首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sorption of three pesticides (chlorpyrifos, metalaxyl and penconazole) has been measured on a commercial clay montmorillonite and on the same mineral modified with either of two cationic-surfactant micelles. Both micelle–clay complexes, commercial names Cloisite 20A and Cloisite 30B, showed a good capacity to sorb all three pesticides from water, whereas their sorption on the natural montmorillonite was not described by an isotherm. Modelling sorption on both micelle–clay complexes showed that the Freundlich sorption constant (K F) was higher for chlorpyrifos on Cloisite 20A (K F = 7.76) than on Cloisite 30B (K F = 5.91), whereas the sorption of metalaxyl was stronger on Cloisite 30B (K F = 1.07) than on Cloisite 20A (K F = 0.57). Moreover the micelle–clay complex Cloisite 20A also showed a good affinity for penconazole, the maximum quantity adsorbed (q m) of 6.33 mg g?1 being 45% more than that on Cloisite 30B. Single-batch adsorption of each pesticide onto both micelle–clay complexes was studied using the Freundlich isotherm for chlorpyrifos and metalaxyl and the Langmuir isotherm for penconazole. The Cloisite 20A micelle–clay complex was predicted to require 23% less adsorbent to treat certain volumes of wastewater containing 30 mg L?1 chlorpyrifos, 43% more to treat metalaxyl similarly and 57% less to treat penconazole compared with Cloisite 30B.  相似文献   

2.

Fluopyram is a novel broad-spectrum fungicide with nematocidal activity, and as an extensively used pesticide, it could cause toxicity in nontarget organisms. The aim of this study was to explore the efficiency of five horizontal subsurface flow (HSF) constructed wetlands (CWs) to remove fluopyram from rinsing water produced during the cleaning of pesticide spraying equipment. Four CWs, namely WG-R, WG-R-P, WG-C, and WG-U, contained fine gravel as porous media. WG-R and WG-R-P were planted with Phragmites australis, WG-C with Typha latifolia, and WG-U was left unplanted. Bioaugmentation with plant growth-promoting rhizobacteria was conducted in WG-R-P unit. The fifth unit (WGZ-R) planted with Phragmites australis and contained gravel and zeolite as porous media. All of CWs were loaded on a daily basis from December 2019 to January 2021 with water fortified with fluopyram. The removal rate follows the pattern of WG-R-P (70.67%) > WGZ-R (62.06%) > WG-C (59.98%) > WG-R (36.10%) > WG-U (25.09%). The most important parameters affecting the fluopyram removal were bioaugmentation, zeolite presence in porous media, and plant species. The WG-R-P unit showed higher fluopyram removal in comparison to the WG-R (increase about 96%), the zeolite increased the fluopyram removal by 72%, and the WG-C unit showed 66% higher fluopyram removal than the WG-R unit.

  相似文献   

3.
A direct, controlled comparison of the photodegradation of imazethapyr has been made between imazethapyr in aqueous solutions, imazethapyr on the surface of epicuticular waxes of corn and soybean plants, and imazethapyr on the surface of intact corn and soybean plant leaves. In some experiments, the imazethapyr solutions were allowed to evaporate partially or fully after application to better model environmental conditions. The photodegradation of imazethapyr was fastest in aqueous solutions (k?=?0.16?±?0.02?h?1) and slowest on the surface of corn and soybean plants (kcorn?=?0.00048?±?0.001?h?1 and ksoy?=?0.00054?±?0.003?h?1). Experiments allowing evaporation during irradiation have intermediate rate constants (e.g., kcorn?=?0.082?±?0.005?h?1). Finally, identification of photoproducts was also examined on epicuticular waxes of corn and soybean plants for the first time.  相似文献   

