首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Degradation and sorption/desorption are important processes affecting the leaching of pesticides through soil. This research characterized the degradation and sorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine) in Drummer (silty clay loam) and Exeter (sandy loam) surface soils and their corresponding subsurface soils using sequential extraction methods over 400 days. By the end of the incubation, approximately 55% of imidacloprid applied at a rate of 1.0 mg kg(-1) degraded in the Exeter sandy loam surface and subsurface soils, compared to 40% of applied imidacloprid within 300 days in Drummer surface and subsurface soils. At the 0.1 mg kg(-1) application rate, dissipation was slower for all four soils. Water-extractable imidacloprid in Exeter surface soil decreased from 98% of applied at day 1 to >70% of the imidacloprid remaining after 400 d, as compared to 55% in the Drummer surface soil at day 1 and 12% at day 400. These data suggest that imidacloprid was bioavailable to degrading soil microorganisms and sorption/desorption was not the limiting factor for biodegradation. In subsurface soils > 40% of (14)C-benzoic acid was mineralized over 21 days, demonstrating an active microbial community. In contrast, cumulative (14)CO(2) was less than 1.5% of applied (14)C-imidacloprid in all soils over 400 d. Qualitative differences in the microbial communities appear to limit the degradation of imidacloprid in the subsurface soils.  相似文献   

2.
The effect of compost-amendment and moisture status on the persistence of azoxystrobin [methyl (E)-2-{2-(6-(2-cyanophenoxy) pyrimidin-4-yloxy) phenyl}-3-methoxyacrylate], a strobilurin fungicide, in two rice-growing soils was studied. Azoxystrobin is more sorbed in the silt loam (K f – 4.66) soil than the sandy loam (K f – 2.98) soil. Compost-amendment at 5 % levels further enhanced the azoxystrobin sorption and the respective K f values in silt loam and sandy loam soils were 8.48 and 7.6. Azoxystrobin was more persistent in the sandy loam soil than the silt loam soil. The half–life values of azoxystrobin in nonflooded and flooded silt loam soil were 54.7 and 46.3 days, respectively. The corresponding half–life values in the sandy loam soils were 64 and 62.7 days, respectively. Compost application enhanced persistence of azoxystrobin in the silt loam soil under both moisture regimes and half-life values in non–flooded and flooded soils were 115.7 and 52.8 days, respectively. However, compost enhanced azoxystrobin degradation in the sandy loam soil and half-life values were 59 (nonflooded) and 54.7 days (flooded). The study indicates that compost amendment enhanced azoxystrobin sorption in the soils. Azoxystrobin is more persistent in non-flooded soils than the flooded soils. Compost applications to soils had mixed effect on the azoxystrobin degradation.  相似文献   

3.
Sorption–desorption of the insecticide imidacloprid 1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine onto a lacustrine sandy clay loam Egyptian soil and its clay and humic acid (HA) fractions was investigated in 24-h batch equilibrium experiments. Imidacloprid (IMDA) sorption–desorption isotherms onto the three sorbents were found to belong to a non-linear L-type and were best described by the Freundlich model. The value of the IMDA adsorption distribution coefficient, Kdads, varied according to its initial concentration and was ranged 40–84 for HA, 14–58 for clay and 1.85–4.15 for bulk soil. Freundlich sorption coefficient, Kfads, values were 63.0, 39.7 and 4.0 for HA, clay and bulk soil, respectively. The normalized soil Koc value for imidacloprid sorption was ~800 indicating its slight mobility in soils. Nonlinear sorption isotherms were indicated by 1/nads values <1 for all sorbents. Values of the hysteresis index (H) were <1, indicating the irreversibility of imidacloprid sorption process with all tested sorbents. Gibbs free energy (ΔG) values indicated a spontaneous and physicosorption process for IMDA and a more favorable sorption to HA than clay and soil. In conclusion, although the humic acid fraction showed the highest capacity and affinity for imidacloprid sorption, the clay fraction contributed to approximately 95% of soil-sorbed insecticide. Clay and humic acid fractions were found to be the major two factors controlling IMDA sorption in soils. The slight mobility of IMDA in soils and the hysteresis phenomenon associated with the irreversibility of its sorption onto, mainly, clay and organic matter of soils make its leachability unlikely to occur.  相似文献   

