首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
This investigation was undertaken to determine the effect of two different fly ashes [Kota and Inderprastha (IP)] amendment on the sorption behavior of metribuzin in three Indian soil types. The IP fly ash was very effective in increasing the metribuzin sorption in the soils. The sorption with IP amendment was increased by 15-92%, whereas with the Kota fly ash an increase in sorption by 13-38% was noted. The adsorption isotherms fitted very well to the Freundlich adsorption equation and, in general, slope (1/n) values less then unity were observed. Although both the fly ashes significantly decreased metribuzin desorption, the IP fly ash was comparatively more effective in retaining metribuzin in the soils. Metribuzin sorption in the IP fly ash-amended soils showed strong correlation with the fly ash content and compared to K(f)/K(d) values, K(FA) values (sorption normalized to fly ash content) showed less variation. Metribuzin sorption-desorption did not correlate to the organic carbon content of the soil-fly ash mixture. The study demonstrates that all coal fly ashes may not be effective in enhancing the sorption of metribuzin in soils to the same extent. However, among the fly ashes used in this study, the IP fly ash was observed to be significantly effective in enhancing the sorption of metribuzin in soils. This may play an important role in reducing the run off and leaching losses of the herbicide by retaining it in the soil.  相似文献   

2.
This investigation was undertaken to determine the effect of amendment of two fly ashes [Kota and Inderprastha (IP)] on sorption behavior of metsulfuron-methyl in three Indian soil types. Kota fly ash (5%) did not show any effect on herbicide sorption while IP fly ash significantly enhanced the sorption. Further studies on metsulfuron-methyl sorption-desorption behavior in 0.5, 1, 2, and 5% IP fly ash-amended soils suggested that effect of fly ash varied with soil type and better effect was observed in low organic carbon content soils. The sorption-desorption isotherms fitted very well to the Freundlich sorption equation and, in general, slope (1/n) values less than unity were observed. Metsulfuron-methyl sorption in the IP fly ash-amended soils showed strong correlation with the fly ash content and compared to the Freundlich sorption constant (K f), K FA values (sorption normalized to fly ash content) showed less variation. Metsulfuron-methyl leaching studies suggested greater retention of herbicide in the application zone in IP fly ash-amended soils, but effect varied with soil type and no herbicide leaching was observed in 5% fly ash-amended soils. The study suggested that all coal fly ashes are not effective in enhancing the sorption of metsulfuron-methyl in soils. However, one which enhanced herbicide sorption, could play an important role in reducing its leaching losses.  相似文献   

3.
Metribuzin, a triazine herbicide, is poorly sorbed in the soils, therefore leaches to lower soil profile. Fly ash amendment, which enhanced metribuzin sorption in soils, may play a significant role in reducing the downward mobility of herbicide. Therefore, the present study reports the effect of Inderprastha fly ash amendment on metribuzin leaching in three soil types. Fly ash was amended at 1, 2 and 5% levels in the upper 15 cm of 30 cm long packed soil columns. Results suggested a significant reduction in the leaching losses of metribuzin in fly ash-amended columns of all the three soil types and effect increased with increase in the level of fly ash. Even after percolating water equivalent to 362 mm rainfall no metribuzin was recovered in the leachate of 5% fly ash-amended columns. Fly ash application affected both metribuzin breakthrough time and its maximum concentration in the leachate. Further, it resulted in greater retention of metribuzin in the application zone and better effect was observed in the organic carbon poor soils.  相似文献   

