首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analytical method was developed for determining organophosphate pesticides (OPP) and pyrethroid pesticides (PYR) in duplicate-diet solid food. The method consisted of pressurized liquid extraction (PLE) with dichloromethane followed by cleanup with gel permeation and solid phase extraction columns and gas chromatography/mass spectrometry (GC/MS) analysis. Quantitative recoveries (73-117 %) of the target pesticides were obtained for spiked duplicate-diet food samples. The percent standard deviation (% RSD) of replicate food samples was within ± 20 %. Another method was developed for determining a common OPP metabolite, 3, 5, 6-trichloro-2-pyridinol (TCP) in duplicate-diet food. The method consisted of a PLE with methanol followed by liquid-liquid partitioning, derivatization, and GC/MS analysis. Recoveries of TCP ranged from 83 to 101 % for spiked duplicate-diet food samples. The % RSD of replicate food samples was within ± 15 %. The results confirmed that these methods are reliable and robust, and that they can be used in routine analysis. In addition, a storage stability study for a common OPP, chlorpyrifos (CPF), in solid food samples was performed. The fortified (15)N-(13)C-labeled CPF was stable over 16 mo storage at -20° C in the dark. The developed analytical methods were successfully applied to 278 duplicate-diet food samples from preschool children, demonstrating that these methods are robust and suitable for routine analysis in future exposure monitoring studies.  相似文献   

2.
The aim of this study was to assess the performance of a method of analyzing pesticides in rice by using pressurized liquid extraction (PLE) and to perform a preliminary monitoring by using that method. The instrumental quantification limit, instrumental detection limit, method quantification limit, and method detection limit were determined. PLE temperature was also optimized for 6 target pesticides. Mean recoveries of spiked rice with target pesticides (4 ng/g and 40 ng/g) were 83%–109% with the repeatability of the analysis, represented as relative standard deviations, ranged from 1.3% to 11% (n = 5) for PLE at 130°C. These results were satisfactory according to the method of positive list in Japan. In a preliminary analysis of 10 target pesticides in 54 commercial rice samples, ferimzone was detected in only one unpolished rice sample.  相似文献   

3.
Abstract

A pressurized liquid extraction (PLE) method was presented for the determination of six neonicotinoid pesticides, acetamiprid, clothianidin, dinotefuran, imidacloprid, thiacloprid, and thiamethoxam in green onion. The critical parameters of PLE, e.g. extraction solvent, temperature, pressure, number of cycles, and static extraction time, were optimized by test on the spiked green onion with six neonicotinoids and the incurred green onion applied with four commercial neonicotinoid insecticide formulations (acetamiprid, dinotefuran, imidacloprid, and thiamethoxam). As a result, the recoveries of six neonicotinoids obtained by one cycle PLE with acetonitrile at 140?°C and 50?bar for 10?min were 94.7–99.5%. These results were acceptable according to the validation guideline for testing method of agricultural chemicals in food by Ministry of Health, Labour, and Welfare in Japan. PLE was also validated by the test on the incurred green onion. The analytical values of four neonicotinoids obtained by PLE were good agreement with those obtained by solid–liquid extraction with homogenizer, which is employed for Japanese official method for the analysis of pesticide residues in food (the ratios of analytical values obtained by PLE to those obtained by solid–liquid extraction were 99.7–101.2%). These results indicate that PLE is applicable for the determination of neonicotinoids in green onion.  相似文献   

4.
The aim of to evaluate efficiency of this study was extraction pressurized liquid extraction (PLE) for the analysis of four pesticides, fthalide, etofenprox, fenitrothion, and isoprothiolane, in unpolished rice by comparing with homogenization as a reference technique. The concentrations of four selected pesticides obtained by PLE with acetonitrile at 130°C for 10 min × 2 cycles were comparable to those by homogenization with water-soaking. The repeatability of the analysis, represented as relative standard deviations (RSDs), were 1.4–3.6% (n = 3) for PLE at 130°C and 1.2–3.8% (n = 3) for homogenization with water-soaking. Recovery yields of surrogates were 75–88% and 87–109% for PLE at 130°C and homogenization with water-soaking, respectively, and these were satisfactory according to the method of positive list. This study suggested that PLE can be applied for the analysis of selected four pesticides in unpolished rice as well as homogenization with water-soaking.  相似文献   