4.
Sorption of 3,4-dichloroaniline (3,4-DCA) on four typical Greek agricultural soils, with distinct texture, organic matter content and cation exchange capacities, was compared by using sorption isotherms and the parameters calculated from the fitted Freundlich equations. The sorption process of 3,4-DCA to the soil was completed within 48–72 h. The 3,4-DCA sorption on all soils was well described by the Freundlich equation and all sorption isotherms were of the L-type. The sandy clay loam soil with the highest organic matter content and a slightly acidic pH was the most sorptive, whereas the two other soil types, a high organic matter and neutral pH clay and a low organic matter and acidic loam, had an intermediate sorption capacity. A typical calcareous soil with low organic matter had the lowest sorption capacity which was only slightly higher than that of river sand. The 3,4-DCA sorption correlated best to soil organic matter content and not to clay content or cation exchange capacity, indicating the primary role of organic matter. The distribution coefficient (K d) decreased with increasing initial 3,4-DCA concentration and the reduction was most pronounced with the highly sorptive sandy clay loam soil, suggesting that the available sorption sites of the soils are not unlimited. Liming of the two acidic soils (the sandy clay loam and the loam) raised their pH (from 6.2 and 5.3, respectively) to 7.8 and reduced their sorption capacity by about 50 %, indicating that soil pH may be the second in importance factor (after organic matter) determining 3,4-DCA sorption.  相似文献   

5.
Pyraclostrobin is a new broad-spectrum foliar applied and seed protectant fungicide of the strobilurin group. In this paper, adsorption-desorption of pyraclostrobin has been investigated in three different soils viz. Inceptisol (sandy loam, Delhi), Vertisol (sandy clay, Hyderabad) and Ultisol (sandy clay loam, Thrissur). Effect of organic matter and clay content on sorption was also studied in Inceptisol of Delhi. Leaching potential of pyraclostrobin as influenced by rainfall was studied in intact soil columns to confirm the results of adsorption-desorption studies. The adsorption studies were carried out at initial concentrations of 0.05, 0.1, 0.5, 1 and 1.5 μg mL?1. The distribution coefficient (Kd) values in three test soils ranged from 4.91 to 18.26 indicating moderate to high adsorption. Among the three test soils, adsorption was the highest in Ultisol (Kd 18.26), followed by Vertisol (Kd 9.87) and Inceptisol (Kd 4.91). KF value was also highest for Ultisol soil (66.21), followed by Vertisol (40.88) and Inceptisol (8.59). S-type adsorption isotherms were observed in all the three test soils. Kd values in organic carbon-removed soil and clay-removed soil were 3.57 and 2.83 respectively, indicating lower adsorption than normal Inceptisol. Desorption studies were carried out at initial concentrations of 0.5, 1 and 1.5 μg mL?1. Desorption was the greatest in Inceptisol, followed by Vertisol and Ultisol. Amounts of pyraclostrobin desorbed in three desorption cycles for different concentrations were 23.1–25.3%, 9.4–20.7% and 8.1–13.6% in Inceptisol, Vertisol and Ultisol respectively. Desorption was higher in clay fraction-removed and organic carbonremoved soils than normal Inceptisol. Desorption was slower than adsorption in all the test soils, indicating hysteresis effect (with hysteresis coefficient values varying from 0.05 to 0.20). Low values of hysteresis coefficient suggest high hysteresis effect indicating easy and strong adsorption, and slow desorption, of pyraclostrobin in soils. Higher hysteresis coefficient values in organic carbon removed soil (0.25–0.30) and clay fraction removed soil (0.28–0.36) as compared to normal Inceptisol soil suggest relatively weak adsorption and easy desorption of pyraclostrobin. Results of regression analysis suggest that the organic matter and pH of the soil play a major role in adsorption of pyraclostrobin. Leaching studies were carried out in intact soil columns in Inceptisol. The columns were leached with different amounts of water simulating different amounts of rainfall. The results suggest that most of the pyraclostrobin residues will remain present in the top soil layers even under high rainfall conditions and chances of pyraclostrobin moving to lower soil depth are almost negligible.  相似文献   