4.
Effect of soil amendments on sorption and mobility of metribuzin in soils   总被引:1,自引:0,他引:1  
Majumdar K  Singh N 《Chemosphere》2007,66(4):630-637
Metribuzin (4-amino-6-tert-butyl-4,5-dihydro-3-methylthio-1,2,4-triazin-5-one), is weakly sorbed to soil therefore, leaches easily to lower soil profiles. Soil amendments play a significant role in the management of leaching losses of pesticides. Therefore, present study reports the effect of organic manure and fly ash amendments on metribuzin downward mobility in sandy loam soil columns. Application of animal manure [T-1(OM) and T-2(OM)] and fly ash [T-1(FA) and T-2(FA)] at 2.5% and 5.0% levels increased the metribuzin retention in the soil. Freundlich constant [K(f)(1/n)] values of metribuzin for treatments T-1(OM) and T-2(OM) were 0.70 and 1.11, respectively, which were significantly higher than the value (0.27) in natural soil (T-0). The respective values for treatments T-1(FA) and T-2(FA) were 1.80 and 4.61. Downward mobility of metribuzin was studied in packed soil columns [300 mm (l)x59 mm (i.d.)]. Both the amendments significantly reduced the downward mobility of metribuzin and affected breakthrough time and maximum concentration of metribuzin in the leachate. Leaching losses of metribuzin were decreased from 97% in natural soil (T-0) column to 64% [T-1(OM)] and 42% [T-2(OM)] for animal manure-amended columns and 26% [T-1(FA)] to 100% [T-2(FA)] for fly ash-amended columns, as metribuzin did not leach out of 5% fly ash-amended column. Study indicates that both animal manure and fly ash were quite effective in reducing the downward mobility of metribuzin in packed soil columns of a sandy loam soil.  相似文献   

5.
Abstract

In this study, we used two biochars (BC) produced from grapevine pruning residues (BCgv) and red spruce wood (BCrs), two hydrochars (HC) from urban pruning residues (HCup) and the organic fraction of municipal solid wastes (HCuw), and two vermicomposts (VC) obtained vermicomposting digestates from buffalo manure (VCbm) and mixed feedstock (VCmf). Adsorption kinetics and isotherms of metribuzin onto these materials were performed. Sorption kinetics followed preferentially a pseudo-second-order model, thus indicating the occurrence of chemical interactions between the sorbate and the adsorbents. Adsorption constants were calculated using the Freundlich and Langmuir models. Metribuzin sorption data on BCgv and both HC fitted preferentially the Freundlich equation, whereas on the other materials data fitted both isotherms well (r?>?0.95). Metribuzin sorption capacity of the materials followed the trend BC?>?HC?>?VC. Sorption constants of metribuzin normalised per organic carbon content (KOC) on BCgv, BCrs, HCup, HCuw, VCbm and VCmf were 561, 383, 251, 214, 102 and 84?L kg?1, respectively. A significant positive correlation (P?=?0.016) was calculated between distribution coefficients (Kd) of all materials and the corresponding organic carbon contents, thus indicating a prominent role of the organic fraction of these materials in the adsorption of metribuzin.  相似文献   

6.
Adsorption of metolachlor and atrazine was studied in the fly ash (Inderprastha and Badarpur)- amended Inceptisol and Alfisol soils using batch method. Results indicated that sorption of both the herbicides in soil+fly ash mixtures was highly nonlinear and sorption decreased with a higher herbicide concentration in the solution. Also, nonlinearity increased with an increase in the level of fly ash amendment from 0-5%. Three two-parameter monolayer isotherms viz. Langmuir, Temkin, Jovanovic and one imperical Freundlich models were used to fit the experimental data. Data analysis and comparison revealed that the Temkin and the Freundlich isotherms were best-suited to explain the sorption results and the observed and the calculated adsorption coefficient values showed less variability. The study suggested that sorption mechanism of metolachlor and atrazine involved the physical association at the sorbate surface and the nonlinearity in the sorption at higher pesticide or fly ash concentration was due to a decrease in the heat of adsorption and higher binding energy.  相似文献   

7.

A greenhouse study was conducted to evaluate the potential use of olive-cake ash as a soil amendment, using pepper (Capsicum annuum, L. cv Italian sweet). Three soils of different pH (acidic, neutral and calcareous) were used. Treatments included a control (no fertilizer application), NPK fertilizer, and two ash-application rates that provided a complete dose (equivalent to the K2O amount in the fertilizer) and a half dose (equivalent to half the K2O amount in the fertilizer), respectively. The ash was effective in raising soil pH. Ash treatments increased the pepper (stems and leaves) dry matter yield over control; although these increases were lower than treatment including NPK. Application of ash significantly increased leaf P concentration and AB-DTPA extractable P in soil, especially in the acidic and neutral soils. Leaf K concentrations and readily and slowly available K forms in soils were affected positively by the addition of the ash. These results demonstrate that ash from the combustion of wet olive cake can be used as a beneficial organic soil amendment.  相似文献   