5.
A new analytical method using focused microwave-assisted extraction (FMAE), coupled with solid phase micro-extraction (SPME), has been elaborated to determine 25 pesticides used in tomato cultivation. Microwave energy was used for a fast and controlled heating of solvent to selectively extract compounds. Calibration curves were plotted from blank tomato samples spiked at different concentrations with standards. A linear response was obtained between 10 and 1000 μ g/Kg for pyrethroids and between 0.1 and 5000 μ g/Kg for other compounds. For all studied substances, the resulting correlation coefficient (r2) was greater than 0.99. Limits of detection (LOD) and quantification (LOQ) were measured lower than 8 and 25 μ g/Kg, respectively. The relative standard deviation (RSD) was determined below 15% for all pesticides. Field incurred tomato samples were used to validate the new FMAE/SPME method. Observed analysis results by using this technique were in good agreement compared to those obtained by two accredited trading laboratories using traditional methods. Four tomato samples, bought in a local market, were also tested with the FMAE/SPME method.  相似文献   

6.
This research aimed to optimize the extraction method parameters for sample pretreatment and determine the levels of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) contamination in food packaging made of paper. Techniques used were pressurized liquid extraction (PLE) followed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Influence parameters of PLE were carefully evaluated for extracted concentration of samples in low level (ng g?1). The study found that the optimal conditions for PLE were 30 min static extraction time with a flush volume of 100% cell volume and one extraction cycle at 80°C and 1,000 psi. The extraction technique validated the absolute recovery from PFOS and PFOA fortified control samples at three different levels (5, 50, and 200 ng g?1), with seven repeats at each fortification level. The average recoveries were 79% or higher, with relative standard deviation (RSD) less than 11%. Optimization of the PLE method was established based on recovery data, accuracy, precision, and repeatability of the method. Using optimal PLE technique, PFOS and PFOA were extracted from 34 food-packaging samples collected in Thailand. PFOS and PFOA were detected in all kinds of collected samples, with average concentrations of 4.89 and 2.87 ng g?1, respectively. The concentrations of PFOS and PFOA were highest in fast-food container samples: 36.99 and 9.99 ng g?1, respectively.  相似文献   

7.
The present study was conducted to determine pesticide (emamectin-benzoate, penconazole and imidacloprid) residues over tomatoes by using QuEChERS method. The method was validated by spiking tomato matrix at 0.1, 1.0, and 10.0 MRL levels of the pesticides. Tomatoes were harvested from two conventional and two Integrated Pest Management-grown fields. Laboratory samples were taken from the bulk samples. Analyses of spiked and real-field tomatoes were performed with QuEChERS procedure. Experimental samples were subjected to LC-MS/MS analysis. As indicated in “CAC/GL 40-1993,” representative sample matrix (apple) calibration was used for quantification. The overall recovery was 107.12% with a relative standard deviation of 17.96% (n?=?162). Present values were within the specified recovery ranges (60-140%) and repeatability value of (RSD ≤20%) of SANCO. Analysis of field experiment samples showed that both conventional tomato plots had trace levels (less than MRL) of emamectin-benzoate and imidacloprid, whereas there were not any pesticide residues in both IPM tomato plots  相似文献   

8.
A headspace solid phase microextraction method (HS-SPME) for simultaneous determination of five pesticides belonging to triazine and organophosphorus pesticide groups in soil samples was developed. Microextraction conditions, such as temperature, extraction time and sodium chloride (NaCl) content were investigated and optimized using 100 μ m polydimethyl-siloxane (PDMS) fiber. Detection and quantification were done by gas chromatography-mass spectrometry (GC-MS). Relative standard deviation (RSD) and recovery values for multiple analysis of soil samples fortified at 30 μ g kg? 1 of each pesticide were below 13 % and higher than 70 %, respectively. Limits of detection (LOD) for all the compounds studied were less than 3.2 μ g kg? 1. The proposed method was applied in the analysis of some agricultural soil samples.  相似文献   