6.
Abstract

Two soils, Puyallup fine sandy loam from Puyallup, WA, and Ellzey fine sand from Hastings, FL, each with a prior history of carbofiiran exposure but with different pedological and climatological characteristics, were found to exhibit enhanced degradation toward carbofiiran in surface and subsurface soil layers. The treated Puyallup and Ellzey soils exhibited higher mineralization rates for both the carbonyl and the aromatic ring of carbofiiran when compared to untreated soils. Disappearance rates of [14C‐URL (uniformly ring labeled)] carbofiiran in the treated Ellzey soil was faster than in untreated soil, and also faster in surface soil than in subsurface soil. Initial degradation patterns in the treated Ellzey soil were also different from those in the untreated soil. The treated Ellzey soil degraded carbofuran mainly through biological hydrolysis, while untreated soil degraded carbofuran through both oxidative and hydrolytic processes.  相似文献   

7.
The insecticide chlordecone applied for decades in banana plantations currently contaminates 20,000 ha of arable land in the French West Indies. Although the impact of various pesticides on soil microorganisms has been studied, chlordecone toxicity to the soil microbial community has never been assessed. We investigated in two different soils (sandy loam and silty loam) exposed to different concentrations of CLD (D0, control; D1 and D10, 1 and 10 times the agronomical dose) over different periods of time (3, 7, and 32 days): (i) the fate of chlordecone by measuring 14C-chlordecone mass balance and (ii) the impact of chlordecone on microbial community structure, abundance, and function, using standardized methods (-A-RISA, taxon-specific quantitative PCR (qPCR), and 14C-compounds mineralizing activity). Mineralization of 14C-chlordecone was inferior below 1 % of initial 14C-activity. Less than 2 % of 14C-activity was retrieved from the water-soluble fraction, while most of it remained in the organic-solvent-extractable fraction (75 % of initial 14C-activity). Only 23 % of the remaining 14C-activity was measured in nonextractable fraction. The fate of chlordecone significantly differed between the two soils. The soluble and nonextractable fractions were significantly higher in sandy loam soil than in silty loam soil. All the measured microbiological parameters allowed discriminating statistically the two soils and showed a variation over time. The genetic structure of the bacterial community remained insensitive to chlordecone exposure in silty loam soil. In response to chlordecone exposure, the abundance of Gram-negative bacterial groups (β-, γ-Proteobacteria, Planctomycetes, and Bacteroidetes) was significantly modified only in sandy loam soil. The mineralization of 14C-sodium acetate and 14C-2,4-d was insensitive to chlordecone exposure in silty loam soil. However, mineralization of 14C-sodium acetate was significantly reduced in soil microcosms of sandy loam soil exposed to chlordecone as compared to the control (D0). These data show that chlordecone exposure induced changes in microbial community taxonomic composition and function in one of the two soils, suggesting microbial toxicity of this organochlorine.  相似文献   

8.
Abstract

The adsorption, desorption and binding of the insecticidal protein from Bacillus thuringiensis subsp. kurstaki (Btk toxin) onto autoclaved sandy and clay loam forest soils were studied at 23°C in a buffer medium (pH 10.2) using the precipitated protein mixture (active + inactive) obtained from a commercial Btk formulation. The active protein in the buffer solution was quantified by ELISA technique. Maximum adsorption of the toxin onto the sandy (301 μg/g) and clay (474 μg/g) loam soils was found to occur after 3 and 4 hours of agitation, respectively. Adsorption of the toxin was higher in the clay loam soil than in sandy loam. Adsorption parameters were calculated using the Freundlich and linear isotherm equations. The KF and 1/n values for the soils were 1.12 and 1.48 (sandy), and 20.42 and 0.874 (clay), respectively, indicating stronger affinity of the toxin for the clay compared to the sandy loam soil. The linear model showed deviations at higher concentrations, nevertheless using the best fit, KD and KOC values were computed for the two soils. For sandy loam, the KD and KOC values were 9.38 and 391, respectively; the corresponding values for clay loam were 13.19 and 425, confirming the higher sorption affinity of the toxin for clay loam. The adsorption data did not fit the Langmuir equation because of heterogeneity of the soil surface. Desorption studies showed that more than half of the adsorbed toxic protein remained firmly attached to sandy (162.6 μg/g or 54.5%) and clay (314.0 μg/g or 67.4%) loam soils after six 0.5‐h washes (total 3.0 h wash time). Although the toxin appears to be a non‐leacher, its lateral mobility, soil persistence and biological consequences, including bioavailability of the bound residues, are poorly understood and require further investigation.  相似文献   