8.
Naturally weathered and unweathered samples of fly ashes produced from Gondwana and lignite coals were characterized for their edaphological properties. The particle size distribution in these fly ashes varied widely, and the percentage of [Formula: see text] size particles governed their water holding capacity. All fly ashes were noncoherent in the dry state and had lower particle density than quartz and mulite. The fly ashes were low in available N, but were sufficient in available P, K, Ca, Mg, S, Cu, Fe, Mn, Zn and B. Among the fly ashes, unweathered lignite fly ash was the richest source of K, Ca, Mg, S and Fe, while weathered lignite fly ash had the highest amounts of Mn, Zn and B. The pH of the fly ashes was closely related to the ratio of exchangeable Ca to exchangeable Al. The fly ashes were high in soluble salt, but were poor in cation exchange capacity. As an amendment to correct soil pH, the fly ashes had a poor buffering capacity. Weathering decreased the total Fe, available S and exchangeable Na percentages, but increased the organic C content of the fly ashes. Invariably, an excess of soluble salts and exchangeable Na could limit plant growth on fly ash dumps. Toxic levels of B and Al existed in only some fly ashes.  相似文献   

9.
The effect of compost-amendment and moisture status on the persistence of azoxystrobin [methyl (E)-2-{2-(6-(2-cyanophenoxy) pyrimidin-4-yloxy) phenyl}-3-methoxyacrylate], a strobilurin fungicide, in two rice-growing soils was studied. Azoxystrobin is more sorbed in the silt loam (K f – 4.66) soil than the sandy loam (K f – 2.98) soil. Compost-amendment at 5 % levels further enhanced the azoxystrobin sorption and the respective K f values in silt loam and sandy loam soils were 8.48 and 7.6. Azoxystrobin was more persistent in the sandy loam soil than the silt loam soil. The half–life values of azoxystrobin in nonflooded and flooded silt loam soil were 54.7 and 46.3 days, respectively. The corresponding half–life values in the sandy loam soils were 64 and 62.7 days, respectively. Compost application enhanced persistence of azoxystrobin in the silt loam soil under both moisture regimes and half-life values in non–flooded and flooded soils were 115.7 and 52.8 days, respectively. However, compost enhanced azoxystrobin degradation in the sandy loam soil and half-life values were 59 (nonflooded) and 54.7 days (flooded). The study indicates that compost amendment enhanced azoxystrobin sorption in the soils. Azoxystrobin is more persistent in non-flooded soils than the flooded soils. Compost applications to soils had mixed effect on the azoxystrobin degradation.  相似文献   

10.
Both grate and fluidized bed incinerators are widely used for MSW incineration in China. CaO addition for removing hazardous emissions from MSWI flue gas changes the characteristics of fly ash and affects the thermal behavior of heavy metals when the ash is reheated. In the present work, two types of MSWI fly ashes, sampled from both grate and fluidized bed incinerators respectively, were thermal treated at 1023–1323 K and the fate of heavy metals was observed. The results show that both of the fly ashes were rich in Ca and Ca-compounds were the main alkaline matter which strongly affected the leaching behavior of heavy metals. Ca was mostly in the forms of Ca(OH)2 and CaCO3 in the fly ash from grate incinerator in which nascent fly ash particles were covered by Ca-compounds. In contrast, the content of Ca was lower in the fly ash from fluidized bed incinerator and Ca was mostly in the form of CaSO4. Chemical reactions among Ca-compounds caused particle agglomeration in thermal treated fly ash from grate incinerator, restraining the heavy metals volatilization. In thermal treated fly ash from fluidized bed incinerator, Ca was converted into aluminosilicates especially at 1323 K which enhanced heavy metals immobilization, decreasing their volatile fractions as well as leaching concentrations. Particle agglomeration hardly affected the leaching behavior of heavy metals. However, it suppressed the leachable-CaCrO4 formation and lowered Cr leaching concentration.  相似文献   

