbicide could also be noticed in the case of the enzymatic activity of soil. Soil contamination contributed to suppressed activities of dehydrogenases, catalase, urease, alkaline phosphatase and arylsulfatase. In turn, the initial increase in the activity of β-glucosidase was followed by its decline observed with time. The flufenacet?+?isoxaflutole mixture affected also maize plant growth, reducing maize dry matter yield when used at doses from 5.0 to 160?mg/kg. In summary, it may be concluded that mixture evokes a negative effect on the microbiological and biochemical activity of soil and that their excess in the soil leads to plant decay as at the seeding stage.  相似文献   

7.
研究了微生物调控对牛粪堆肥生物特性的影响.结果表明:(1)与对照相比,接菌(添加HM菌剂)处理可使牛粪堆肥提前2d进入高温期,高温持续时间延长2d.即接菌处理的堆肥温度在第4天达到50.5℃,并保持50℃以上的温度14 d;而对照在第6天达到50.0℃,并保持50℃以上的温度12 d.(2)2种处理堆肥的pH总体呈先升高后降低的趋势,接菌处理的堆肥pH上升幅度不大,比对照低0.1~0.5个pH单位.(3)接菌处理有利于提高牛粪堆肥的纤维素酶、蔗糖酶、脲酶活性水平和峰值.(4)脲酶活性与其他因素之间呈显著负相关(p<0.01),而温度、pH、蔗糖酶活性和纤维素酶活性之间呈显著正相关(p<0.01).  相似文献   

8.
Abstract

Laboratory tests were conducted with eight herbicides, atrazine, butylate, ethalfluralin, imazethapyr, linuron, metolachlor, metribuzin and trifluralin, applied to a loamy sand at rate of 10 μg/g to determine if these materials caused any serious effects on microbial and enzymatic activities related to soil fertility. Some herbicides showed an effect on bacteria and fungi for the first week of incubation, but, subsequently, the populations returned to levels similar to those obtained in the controls. After several herbicide treatments there appeared to cause a slight depression of nitrification. Sulfur oxidation was better than that obtained with untreated soil in all treatments. Oxygen consumption was increased significantly after 96 hr incubation with atrazine. The soil dehydrogenase and amylase activities were inhibited by ethalfluralin treatment respectively for 1 wk and 1 day, and p‐nitrophenol liberation was inhibited for 2 hrs by all herbicide treatments. Results indicated that the herbicidal treatments at the level tested were not drastic enough to be considered deleterious to soil microbial and enzymatic activities which are important to soil fertility.  相似文献   

9.
Abstract

This study evaluated the role of water dispersible colloids with diverse physicochemical and mineralogical characteristics in facilitating the transport of metolachlor through macropores of intact soil columns. The soil columns represented upper solum horizons of an Alfisol in the Bluegrass region of Kentucky. Three different colloid suspensions tagged with metolachlor [2‐chloro‐N‐(2‐ethyl‐6‐methylphenyl)‐N‐(2‐methoxy‐l‐methylethyl)acetamide] were introduced at a constant flux into undisturbed soil columns. The eluents were collected and analyzed periodically for colloid and metolachlor concentrations. Colloid recovery in the eluents ranged from 54 to 90 %. The presence of colloids enhanced the transport of metolachlor by 22 to 70 % depending on the colloid type and mobility. Colloids with higher pH, organic carbon, cation exchange capacity (CEC), total exchangeable bases (TEB), surface area (SA), and electrophoretic mobility (EM), showed better mobility, greater affinity for interaction with the herbicide and, thus, greater potential to co‐transport metolachlor. In contrast, increased level of kaolinite, Fe, and Al inhibited metolachlor adsorption and transport. In spite of the increased transportability of metolachlor by the presence of soil colloids, the colloid bound herbicide portion accounted for a very small part of the observed increase. This suggests that surface site exclusion mechanisms and preferential sorption induced by the presence of colloids are more important than ion exchange phenomena in promoting herbicide mobility in subsurface environments.  相似文献   