9.
This study aimed to evaluate the sorption-desorption and leaching of aminocyclopyrachlor from three Brazilian soils. The sorption-desorption of 14C-aminocyclopyrachlor was evaluated using the batch method and leaching was assessed in glass columns. The Freundlich model showed an adequate fit for the sorption-desorption of aminocyclopyrachlor. The Freundlich sorption coefficient [Kf (sorption)] ranged from 0.37 to 1.34 µmol (1–1/n) L1/n kg?1 and showed a significant positive correlation with the clay content of the soil, while the Kf (desorption) ranged from 3.62 to 5.36 µmol (1–1/n) L1/n kg?1. The Kf (desorption) values were higher than their respective Kf (sorption), indicating that aminocyclopyrachlor sorption is reversible, and the fate of this herbicide in the environment can be affected by leaching. Aminocyclopyrachlor was detected at all depths (0?30 cm) in all the studied soils, where leaching was influenced by soil texture. The total herbicide leaching from the sandy clay and clay soils was <0.06%, whereas, ~3% leached from the loamy sand soil. The results suggest that aminocyclopyrachlor has a high potential of leaching, based on its low sorption and high desorption capacities. Therefore, this herbicide can easily contaminate underground water resources.  相似文献   

10.
When analyzing the sorption characteristics of weakly sorbing or labile pesticides, batch methods tend to yield a high margin of error attributable to errors in concentration measurement and to degradation, respectively. This study employs a recently developed unsaturated transient flow method to determine the sorption of isoxaflutole's herbicidally active diketonitrile degradate (DKN) and dicamba. A 20-cm acrylic column was packed with soils with varied texture that had been uniformly treated with 14C-labeled chemical.

The antecedent solution herbicide in equilibrium with sorbed phase herbicide was displaced by herbicide-free water, which was infiltrated into the column. Sorption coefficients, Kd, were obtained from a plot of total herbicide concentration in the soil versus water content in the region where the antecedent solution accumulated. DKN Kd values were ~2–3 times (average Kd = 0.71 L kg?1) greater using the unsaturated transient flow method as compared to the batch equilibration method in clay loam (Kd = 0.33 L kg?1), but similar for the two methods in sand (0.12 vs 0.09 L kg?1) soils. Dicamba Kd values were 3 times greater using the unsaturated transient flow method as compared to the batch equilibration method in the clay loam soil (0.38 vs 0.13 L kg?1), however, the Kd values were the same for the two methods in the sand (~0.06 L kg?1). This demonstrates that to determine sorption coefficients for labile hydrophilic pesticides, an unsaturated transient flow method may be a suitable alternative to the batch method. In fact, it may be better in cases where transport models have overpredicted herbicide leaching when batch sorption coefficients have been used.  相似文献   

11.