11.
Background, aim, and scope  Herbicide fate and its transport in soils and sediments greatly depend upon sorption–desorption processes. Quantitative determination of herbicide sorption–desorption is therefore essential for both the understanding of transport and the sorption equilibrium in the soil/sediment–water system; and it is also an important parameter for predicting herbicide fate using mathematical simulation models. The total soil/sediment organic carbon content and its qualitative characteristics are the most important factors affecting sorption–desorption of herbicides in soil or sediment. Since the acetochlor is one of the most frequently used herbicides in Slovakia to control annual grasses and certain annual broad-leaved weeds in maize and potatoes, and posses various negative health effects on human beings, our aim in this study was to investigate acetochlor sorption and desorption in various soil/sediment samples from Slovakia. The main soil/sediment characteristics governing acetochlor sorption–desorption were also identified. Materials and methods  The sorption–desorption of acetochlor, using the batch equilibration method, was studied on eight surface soils, one subsurface soil and five sediments collected from the Laborec River and three water reservoirs. Soils and sediments were characterized by commonly used methods for their total organic carbon content, distribution of humus components, pH, grain-size distribution, and smectite content, and for calcium carbonate content. The effect of soil/sediment characteristics on acetochlor sorption–desorption was examined by simple correlation analysis. Results  Sorption of acetochlor was expressed as the distribution coefficient (K d). K d values slightly decreased as the initial acetochlor concentration increased. These values indicated that acetochlor was moderately sorbed by soils and sediments. Highly significant correlations between the K d values and the organic carbon content were observed at both initial concentrations. However, sorption of acetochlor was most closely correlated to the humic acid carbon, and less to the fulvic acid carbon. The total organic carbon content was found to also significantly influence acetochlor desorption. Discussion  Since the strong linear relationship between the K d values of acetochlor and the organic carbon content was already released, the corresponding K oc values were calculated. Considerable variation in the K oc values suggested that other soil/sediment parameters besides the total soil organic carbon content could be involved in acetochlor sorption. This was revealed by a significant correlation between the K oc values and the ratio of humic acid carbon to fulvic acid carbon (CHA/CFA). Conclusions  When comparing acetochlor sorption in a range of soils and sediments, different K d values which are strongly correlated to the total organic carbon content were found. Concerning the humus fractions, the humic acid carbon content was strongly correlated to the K d values, and it is therefore a better predictor of the acetochlor sorption than the total organic carbon content. Variation in the K oc values was attributed to the differences in distribution of humus components between soils and sediments. Desorption of acetochlor was significantly influenced by total organic carbon content, with a greater organic carbon content reducing desorption. Recommendations and perspectives  This study examined the sorption–desorption processes of acetochlor in soils and sediments. The obtained sorption data are important for qualitative assessment of acetochlor mobility in natural solids, but further studies must be carried out to understand its environmental fate and transport more thoroughly. Although, the total organic carbon content, the humus fractions of the organic matter and the CHA/CFA ratio were sufficient predictors of the acetochlor sorption–desorption. Further investigations of the structural and chemical characteristics of humic substances derived from different origins are necessary to more preciously explain differences in acetochlor sorption in the soils and sediments observed in this study.  相似文献   

12.
The effect of the addition of materials on the leaching pattern of As and metals (Cu, Zn, Ni, Pb, and Cd) in two contaminated soils was investigated. The examined materials included bentonites, silicates and industrial wastes, such as sugar foam, fly ashes and a material originated from the zeolitization of fly ash. Soil + material mixtures were prepared at 10% doses. Changes in the acid neutralization capacity, crystalline phases and contaminant leaching over a wide range of pHs were examined by using pHstat leaching tests. Sugar foam, the zeolitic material and MX-80 bentonite produced the greatest decrease in the leaching of pollutants due to an increase in the pH and/or the sorption capacity in the resulting mixture. This finding suggests that soil remediation may be a feasible option for the reuse of non-hazardous wastes.  相似文献   