4.
人工湿地植物泌氧与污染物降解耗氧关系研究   总被引:7,自引:0,他引:7  
实验采用静态水培方法研究了香蒲(Typha orientalis)、芦苇(Phragmites australis)和水葱(Scirpus validus)3种常见湿地水生植物潜在泌氧能力、去污效果,并对水生植物泌氧量与污染物降解耗氧量进行了计算分析,从而阐明湿地植物泌氧与污染物降解耗氧之间的关系。结果表明,3种植物泌氧能力由大到小依次为:芦苇香蒲水葱,其中,芦苇比放氧速率、面积泌氧率均最高,分别为3.36 mg O2/(g.d)和4.35 g O2/(m2.d)。植物对湿地系统中污染物的去除有重要影响,各植物系统COD去除速率在3.46~3.77 g/(m2.d)之间;NH4+-N去除速率在0.07~0.13 g/(m2.d);TN去除速率在0.25~0.27 g/(m2.d);TP去除速率均为0.09 g/(m2.d);均好于无植物空白系统。计算表明,各植物体系泌氧量在0.48~0.55 g O2/d之间;各植物体系COD、NH4+-N耗氧量在0.41~0.46 g O2/d之间;植物净泌氧量在0.02~0.12 g O2/d之间。植物泌氧量与COD、NH4+-N耗氧量呈显著正相关关系。若应用人工湿地处理城镇生活污水,各植物体系COD最大去除负荷在3.81~4.35 g/(m2.d)之间,NH4+-N最大去除负荷在0.83~0.95 g/(m2.d)之间,最大水力负荷在1.65~1.89 cm/d之间。  相似文献   

5.
Abstract

Chemical transport in soil is a major factor influencing soil and water contamination. Four soils and turfgrass thatch, representing a wide range of organic carbon OC content were studied to determine sorption Kd and Kf parameters for the insecticides chlorpyrifos and fonofos. The batch equilibrium method was used. The concentration of insecticide was measured in the solution as well as in the solid phase to determine the most accurate sorption data. Four soils and thatch were equilibrated for 24 h at 22 ± 1OC with aqueous insecticide solutions. Four concentrations of the insecticides, each <50% of their respective water solubilities, were selected for the experiments. After extraction with an organic solvent, the concentration of insecticides in the aqueous solution was determined by gas liquid chromatography using electron capture detection for chlorpyrifos, and nitrogen/phosphorus detection for fonofos. Data obtained were fitted to the log and simple linear form of the Freundlich equation. Mass balance Freundlich isotherm exponents n ranged between 0.82 and 0.93 for chlorpyrifos. 0.82 and 1.21 for fonofos, with r2 ≥ 0.97. Koc (percent of organic carbon %OC normalized Sorption coefficient) values were calculated by using experimentally developed Kd and Kf coefficients in relation to OC levels from 0.29 to 34.85%. Kd and Kf coefficients of both insecticides were positively correlated with OC (r2 ≥ 0.96). organic matter OM (r2 0.96), and cation exchange capacity CEC (r2 ≥ 0.90).  相似文献   

6.
The present study was undertaken with the objective of studying repeated batch and continuous degradation of chlorpyrifos (O,O-diethyl O-3,5,6-trichloropyridin-2-yl phosphorothioate) using Ca-alginate immobilized cells of Pseudomonas putida isolated from an agricultural soil, and to study the genes and enzymes involved in degradation. The study was carried out to reduce the toxicity of chlorpyrifos by degrading it to less toxic metabolites. Long-term stability of pesticide degradation was studied during repeated batch degradation of chlorpyrifos, which was carried out over a period of 50 days. Immobilized cells were able to show 65% degradation of chlorpyrifos at the end of the 50th cycle with a cell leakage of 112 × 103 cfu mL?1. During continuous treatment, 100% degradation was observed at 100 mL h?1 flow rate with 2% chlorpyrifos, and with 10% concentration of chlorpyrifos 98% and 80% degradation was recorded at 20 mL h?1 and 100 mL h?1 flow rate respectively. The products of degradation detected by liquid chromatography–mass spectrometry analysis were 3,5,6-trichloro-2-pyridinol and chlorpyrifos oxon. Plasmid curing experiments with ethidium bromide indicated that genes responsible for the degradation of chlorpyrifos are present on the chromosome and not on the plasmid. The results of Polymerase chain reaction indicate that a ~890-bp product expected for mpd gene was present in Ps. putida. Enzymatic degradation studies indicated that the enzymes involved in the degradation of chlorpyrifos are membrane-bound. The study indicates that immobilized cells of Ps. putida have the potential to be used in bioremediation of water contaminated with chlorpyrifos.  相似文献   