Paraquat adsorption, degradation, and remobilization were investigated in representative tropical soils of Yom River Basin, Thailand. Adsorption of paraquat in eight soil samples using batch equilibration techniques indicated that adsorption depended on soil characteristics, including exchangeable basic cations and iron content. Multiple regression analysis indicated significant contribution of exchangeable calcium percentage (ECP), total iron content (TFe) and exchangeable sodium percentage (ESP) to paraquat sorption (Q). ESP and TFe were significant at all adsorption stages, whereas ESP was significant only at the initial stage of paraquat adsorption. Adsorption studies using two soils representing clay and sandy loam textures showed that paraquat adsorption followed the Freundlich model, exhibiting a nonlinear sorption curve. Paraquat adsorption was higher in the clay soil compared to the sandy loam soil with K f values of 787 and 18, respectively. Desorption was low with 0.04 to 0.17% and 0.80 to 5.83% desorbed in clay and sandy loam soil, respectively, indicating some hysteresis effect. Time-dependent paraquat adsorption fitted to the Elovich kinetic model indicated that diffusion was a rate-limiting process. Paraquat mobility and degradation studies conducted using both field and laboratory soil column experiments with clay soil showed low mobility of paraquat with accumulation only in the surface 0–5 cm layer under field conditions and in the 0–1 cm layer in a laboratory soil column experiment. Degradation of paraquat in soil was faster under field conditions than at ambient laboratory conditions. The degradation rate followed a first-order kinetic model with the DT50 at 36–46 days and DT90 around 119–152 days.  相似文献   

12.

Sorption of the estrogens estrone (E1), 17β-estradiol (E2) and 17α-ethynylestradiol (EE2) on four soils was examined using batch equilibrium experiments with initial estrogen concentrations ranging from 10 to 1000 ng mL?1. At all concentrations, >85% of the three estrogens sorbed rapidly to a sandy soil. E1 sorbed more strongly to soil than E2 or EE2. Partial oxidation of E2 to E1 was observed in the presence of soils. Autoclaving was more effective at reducing this conversion than inhibition with sodium azide or mercuric chloride, and had little effect on sorption, relative to the chemical microbial inhibitors. Sorption of EE2 was greater for fine-textured than coarse-textured soils, but greater than 90% of EE2 sorbed onto all four soils. The greatest degree of desorption of estrogens from the sandy soil occurred with the lowest initial concentration of 10 ng mL?1 and reached levels ≥80% for E1 and E2. Desorption of EE2 was greater in coarser textured soils than finer-textured soils. Again, relative desorption from all soils was greatest with low initial concentrations. Therefore, at environmentally relevant concentrations, estrogens quickly sorb to soils, and soils have a large capacity to bind estrogens, but these endocrine-disrupting compounds can become easily desorbed and released into the aqueous phase.  相似文献   

13.
Simazine is a s-triazine herbicide that has been applied worldwide for agriculture. This herbicide is the second most commonly detected pesticide in surface and groundwater in the United States, Europe and Australia. In this study, simazine adsorption behaviour was studied in two agricultural soils of the Aconcagua valley, central Chile. The two studied soils were soil A (loam, 8.5% organic matter content) and soil B (clay-loam, 3.5% organic matter content). Three times higher simazine adsorption capacity was observed in soil A (68.03 mg kg−1) compared to soil B (22.03 mg kg−1). The simazine adsorption distribution coefficients (Kd) were 9.32 L kg−1 for soil A and 7.74 L kg−1 for soil B. The simazine adsorption enthalpy in soil A was −21.0 kJ mol−1 while in soil B the adsorption enthalpy value was −11.5 kJ mol−1. These results indicate that simazine adsorption process in these soils is exothermic, governing H bonds the adsorption process of simazine in both the loam and clay-loam soils. These results and the potentiometric profiles of both soils, suggest that simazine adsorption in soil A is mainly governed by simazine–organic matter interactions and in soil B by simazine–clay interactions. The understanding of simazine sorption–desorption processes is essential to determine the pesticide fate and availability in soil for pest control, biodegradation, runoff and leaching.  相似文献   