9.
Residue levels of organochlorine pesticides (OCP) in a total of 90 cattle samples comprising meat, liver and kidney collected from carcasses slaughtered in six towns in West Shoa Zone, Ethiopia, (Ambo, Guder, Ginchi, Gedo, Holeta and Tikur Inchini), have been determined. The pesticides were extracted by solid phase extraction (SPE) and quantification was carried out using gas chromatography-mass spectrometry (GC-MS). A good linearity (r2 > 0.998) was found in the range 0.001–7.00 mg/kg for the samples studied. Most of the pesticides had recoveries in the range 81–99% and values of relative standard deviation (RSD) <7.2% for repeatability and reproducibility, showing good accuracy and precision of the method. The concentration level of the studied organochlorines followed the order: p, p’ dichloro-diphenyl-trichloroethane (DDT) > endosulfan>o,p′-DDT >lindane>dieldrin>endrin>aldrin>chlorothanolin while the order of contamination in the analyzed organs was liver > kidney > meat. Heat treatment of the meat, kidney and liver samples (boiling for 90 min.) produced an overall reduction of 62.2%, 44.5%, 37.7%, 29%, 31%, 34.3% and 30.8% in lindane, o, p′-DDT, endosulfan, p, p′-DDT, chlorothanolin, aldrin, dieldrin, and endrin, respectively. Although the residual contents of the organochlorines detected in all the contaminated samples analyzed from the six cities were below the respective maximal permissible levels set by international organizations, samples from Holeta town were more contaminated and may necessitate effective monitoring as bioaccumulation of these residues may pose health problems in human beings.  相似文献   

10.
The purpose of this study was to develop an analytical method for the determination of organophosphorus and pyrethroid pesticides in soybean by pressurized liquid extraction (PLE). Two organic solvents, acetone and acetonitrile, were evaluated as extraction solvents. In both cases, the amount of extract was enhanced with increasing extraction temperature. The extracts obtained using acetonitrile were measured by gas chromatography/mass spectrometry after a cleanup process based on the analytical method for the Japanese Positive List System for Agricultural Chemicals Remaining in Foods. The effect of extraction temperature (range: 40– 130°C) on extraction efficiency was evaluated by a recovery study using 21 organophosphorus pesticides and 10 pyrethroid pesticides as target analytes and acetonitrile as the solvent. The results indicated that at 130°C, some organophosphorus pesticides might be degraded, whereas extraction temperatures between 70°C and 100°C were optimal. Next, a prepared sample containing fenitrothion and permethrin was analyzed. Although the sample was not soaked in water prior to analysis, PLE provided analytical results comparable to those obtained by solvent extraction with homogenization. Therefore, PLE is considered a simple and alternative technique for the extraction of organophosphorus and pyrethroid pesticides in soybean.  相似文献   

11.
Static subcritical water extraction (SubWE) along with solid phase extraction (SPE) was used for the analysis of PAHs and pesticides in municipal solid waste compost. Yields obtained for PAHs in certified reference sediment (CRM 104) were acceptable. The extraction method was simple, rapid, used small sample sizes, and no sample drying was required. Analysis of samples was performed by GC/MS and HPLC. Recovery of spiked pesticides was greatest at 110 degrees C for 20 min extraction time. The optimum extraction for PAH analysis was achieved at 150 degrees C for 20 min. Addition of C-18 resin as an "alternate sorbent" upon cooling increased recovery of PAHs but not of pesticides, however, it increased the stability of atrazine and propazine at higher temperatures. Analysis of three municipal compost samples from the Dayton, OH (USA) area showed no pesticides above the detection limit, however, PAH totals for 11 PAHs were 15.97, 14.42, and 20.79 microg g(-1). The totals of six of the seven carcinogenic PAHs, for which remediation goals in the United States is 4.6 microg g(-1), were determined to be 9.89, 6.77, and 13.06 microg g(-1) dry weight. The highest PAH totals were obtained from compost containing sewage sludge.  相似文献   