7.
为了开发新型廉价生物吸附剂,以高效吸附去除水体中全氟辛烷磺酸盐(PFOS),对小球藻提取生物柴油后的藻渣吸附酸性水体中的PFOS进行了吸附行为及机理的研究。小球藻提取生物质柴油后,比表面积、孔容、孔径几乎没有变化;等电点由3.3降低至2.7;蛋白质含量由51.45%提高到57.35%。在酸性条件下(pH≤3),小球藻和藻渣对PFOS的吸附率均达到99%以上;随着pH值增加至7,二者的吸附去除率迅速降低,但仍保持在22%~26%。小球藻和藻渣对PFOS的最大吸附容量分别为353.69 mg/g和444.83 mg/g。Freundlich模型能较好地拟合二者对PFOS的吸附数据,表明为多层吸附,即小球藻以静电吸引的形式吸附PFOS阴离子,并疏水分配至所含蛋白质中;而藻渣中含量较高的蛋白质对PFOS的疏水性分配作用是导致藻渣吸附量增高的主要原因。  相似文献   

8.

Introduction and aims

The dominance of a plant species in highly metal-contaminated areas reflects its tolerance or adaptability potential to these scenarios. Hence, plants with high adaptability and/or tolerance to exceptionally high metal-contaminated scenarios may help protect environmental degradation. The present study aimed to assess the strategies adopted by common reed, Phragmites australis for its dominance in highly mercury-contaminated Ria de Aveiro coastal lagoon (Portugal).

Materials and methods

Both plant samples and the sediments vegetated by monospecific stand of Phragmites australis were collected in five replicates from mercury-free (reference) and contaminated sites during low tide between March 2006 and January 2007. The sediments?? physico-chemical traits, plant dry mass, uptake, partitioning, and transfer of mercury were evaluated during growing season (spring, summer, autumn, and winter) of P. australis. Redox potential and pH of the sediment around roots were measured in situ using a WTW-pH 330i meter. Dried sediments were incinerated for 4?h at 500??C for the estimation of organic matter whereas plant samples were oven-dried at 60??C till constant weight for plant dry mass determination. Mercury concentrations in sediments and plant parts were determined by atomic absorption spectrometry with thermal decomposition, using an advanced mercury analyzer (LECO 254) and maintaining the accuracy and precision of the analytical methodologies. In addition, mercury bioaccumulation and translocation factors were also determined to differentiate the accumulation of mercury and its subsequent translocation to plant parts in P. australis.

Results and conclusions

P. australis root exhibited the highest mercury accumulation followed by rhizome and leaves during the reproductive phase (autumn). During the same phase, P. australis exhibited ??5 times less mercury-translocation factor (0.03 in leaf) when compared with the highest mercury bioaccumulation factor for root (0.14). Moreover, seasonal variations differentially impacted the studied parameters. P. australis?? extraordinary ability to (a) pool the maximum mercury in its roots and rhizomes, (b) protect its leaf against mercury toxicity by adopting the mercury exclusion, and (c) adjust the rhizosphere-sediment environment during the seasonal changes significantly helps to withstand the highly mercury-contaminated Ria de Aveiro lagoon. The current study implies that P. australis has enough potential to be used for mercury stabilization and restoration of sediments/soils rich in mercury as well.  相似文献   

9.
This investigation examined the reduction of pesticide residues on straw inoculated with lactic acid bacteria (LAB) during ensiling. Lactobacillus casei WYS3 was isolated from rice straw that contained pesticide residues. Non-sterilized rice straw, which was inoculated with L. casei WYS3, showed increased removal of chlorpyrifos after ensiling, compared with rice straw that was not inoculated with L. casei WYS3 or sterilized rice straw. In pure culture, these strains can bind chlorpyrifos as indicated by high-performance liquid chromatography analysis. Viable L. casei WYS3 was shown to bind 33.3–42% of exogenously added chlorpyrifos. These results are similar to those of acid-treated cells but less than those of heat-treated cells, which were found to bind 32.0% and 77.2% of the added chlorpyrifos respectively. Furthermore, gas chromatography–mass spectrometry analysis determined that L. casei WYS3 detoxified chlorpyrifos via P-O-C cleavage. Real-time polymerized chain reaction analysis determined that organophosphorus hydrolase gene expression tripled after the addition of chlorpyrifos to LAB cultures, compared with the control group (without chlorpyrifos). This paper highlights the potential use of LAB starter cultures for the detoxification and removal of chlorpyrifos residues in the environment.  相似文献   