14.
Abstract

The persistence of aflatoxin in the soil environment could potentially result in a number of adverse environmental consequences. To determine the persistence of aflatoxin in soil, 14C‐labeled aflatoxin B1, was added to silt loam, sandy loam, and silty clay loam soils and the subsequent release of 14CO2 was determined. After 120 days of incubation, 8.1% of the original aflatoxin added to the silt loam soil was released as CO2 ? Aflatoxin decomposition in the sandy loam soil proceeded more quickly than the other two soils for the first 20 days of incubation. After this time, the decomposition rate declined and by the end of the study, 4.9% of the aflatoxin was released as CO2. Aflatoxin decomposition proceeded most slowly in the silty clay loam soil. Only 1.4% of aflatoxin added to the soil was released as CO2 after 120 days incubation. To determine whether aflatoxin was bound to the silty clay loam soil, aflatoxin B1 was added to this soil and incubated for 20 days. The soil was periodically extracted and the aflatoxin species present were determined using thin layer chromatographic (TLC) procedures. After one day of incubation, the degradation products, aflatoxins B2 and G2, were observed. It was also found that much of the aflatoxin extracted from the soil was not mobile with the TLC solvent system used. This indicated that a conjugate may have formed and thus may be responsible for the lack of aflatoxin decomposition.  相似文献   

15.
The objective of this research was to investigate the effect of wheat and rice biochars on pyrazosulfuron-ethyl sorption in a sandy loam soil. Pyrazosulfuron-ethyl was poorly sorbed in the soil (3.5–8.6%) but biochar amendment increased the herbicide adsorption, and the effect varied with the nature of the feedstock and pyrolysis temperature. Biochars prepared at 600°C were more effective in adsorbing pyrazosulfuron-ethyl than biochars prepared at 400°C. Rice biochars were better than wheat biochars, and higher herbicide adsorption was attributed to the biochar surface area/porosity. The Freundlich constant 1/n suggested nonlinear isotherms, and nonlinearlity increased with increase in the level of biochar amendment. Desorption results suggested sorption of pyrazosulfuron-ethyl was partially irreversible, and the irreversibility increased with increase in the level of biochar. Both sorption and desorption of pyrazosulfuron-ethyl correlated well with the content of biochars. The free energy change (ΔG) indicated that the pyrazosulfuron-ethyl sorption process was exothermic, spontaneous and physical in nature. Persistence studies indicated that biochar (0.5%) amendment did not have significant effect on herbicide degradation, and its half-life values in the control, 0.5% WBC600- and RBC600-amended rice planted soils were 7, 8.6, and 10.4 days, respectively.  相似文献   

16.
The main purpose of this work was to identify the role of soil humic acids (HAs) in controlling the behavior of Cu(II) in vineyard soils by exploring the relationship between the chemical and binding properties of HA fractions and those of soil as a whole. The study was conducted on soils with a sandy loam texture, pH 4.3-5.0, a carbon content of 12.4-41.0 g kg−1 and Cu concentrations from 11 to 666 mg kg−1. The metal complexing capacity of HA extracts obtained from the soils ranged from 0.69 to 1.02 mol kg−1, and the stability constants for the metal ion-HA complexes formed, log K, from 5.07 to 5.36. Organic matter-quality related characteristics had little influence on Cu adsorption in acid soils, especially if compared with pH, the degree of Cu saturation and the amount of soil organic matter.  相似文献   

17.
Sorption-desorption behavior of imidacloprid in six soils collected from five coastal regions in Croatia at 20, 30 and 40°C was investigated using batch equilibrium technique. Isothermal data were applied to Freundlich, Langmuir and Temkin equations, and the thermodynamic parameters ΔH°, ΔG°, ΔS° were calculated. The sorption isotherm curves were non-linear and may be classified as L-type, suggesting a relatively high sorption capacity for imidacloprid. Our results showed that the K sor F values decreased for all the tested soils as the temperature increased, indicating that the temperature strongly influences the sorption. Values of ΔG° were negative (?4.65 to ?2.00 kJ/mol) indicating that at all experimental temperatures the interactions of imidacloprid with soils were spontaneous processes. The negative and small ΔH° values (?19.79 to ?8.89 kJ/mol) were in the range of weak forces, such as H-bonds, consistent with interactions and partitioning of the imidacloprid molecules into soil organic matter. The ΔS° values followed the range of ?57.12 to ?14.51 J/molK, suggesting that imidacloprid molecules lose entropy during transition from the solution phase to soil surface. It was found that imidacloprid desorption from soil was concentration and temperature-dependent, i.e. at lower imidacloprid concentrations and temperature, lower desorption percentage occurred. Desorption studies revealed that hysteretic behavior under different temperature treatments existed, and it was more pronounced at 20°C in the soils with higher OC content. The study results emphasize the importance of thermodynamic parameters in controlling soil pesticide mobility in different geographical locations, seasons and greenhouse conditions.  相似文献   