13.
Improving phosphate removal of sand infiltration system using alkaline fly ash   总被引:17,自引:0,他引:17  
Septic tank effluent is customarily disposed of by soil infiltration. Coarse, sandy soil such as those found in Perth, Western Australia, exhibit low attenuation capabilities for phosphate (PO4(3-)) during effluent infiltration. Amendment of such soil with different amounts of alkaline precipitator and lagoon fly ashes was investigated as a means of reducing phosphorus (P) leakage to ground water. Alkaline precipitator fly ash possessed the highest P sorption capacity in terms of its Langmuir and Freundlich isotherm parameters during initial batch tests. The test materials were repeatedly contacted with fresh PO4(3-) solutions over 90 contacting cycles to gain a better indication of long-term P sorption capability. Again, precipitator fly ash exhibited higher P sorption capacity than lagoon fly ash and Spearwood sand. Column studies assessed the influence of various application rates of alkaline precipitator and lagoon fly ashes on the P removal of septic tank effluent. Septic tank effluent was applied at the rate of 4 cm/day to the column for 12 weeks. Concentrations of P were monitored in the column effluent. All the fly ash columns were more efficient in reducing P migration compared to the sand column. Increased levels of fly ash in the soil columns resulted in increased P attenuation. Lagoon fly ash was inferior to precipitator fly ash for P removal; high application rates of fly ash caused clogging of the infiltration bed apparently due to their lower permeability. It is reasoned that 5-15% precipitator fly ash, and less than 30% lagoon fly ash could be added to coarse sands to produce an infiltration bed, which would result in a better quality effluent than can be obtained with untreated sand alone.  相似文献   

14.
Contamination episodes in soils require interventions to attenuate their impact. These actions are often based on the addition of materials to increase contaminant retention in the soil and to dilute the contaminant concentration. Here, non-hazardous wastes (such as sugar foam, fly ash and a material produced by the zeolitization of fly ash) and silicates (including bentonites) were tested and fully characterized in the laboratory to select suitable materials for remediating metal-contaminated soils. Data from X-ray fluorescence (XRF), N2 adsorption/desorption isotherms, X-ray diffraction (XRD) and scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM-EDX) analyses revealed the chemical composition, specific surface area and the phases appearing in the materials. A pH titration test allowed the calculation of their acid neutralization capacity (ANC). The metal sorption and desorption capacities of the waste materials and silicates were also estimated. Sugar foam, fly ash and the zeolitic material were the best candidate materials. Sugar foam was selected because of its high ANC (17 000 meq kg−1), and the others were selected because of their larger distribution coefficients and lower sorption reversibilities than those predicted in the contaminated soils.  相似文献   

15.
The hydrolysis of the insecticide pyraclofos in buffered solutions at pH 5.0, 7.0 and 9.0, and its sorption on four soils of different physicochemical properties were investigated. The results showed that the degradation of pyraclofos in buffered solutions followed pseudo-first-order kinetics. At 40°C, the rate constants for the hydrolysis of pyraclofos at pH 5.0, 7.0 and 9.0 were 0.0214, 0.1293, and 2.1656 d?1, respectively. Pyraclofos was relatively stable under both acidic and neutral conditions, while it was readily hydrolyzed under basic conditions. The sorption of pyraclofos on four soils was well described by the Freundlich equation. The sorption constant, K f, increased with an increase in soil organic carbon content, suggesting that organic carbon content was an important factor affecting sorption. The K oc values for Xiaoshan clay loam soil, Hangzhou I clay loam soil, Hangzhou II soil, and Fuyang silt loam soil were 30.4, 6.7, 5.3, and 7.1, respectively. These results suggest that the sorption of pyraclofos on the tested soils was relatively weak.  相似文献   

16.
PCDD/PCDF were determined in solid samples from wood combustion. The samples included grate ashes, bottom ashes, furnace ashes as well as fly and cyclone ashes. The solid waste samples were classified into bottom and fly ash from native wood and bottom and fly ash from waste wood. For each of the four classes concentration distribution patterns from individual congeners, the sums of PCDD/PCDF and the international toxicity equivalents (I-TEQ) values are given. The I-TEQ levels of fly ash from waste wood burning can be approximately up to two thousand times higher than the values from fly ashes of natural wood. The I-TEQ levels in bottom ashes from waste wood combustion systems are as low as the corresponding ashes from the combustion of native wood. Grate ash samples from waste wood combustion systems with low carbon burnout show high levels of PCDD/PCDF.  相似文献   