10.
Abstract

Crude enzyme from a soil fungus, Aspergillus flavus, was isolated from a field soil following repeated applications of metolachlor [2-Chloro-N-(methoxy-1-methylethyl)-2′-ethyl-6′-methyl acetanilide]. Metolachlor hydrolysis by the crude enzyme extract was determined by enzyme assay. The tests were performed in phosphate buffer, pH 7.5, and the reaction was carried out at two herbicide concentrations (20 and 100 μg mL?1) and two crude extract volumes (0.2 and 0.5 mL of the homogenized crude extract mixture). The rate of metolachlor degradation was found faster in samples containing higher volume of crude extract, (T 1/2, 5.7 h) for both concentrations of the herbicide. The activities of enzymes responsible for dechlorination coupled with hydroxylation, N-dealkylation, and breaking of amide linkage were found responsible in the degradation.  相似文献   

11.
Cd、Ni单一及复合污染对土壤酶活性的影响   总被引:4,自引:0,他引:4  
采用外源添加重金属和露天盆栽实验研究了Cd、Ni对含羞草、三叶草根际土壤脲酶、过氧化氢酶和蔗糖酶活性的影响。结果表明,Cd、Ni单一污染条件下,低浓度的Cd、Ni对含羞草组、三叶草组的脲酶、过氧化氢酶有激活作用,高浓度的Cd、Ni对土壤脲酶、过氧化氢酶有一定的抑制作用;对蔗糖酶有较强的抑制作用。在Cd、Ni复合污染条件下,对含羞草组、三叶草组的脲酶、过氧化氢酶和蔗糖酶产生抑制作用;Cd、Ni单一及复合污染对土壤酶活性的抑制大小顺序为:脲酶>蔗糖酶>过氧化氢酶,其中土壤脲酶可以作为Cd、Ni污染的预警指标。含羞草能显著提高土壤脲酶、过氧化氢酶和蔗糖酶的活性,修复能力大于三叶草,在Cd、Ni污染修复方面有很好的应用前景。  相似文献   

12.
Abstract

A three‐year field lysimeter study was conducted to investigate the role of subirrigation systems in reducing the risk of water pollution from metolachlor (2‐chloro‐N‐(2‐ethyl‐6‐methlphenyl)‐N‐(2‐methoxy‐l‐methylethyl)acetamide). Nine large PVC lysimeters, 1 m long x 0.45 m diameter, were packed with a sandy soil. Three water table management treatments, i.e. two subirrigation treatments with constant water table depths of 0.4 and 0.8 m, respectively, and a free drainage treatment in a completely randomized design with three replicates were used. Corn (Zea mays L.) was grown in each lysimeter, and at the beginning of summer of each year metolachlor was applied, at the locally recommended rate of 2.75 kg a.i./ha. Soil and water samples were collected at different time intervals after each natural or simulated rainfall event. Metolachlor was extracted from these samples and analyzed using Gas Chromatography.

Results obtained in this three year study, (1993–1995), lead to the conclusion that metolachlor is quite mobile since it leached to a depth of 0.85 m below the soil surface quite early in the growing season. Metolachlor concentrations decreased with depth as well as with time. The shallower water table in the 0.4 m subirrigation treatment showed less residues in the soil solution than that of other treatments. However, a mass balance study, supported by an independent laboratory investigation, shows that water table management, statistically, has no significant effect on the reduction of metolachlor residues in sandy soils.  相似文献   

13.
Pesticide influence on soil enzymatic activities.   总被引:35,自引:0,他引:35  
F Sannino  L Gianfreda 《Chemosphere》2001,45(4-5):417-425
The influence of four pesticides, e.g. glyphosate, paraquat, atrazine, and carbaryl, on the activities of invertase, urease and phosphatase of twenty-two soils, numbered as 1-22, was investigated. Soils displayed a general variability of enzyme activities with invertase being more abundant than urease and phosphatase in the order listed. The addition of glyphosate and paraquat activated invertase and urease activities in several soils. Increments of invertase activity ranged from a very low increase (+4%) up to +204% in soils 11 and 14, respectively. Smaller increases were measured for urease. A general inhibitory effect (from 5% to 98%) was observed for phosphatase in the presence of glyphosate. The effects of atrazine and carbaryl on the three soil enzymes were evaluated against that exhibited by methanol, the solvent used for their solubilization. In almost all soils, atrazine further inhibited invertase activity with respect to the inhibitory effect shown by methanol. By contrast, consistent activation effects (from 61% to 10217%) were measured for urease with methanol alone and/or methanol-pesticide mixtures. Contradictory results were observed with phosphatase. Similarities found between the results obtained with enzymes in soils and those measured with synthetic enzyme complexes (e.g. free enzymes and/or clay-, organo-, and organo-clay-enzyme complexes) exposed to the same pesticides allowed some relationships between responses of soil enzymes to pesticides and soil properties to be hypothesized.  相似文献   