18.
Sorption of 3,4-dichloroaniline (3,4-DCA) on four typical Greek agricultural soils, with distinct texture, organic matter content and cation exchange capacities, was compared by using sorption isotherms and the parameters calculated from the fitted Freundlich equations. The sorption process of 3,4-DCA to the soil was completed within 48-72 h. The 3,4-DCA sorption on all soils was well described by the Freundlich equation and all sorption isotherms were of the L-type. The sandy clay loam soil with the highest organic matter content and a slightly acidic pH was the most sorptive, whereas the two other soil types, a high organic matter and neutral pH clay and a low organic matter and acidic loam, had an intermediate sorption capacity. A typical calcareous soil with low organic matter had the lowest sorption capacity which was only slightly higher than that of river sand. The 3,4-DCA sorption correlated best to soil organic matter content and not to clay content or cation exchange capacity, indicating the primary role of organic matter. The distribution coefficient (K(d)) decreased with increasing initial 3,4-DCA concentration and the reduction was most pronounced with the highly sorptive sandy clay loam soil, suggesting that the available sorption sites of the soils are not unlimited. Liming of the two acidic soils (the sandy clay loam and the loam) raised their pH (from 6.2 and 5.3, respectively) to 7.8 and reduced their sorption capacity by about 50 %, indicating that soil pH may be the second in importance factor (after organic matter) determining 3,4-DCA sorption.  相似文献   

19.
The fate and transport of 2,4-dichlorophenoxyacetic acid (2,4-D) in the subsurface is affected by a complex, time-dependent interplay between sorption and mineralization processes. 2,4-D is biodegradable in soils, while adsorption/desorption is influenced by both soil organic matter content and soil pH. In order to assess the dynamic interactions between sorption and mineralization, 2,4-D mineralization experiments were carried using three different soils (clay, loam and sand) assuming different contact times. Mineralization appeared to be the main process limiting 2,4-D availability, with each soil containing its own 2,4-D decomposers. For the clay and the loamy soils, 45 and 48% of the applied dose were mineralized after 10 days. By comparison, mineralization in the sandy soil proceeded initially much slower because of longer lag times. While 2,4-D residues immediately after application were readily available (>93% was extractable), the herbicide was present in a mostly unavailable state (<2% extractable) in all three soils after incubation for 60 days. We found that the total amount of bound residue decreased between 30 and 60 incubation days. Bioaccumulation may have led to reversible immobilization, with some residues later becoming more readily available again to extraction and/or mineralization.  相似文献   

20.
The hydrolysis of the insecticide pyraclofos in buffered solutions at pH 5.0, 7.0 and 9.0, and its sorption on four soils of different physicochemical properties were investigated. The results showed that the degradation of pyraclofos in buffered solutions followed pseudo-first-order kinetics. At 40°C, the rate constants for the hydrolysis of pyraclofos at pH 5.0, 7.0 and 9.0 were 0.0214, 0.1293, and 2.1656 d?1, respectively. Pyraclofos was relatively stable under both acidic and neutral conditions, while it was readily hydrolyzed under basic conditions. The sorption of pyraclofos on four soils was well described by the Freundlich equation. The sorption constant, K f, increased with an increase in soil organic carbon content, suggesting that organic carbon content was an important factor affecting sorption. The K oc values for Xiaoshan clay loam soil, Hangzhou I clay loam soil, Hangzhou II soil, and Fuyang silt loam soil were 30.4, 6.7, 5.3, and 7.1, respectively. These results suggest that the sorption of pyraclofos on the tested soils was relatively weak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号