10.
The degradation of the main azadirachtoids on tomatoes was studied after greenhouse treatment. These experiments were carried out at 1 and 5× the concentration recommended by the manufacturer. In all experiments the deposition of azadirachtin A (AZA-A) was below the maximum residue level (MRL). Even if at the highest dose, AZA-A half-life time calculated as pseudo first order kinetic was 1.2 days in agreement with the recommended preharvest interval (PHI) of 3 days. Experiments with a model system showed that sunlight photodegradation is the main factor influencing the rate of disappearance of AZA-A after greenhouse treatment while tomato epicuticular waxes doubled the photodegradation rate of AZA-A in a commercial formulation.  相似文献   

11.
Pot-culture experiments were conducted to evaluate the phytoremediation potential of a wetland plant species, Phragmites australis in cadmium (Cd) and pentachlorophenol (PCP) co-contaminated soil under glasshouse conditions for 70 days. The treatments included Cd (0, 5 and 50 mg kg?1) without or with PCP (50 and 250 mg kg?1). The results showed that growth of P. australis was significantly influenced by interaction of Cd and PCP, decreasing with either Cd or PCP additions. Plant biomass was inhibited and reduced by the rate of 89 and 92 % in the low and high Cd treatments and by 20 and 40 % in the low and high PCP treatments compared to the control. The mixture of low Cd and low PCP lessened Cd toxicity to plants, resulting in improved plant growth (by 144 %). Under the joint stress of the two contaminants, the ability of Cd uptake and translocation by P. australis was weak, and the BF and TF values were inferior to 1.0. A low proportion of the metal is found aboveground in comparison to roots, indicating a restriction on transport upwards and an excluding effect on Cd uptake. Thus, P. australis cannot be useful for phytoextraction. The removal rate of PCP increased significantly (70 %) in planted soil. Significant positive correlations were found between the DHA and the removal of PCP in planted soils which implied that plant root exudates promote the rhizosphere microorganisms and enzyme activity, thereby improving biodegradation of PCP. Based on results, P. australis cannot be effective for phytoremediation of soil co-contaminated with Cd and PCP. Further, high levels of pollutant hamper and eventually inhibit plant growth. Therefore, developing supplementary methods (e.g. exploring the partnership of plant–microbe) for either enhancing (phytoextraction) or reducing the bioavailability of contaminants in the rhizosphere (phytostabilization) as well as plant growth promoting could significantly improve the process of phytoremediation in co-contaminated soil.  相似文献   

12.
This investigation was undertaken to determine the effect of amendment of two fly ashes [Kota and Inderprastha (IP)] on sorption behavior of metsulfuron-methyl in three Indian soil types. Kota fly ash (5%) did not show any effect on herbicide sorption while IP fly ash significantly enhanced the sorption. Further studies on metsulfuron-methyl sorption-desorption behavior in 0.5, 1, 2, and 5% IP fly ash-amended soils suggested that effect of fly ash varied with soil type and better effect was observed in low organic carbon content soils. The sorption-desorption isotherms fitted very well to the Freundlich sorption equation and, in general, slope (1/n) values less than unity were observed. Metsulfuron-methyl sorption in the IP fly ash-amended soils showed strong correlation with the fly ash content and compared to the Freundlich sorption constant (K f), K FA values (sorption normalized to fly ash content) showed less variation. Metsulfuron-methyl leaching studies suggested greater retention of herbicide in the application zone in IP fly ash-amended soils, but effect varied with soil type and no herbicide leaching was observed in 5% fly ash-amended soils. The study suggested that all coal fly ashes are not effective in enhancing the sorption of metsulfuron-methyl in soils. However, one which enhanced herbicide sorption, could play an important role in reducing its leaching losses.  相似文献   

13.
Abstract

The influence of soil and sediment composition on sorption and photodegradation of the herbicide napropamide [N, N‐diethyl‐2‐(1‐naphthyloxy)propionamide] was investigated. Five soils and one sediment were selected for this study and the clay fractions were obtained by sedimentation. Sorption‐desorption was studied by batch equilibration technique and photolysis in a photoreactor emitting within 300–450 nm wavelenght with a maximum at 365 nm. Sorption increased with clay content and was not related to organic matter *content. High irreversibility of sorption was related to the greater montmorillonite content. The presence of soil or sediment reduced photolysis rate due to screen effect and this process did not depend on solid composition but on particle size distribution.  相似文献   

14.