14.
Abstract

Atrazine and metolachlor were more strongly retained on earthworm (Lumbricus terrestris L.) castings than on soil, suggesting that earthworm castings at the surface or at depth can reduce herbicide movement in soil. Herbicide sorption by castings was related to the food source available to the earthworms. Both atrazine and metolachlor sorption increased with increasing organic carbon (C) content in castings, and Freundlich constants (Kf values) generally decreased in the order: soybean‐fed > corn‐fed > not‐fed‐earthworm‐castings. The amount of atrazine or metolachlor sorbed per unit organic carbon (Koc values) was significantly greater for corn‐castings compared with other castings, or soil, suggesting that the composition of organic matter in castings is also an important factor in determining the retention of herbicides in soils. Herbicide desorption was dependent on both the initial herbicide concentration, and the type of absorbent. At small equilibrium herbicide concentrations, atrazine desorption was significantly greater from soil than from any of the three casting treatments. At large equilibrium herbicide concentrations, however, the greater organic C content in castings had no significant effect on atrazine desorption, relative to soil. For metolachlor, regardless of the equilibrium herbicide concentration, desorption from soybean‐ and corn‐castings treatments was always less than desorption from soil and not‐fed earthworm castings treatments. The results of this study indicate that, under field conditions, the extent of herbicide retention on earthworm castings will tend to be related to crop and crop residue management practices.  相似文献   

15.
We studied the suitability of municipal solid waste compost (MSWC) application to submerged rice paddies in the perspective of metal pollution hazards associated with such materials. Experiments were conducted during the wet seasons of 1997, 1998 and 1999 on rice grown under submerged condition, at the Agriculture Experimental Farm, Calcutta University at Baruipur, West Bengal, India. The treatments consisted of control, no input; MSWC, at 60 kgNha(-1); well decomposed cow manure (DCM), at 60 kgNha(-1); MSWC (30 kgNha(-1)) +Urea (30 kgNha(-1)); DCM (30 kgNha(-1)) +U (30 kgNha(-1)) and Fertilizer, (at 60:30:30 NPK kgha(-1) through urea, single superphosphate and muriate of potash respectively). Soil microbial biomass-C (MBC), MBC as percentage of organic-C (ratio index value, RIV), urease and acid phosphatase activities were higher in DCM than MSWC-treated soils, due to higher amount of biogenic organic materials like water soluble organic carbon, carbohydrate and mineralizable nitrogen in the former. The studied parameters were higher when urea was integrated with DCM or MSWC, compared to their single applications. Soil MBC, urease and acid phosphatase activities periodically declined up to 60 day after transplanting (DAT) and then increased after crop harvest. The heavy metals in MSWC did not detrimentally influence MBC, urease and acid phosphatase activities of soil. In the event of long term MSWC application, changes in soil quality parameters should be monitored regularly, since heavy metals once entering into soil persist over a long period.  相似文献   

16.
Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are the two best-known perfluorinated chemicals and have received much attention due to their ubiquity in the environment. In the present study, we evaluated the effects of PFOS and PFOA on acute toxicity, superoxide dismutase (SOD), and cellulase activities in Eisenia fetida. The results of acute toxicity testing using a filter paper contact test and a natural field soil test showed that PFOA and PFOS exhibited acute toxicity in earthworms, and the toxic effect of PFOS was greater than that of PFOA. The results also showed that avoidance behavior is a more sensitive and easy operation biomarker than acute toxicity and will give us information for early diagnosis of soil pollution, well before the lethal effect becomes apparent. Subchronic exposure to PFOA or PFOS resulted in changes in SOD and cellulase activities in E. fetida, and SOD activity was more sensitive than cellulase activity during early exposure. Based on these findings, we suggest that avoidance behavior and SOD activity in earthworms are suitable biomarkers for evaluating the toxicity of PFOA- and PFOS-contaminated soils. These results indicate that exposure to PFOA and PFOS has a potential impact on soil animals and their environment.  相似文献   