17.
Xiao D  Pan B  Wu M  Liu Y  Zhang D  Peng H 《Chemosphere》2012,86(2):183-189
The degradation intermediates of phenanthrene (PHE) may have increased health risks to organisms than PHE. Therefore, environmental fate and risk assessment studies should take into considerations of PHE degradation products. This study compared the sorption properties of PHE and its degradation intermediates, 9,10-phenanthrenequinone (PQN) and 9-phenanthrol (PTR) in soils, sediments and soil components. A relationship between organic carbon content (fOC) and single-point sorption coefficient (log Kd) was observed for all three chemicals in 10 soils/sediments. The large intercept in the log fOC − log Kd regression for PTR indicated that inorganic fractions control PTR sorption in soils/sediments. No relationship between specific surface area and Kd was observed. This result indicated that determination of surface area based on gas sorption could not identify surface properties for PHE, PQN, and PTR sorption and thus provide limit information on sorption mechanisms. The high sorption and strong nonlinearity (low n values) of PTR in comparison to PHE suggested that the mobility of PTR could be lower than PHE. Increased mobility of PQN compared with PHE may be expected in soils/sediments because of PQN lower sorption. The varied sorption properties of the three chemicals suggested that their environmental risks should be assessed differently.  相似文献   

18.
This study aimed to evaluate the sorption-desorption and leaching of aminocyclopyrachlor from three Brazilian soils. The sorption-desorption of 14C-aminocyclopyrachlor was evaluated using the batch method and leaching was assessed in glass columns. The Freundlich model showed an adequate fit for the sorption-desorption of aminocyclopyrachlor. The Freundlich sorption coefficient [Kf (sorption)] ranged from 0.37 to 1.34 µmol (1–1/n) L1/n kg?1 and showed a significant positive correlation with the clay content of the soil, while the Kf (desorption) ranged from 3.62 to 5.36 µmol (1–1/n) L1/n kg?1. The Kf (desorption) values were higher than their respective Kf (sorption), indicating that aminocyclopyrachlor sorption is reversible, and the fate of this herbicide in the environment can be affected by leaching. Aminocyclopyrachlor was detected at all depths (0?30 cm) in all the studied soils, where leaching was influenced by soil texture. The total herbicide leaching from the sandy clay and clay soils was <0.06%, whereas, ~3% leached from the loamy sand soil. The results suggest that aminocyclopyrachlor has a high potential of leaching, based on its low sorption and high desorption capacities. Therefore, this herbicide can easily contaminate underground water resources.  相似文献   

19.
In the present research mortar pastes obtained by replacing a commercial cement with the equivalent mass of 5, 10, 20 and 30 wt.% of fly ash or bottom ash from fir chips combustion, were prepared and rheologically characterized. It was observed that the presence of ash modifies their rheological behaviour with respect to the reference blend due to the presence, in the ashes, of KCl and K2SO4 which cause precipitation of gypsum and portlandite during the first hydration stages of the pastes. Hydrated materials containing 5 wt.% of ash display compression strength and absorption at 28 d of same magnitude as the reference composition; conversely, progressive increase of ash cause a continuous decline of materials performances. Conversely, samples tested after 180 d display a marked decline of compression strength, as a consequence of potassium elution and consequent alkali-silica reaction against materials under curing.  相似文献   

20.
When analyzing the sorption characteristics of weakly sorbing or labile pesticides, batch methods tend to yield a high margin of error attributable to errors in concentration measurement and to degradation, respectively. This study employs a recently developed unsaturated transient flow method to determine the sorption of isoxaflutole's herbicidally active diketonitrile degradate (DKN) and dicamba. A 20-cm acrylic column was packed with soils with varied texture that had been uniformly treated with 14C-labeled chemical.

The antecedent solution herbicide in equilibrium with sorbed phase herbicide was displaced by herbicide-free water, which was infiltrated into the column. Sorption coefficients, Kd, were obtained from a plot of total herbicide concentration in the soil versus water content in the region where the antecedent solution accumulated. DKN Kd values were ~2–3 times (average Kd = 0.71 L kg?1) greater using the unsaturated transient flow method as compared to the batch equilibration method in clay loam (Kd = 0.33 L kg?1), but similar for the two methods in sand (0.12 vs 0.09 L kg?1) soils. Dicamba Kd values were 3 times greater using the unsaturated transient flow method as compared to the batch equilibration method in the clay loam soil (0.38 vs 0.13 L kg?1), however, the Kd values were the same for the two methods in the sand (~0.06 L kg?1). This demonstrates that to determine sorption coefficients for labile hydrophilic pesticides, an unsaturated transient flow method may be a suitable alternative to the batch method. In fact, it may be better in cases where transport models have overpredicted herbicide leaching when batch sorption coefficients have been used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号