This study aimed at analysing the performance of horizontal subsurface flow constructed wetlands (CWs) to treat combined sewer overflow (CSO). Four horizontal subsurface flow CWs, organized in two groups (A and B) each with a planted (Phragmites australis) and a non-planted bed, were loaded with simulated CSO, with group B receiving twice the hydraulic load of group A. Beds were monitored for pH, dissolved oxygen, conductivity, redox potential, chemical oxygen demand (COD), total suspended solids (TSS) and enterococci. Porosity variations were also estimated. Monitoring was conducted during spring and wintertime, with regular and irregular loading frequencies. Results showed an average treatment efficiency of 90–100 % for TSS, 60–90 % for COD and 2–6 log for enterococci. Removal rates were especially relevant in the first 24 h for COD and TSS. TSS and enterococci removal did not exhibit the influence of macrophytes or the applied hydraulic load while COD’s removal efficiency was lower in the higher load group and in planted beds.

  相似文献   

15.
Chlorpyrifos (O, O-diethyl O-3,5,6-trichloropyridin-2-yl phosphorothioate) and carbaryl (1-naphthyl methylcarbamate) are often applied concurrently as insecticides in food production. The aim of this study was to research their migration behavior in a real environment. We researched the leaching of both pesticides by setting up field lysimeters on a farm with the typical soil used in fruit production today. In order to analyze the variables involved in this process, we performed complementary adsorption studies, we performed complementary adsorption studies using batches and undisturbed soil laboratory columns for both compounds. The results for pesticide transport through the lysimeters showed that less than 1% of chlorpyrifos was recovered in the leachates, while almost 17% was recovered for carbaryl. Having completed the experiment in undisturbed laboratory columns, soil analysis showed that chlorpyrifos mainly remained in the first 5 cm, while carbaryl moved down to the lower sections. These results can be explained in view of the sorption coefficient values (KD) obtained in horizons A and B for chlorpyrifos (393 and 184 L kg?1) and carbaryl (3.1 and 4.2 L kg?1), respectively. By integrating the results obtained in the different approaches, we were able to characterize the percolation modes of these pesticides in the soil matrix, thus contributing to the sustainable use of resources.  相似文献   

16.
This investigation was undertake to determine the effect of glyphosate, chlorpyrifos and atrazine on the lag phase and growth rate of nonochratoxigenic A. niger aggregate strains growing on soil extract medium at ?0.70, ?2.78 and ?7.06 MPa. Under certain conditions, the glyphosate concentrations used significantly increased micelial growth as compared to control. An increase of about 30% was observed for strain AN 251 using 5 and 20 mg L?1 of glyphosate at ?2.78 MPa. The strains behaved differently in the presence of the insecticide chlorpyrifos. A significant decrease in growth rate, compared to control, was observed for all strains except AN 251 at ?2.78 MPa with 5 mg L?1. This strain showed a significant increase in growth rate. With regard to atrazine, significant differences were observed only under some conditions compared to control. An increase in growth rate was observed for strain AN 251 at ?2.78 MPa with 5 and 10 mg L?1 of atrazine. By comparison, a reduction of 25% in growth rate was observed at ?7.06 MPa and higher atrazine concentrations. This study shows that glyphosate, chlorpyrifos and atrazine affect the growth parameters of nonochratoxigenic A. niger aggregate strains under in vitro conditions.  相似文献   

17.
周宁  彭先佳 《环境工程学报》2014,8(5):1970-1976
使用沉淀负载法制备了载钴活性焦,并研究了溶液pH值、反应时间、As(V)初始浓度以及共存阴离子等对载钴活性焦吸附去除水环境中As(V)的影响。结果表明,(1)载钴后活性焦的比表面积和孔容积分别提高了20.87%和43.47%;(2)载钴活性焦对As(V)最佳吸附pH值为4.0,当As(V)的初始浓度为10 mg/L时,As(V)去除率可达97%;(3)吸附过程符合准二级动力学模型(k2=0.66,R2=0.96),吸附等温线为Freundlich型(kF=8.227,1/n=0.396,R2=0.97);(4)稳定性实验验证了载钴活性焦的稳定性,钴不易脱附,最大脱附率仅为0.145%。  相似文献   