17.
Fipronil is a broad-spectrum insecticide that has a good control effect on pests of commercial poultry. Although many studies have reported the environmental fate of fipronil, the influence of residual fipronil in poultry waste on biogas production has not been further explored yet. In this article, an experimental comparative study on anaerobic digestion (AD) of chicken manure (CM) and corn straw (CS) with different fipronil concentrations (FCs) was carried at 8% of total solid (TS) and mid-temperature (35?±?1)°C. The results showed that fipronil had a significant effect on biogas production during AD of CM and CS. When the FC is at a low level (≤10?mg·kg?1), the biogas production rate is increased and the digestion period was shortened, while higher FC (≥ 20?mg·kg?1) showed an inhibitory effect. During the monitoring of enzyme activity, low FC showed no significant effect on cellulase and saccharase, but the urease activity increased in the early stage. High FC showed inhibition of activity of cellulase and urease, but the saccharase activity was significantly inhibited until FC reached 40?mg·kg?1. This study also confirms that the environment in anaerobic digester is favorable for the degradation of fipronil, and its half-life is about 15.83?days.  相似文献   

18.
Herbicides pose a significant threat to the natural environment, in particular in soils that are most exposed to plant protection agents. Prolonged herbicide use leads to changes in soil metabolism and decreases soil productive potential. In this study, the influence of carfentrazone-ethyl (CE) on the microbiological and biochemical properties of soil and the yield of Triticum aestivum L. was evaluated. Carfentrazone-ethyl was applied to sandy loam (pHKCl – 7.0) in doses of 0.000, 0.264, 5.280, 10.56, 21.18, 42.24, 84.48 and 168.96 µg kg?1 DM soil. Soil samples were subjected to microbiological and biochemical analyses on experimental days 30 and 60. Carfentrazone-ethyl disrupted the biological equilibrium in soil by decreasing the abundance and biodiversity of soil-dwelling microorganisms, the activity of soil enzymes, the values of the biochemical activity indicator and spring wheat yields. Carfentrazone-ethyl had the most adverse effects when applied in doses many fold higher than those recommended by the manufacturer. The toxic effects of CE were also determined by its soil retention time. Soil treated with CE was characterized by higher counts of oligotrophic bacteria, organotrophic bacteria, bacteria of the genus Azotobacter, actinomycetes and fungi on day 60, and spore-forming oligotrophic bacteria on day 30. The activity of dehydrogenases, urease, alkaline phosphatase and β-glucosidase was higher on day 30 than on day 60.  相似文献   

19.
Abstract

Metolachlor [2‐chloro‐N‐(2‐methoxy‐1‐methylethyl)‐2'‐ethyl‐6'‐methyl acetanilide] dissipation under both field and laboratory conditions were studied during summer season in an Indian soil. Metolachlor was found to have moderate persistence with a half‐life of 27 days in field. The herbicide got leached down to 15–30 cm soil layer and residues were found up to harvest day of the sunflower crop in both 0–15 cm and 15–30 cm soil layers. Metolachlor was found to be more persistent in laboratory studies conducted for 190 days. The rate of degradation was faster in soil under flooded partial anaerobic conditions as compared to aerobic soil with a half‐life of 44.3 days. In aerobic soil, metolachlor was very stable with only 49% dissipation in 130 days. Residues remained in both the soils up to the end of the experimental period of 190 days.  相似文献   

20.
Laboratory experiments were conducted to determine the effect of 32 pesticides applied at 2 levels on populations of microorganisms, activities of urease, dehydrogenase, phosphatase and nitrogenase in a clay loam incubated for 1 week. Results indicated that a decrease in bacterial number was observed with thiram for 2 days and stimulation with chlorpyrifos after 7 days. Some fungicides and fumigants inhibited fungal numbers for 2 days. The recovery was rapid and stimulatory effects on microbial numbers were evident in many samples. None of the pesticides inhibited soil urease drastically. Formazan formation was not suppressed vigorously by the treatments. With the exception of DD and Vorlex at a high level, none of the treatments inhibited phosphatase in the hydrolysis of p-nitrophenyl disodium orthophosphate. A temporary decrease in nitrogenase activity in acetylene (C2H2) reduction was observed with many pesticides. The low amount of pesticides applied to the clay loam is unlikely to have detrimental effects on soil microbes and the enzymes important to soil fertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号