18.
Effects of sub-lethal doses of carbaryl (1-Naphthyl-methylcarbamate), chlorpyrifos (O,O-diethyl O-3,5,6-trichloro-2-pyridinyl-phosphorothioate) and endosulfan (6,7,8,9,10,10-Hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepin-3-oxide), respectively a carbamate, an organophosphate and an organochlorine insecticide on growth, reproduction and respiration of the tropical earthworm, Perionyx excavatus (Perrier) were investigated under laboratory conditions. The results showed significant reduction in biomass, production and hatching of cocoon and production of juveniles of the worms exposed to 0.75 to 3.03 mg/kg soil of carbaryl, 0.91 to 3.65 mg/kg soil of chlorpyrifos and 3.75 to 15.0 μg/kg soil of endosulfan corresponding to 12.5 to 50 % of LC50 value of the respective insecticide for P. excavatus. Endosulfan was found most dangerous among the three insecticides followed by carbaryl and chlorpyrifos. There was no hatching of the worms at endosulfan treatment 5.0 μg/kg soil (25 % LC50) or above while the highest dose of carbaryl and chlorpyrifos (50 % of LC50) rendered respectively 87.13 and 24.84 % reductions in hatching as compared to control. Chlorpyrifos produced no change in respiration of the worms except at the highest dose, while the worms showed an increase in evolution of CO2 at all doses of carbaryl and endosulfan. Based on the recommended agricultural dose of each insecticide, it was concluded that application of endosulfan and carbaryl was potentially dangerous to earthworms.  相似文献   

19.
This study was undertaken to validate the “quick, easy, cheap, effective, rugged and safe” (QuEChERS) method using Golden Delicious and Starking Delicious apple matrices spiked at 0.1 maximum residue limit (MRL), 1.0 MRL and 10 MRL levels of the four pesticides (chlorpyrifos, dimethoate, indoxacarb and imidacloprid). For the extraction and cleanup, original QuEChERS method was followed, then the samples were subjected to liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS) for chromatographic analyses. According to t test, matrix effect was not significant for chlorpyrifos in both sample matrices, but it was significant for dimethoate, indoxacarb and imidacloprid in both sample matrices. Thus, matrix-matched calibration (MC) was used to compensate matrix effect and quantifications were carried out by using MC. The overall recovery of the method was 90.15% with a relative standard deviation of 13.27% (n = 330). Estimated method detection limit of analytes blew the MRLs. Some other parameters of the method validation, such as recovery, precision, accuracy and linearity were found to be within the required ranges.  相似文献   

20.
From April 2008 to November 2009, a field decomposition experiment was conducted to investigate the effects of sediment burial on macro (C, N) and microelement (Pb, Cr, Cu, Zn, Ni, and Mn) variations in decomposing litter of Phragmites australis in the coastal marsh of the Yellow River estuary. Three one-off sediment burial treatments [no sediment burial (0 mm year?1, S0), current sediment burial (100 mm year?1, S10), and strong sediment burial (200 mm year?1, S20)] were laid in different decomposition sites. Results showed that sediment burials showed significant influence on the decomposition rate of P. australis, in the order of S10 (0.001990 day?1)?≈?S20 (0.001710 day?1)?>?S0 (0.000768 day?1) (p?<?0.05). The macro and microelement in decomposing litters of the three burial depths exhibited different temporal variations except for Cu, Zn, and Ni. No significant differences in C, N, Pb, Cr, Zn, and Mn concentrations were observed among the three burial treatments except for Cu and Ni (p?>?0.05). With increasing burial depth, N, Cr, Cu, Ni, and Mn concentrations generally increased, while C, Pb, and Zn concentrations varied insignificantly. Sediment burial was favorable for C and N release from P. australis, and, with increasing burial depth, the C release from litter significantly increased, and the N in litter shifted from accumulation to release. With a few exceptions, Pb, Cr, Zn, and Mn stocks in P. australis in the three treatments evidenced the export of metals from litter to environment, and, with increasing burial depth, the export amounts increased greatly. Stocks of Cu and Ni in P. australis in the S10 and S20 treatments were generally positive, evidencing incorporation of the two metals in most sampling times. Except for Ni, the variations of C, N, Pb, Cr, Cu, Zn, and Mn stocks in P. australis in the S10 and S20 treatments were approximated, indicating that the strong burial episodes (S20) occurred in P. australis marsh in the future would have little influence on the stocks of these elements. With increasing burial depths, the P. australis was particularly efficient in binding Cu and Ni and releasing C, N, Pb, Cr, Zn, and Mn, implying that the potential eco-toxic risk of Pb, Cr, Zn, and Mn exposure might be very serious. This study emphasized the effects of different burials on nutrient and metal cycling and mass balance in the P. australis marsh of the Yellow River estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号