12.
The Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method was applied to the extraction of 14 organochlorine pesticides (OCPs) residues from commercial fruit pulps available in supermarkets in Fortaleza, Northeastern Brazil. The analyses were carried out by gas chromatography (GC), coupled to an electron-capture detector (ECD), and were confirmed by GC-tandem mass spectrometry (MS). The parameters of the analytical method, such as accuracy, precision, linear range, limits of detection and quantification, were determined for each pesticide. The results showed good linearity (R2 ≥ 0.9916) and the overall average recoveries were considered satisfactory obtaining values between 69 and 110%, RSD of 2–15 %, except for hexachlorobenzene (HCB) in açai, acerola and guava pulp samples. The OCPs were detected in guava (α–HCH; lindane) and soursop (α, β–HCH isomers) samples. The QuEChERS method and GC–ECD were successfully used to analyze OCPs in commercially available Brazilian fruit pulps and can be applied in routine analytical laboratories.  相似文献   

13.
Extraction and quantification of pesticide residue from the milk matrix at or below the established maximum residue limit (MRL) is a challenging task for both analytical chemists and the regulatory institutions to take corrective actions for the human health and safety. The main aim of the study is to develop a simple rapid and less expensive QuEChERS extraction and cleanup method for simultaneous analysis of 41 multiclass pesticide residue in milk by gas chromatography-electron capture detector (GC-ECD), followed by confirmation of the residues with gas chromatography-mass spectrometer (GC-MS). Effect of sorbent type, temperature, spiking concentration, matrix effect (ME), measurement uncertainty (MU), inter- and intra-assay repeatability, reproducibility of recovery, and trueness of the results were investigated to validate the effectiveness of the method. Limit of determination (LOD) and limit of quantitation (LOQ) for all the analytes ranged within 0.001–0.02 and 0.002–0.05 µg mL?1, respectively. The % recovery of all the pesticides ranged between 91.38 and 117.56% with relative standard deviation (RSD) below 2.79%. The MU for all the analytes was ≤29% of respective LOQs, and except for few pesticides, the ME was largely negative. The method fulfilled all the SANTE guidelines and thus can be extended for routine analysis of multiclass pesticide residue in milk.  相似文献   

14.
A multiresidue method for the analysis of 86 persistent pollutants in marine sediments at ultra-trace level has been developed and validated using pressurized liquid extraction (PLE) and stir-bar sorptive extraction (SBSE) coupled with thermal desorption and gas chromatography-triple quadrupole mass spectrometry (TD-GC-MS/MS QqQ). The compounds analyzed belong to various families such as polychlorinated biphenyls, polycyclic aromatic hydrocarbons, polybrominated diphenylethers, organophosphorus and organochlorine pesticides and other pesticides such as urons, and triazines. The analytes have very different polarities and log Kow values, which is an important parameter in the optimization of a SBSE method. Due to PLE high efficiency and throughput rates, along with the proven ability for multiresidue analysis and excellent sensitivity of SBSE, we present an efficient method. The limits of quantification obtained ranged from 0.014 to 1.0 ng g−1, with detection limits below pg g−1 levels. In order to validate the proposed methodology, quality parameters such as recovery, linearity and reproducibility were studied. Recoveries ranged from 63% to 119%, reproducibility (in terms of Relative Standard Deviation for ten determinations) was lower than 35% in all cases, and determination coefficients higher than 0.990 for all analytes. The main factors that affect PLE, SBSE and GC-MS/MS procedures were optimized. The method was applied to the analysis of nine marine sediments obtained from the nine main submarine wastewater discharge points (emissaries) presents along the coast of Tenerife Island (Canary Islands, Spain).  相似文献   

15.
The aim of to evaluate efficiency of this study was extraction pressurized liquid extraction (PLE) for the analysis of four pesticides, fthalide, etofenprox, fenitrothion, and isoprothiolane, in unpolished rice by comparing with homogenization as a reference technique. The concentrations of four selected pesticides obtained by PLE with acetonitrile at 130 degrees C for 10 min x 2 cycles were comparable to those by homogenization with water-soaking. The repeatability of the analysis, represented as relative standard deviations (RSDs), were 1.4-3.6% (n = 3) for PLE at 130 degrees C and 1.2-3.8% (n = 3) for homogenization with water-soaking. Recovery yields of surrogates were 75-88% and 87-109% for PLE at 130 degrees C and homogenization with water-soaking, respectively, and these were satisfactory according to the method of positive list. This study suggested that PLE can be applied for the analysis of selected four pesticides in unpolished rice as well as homogenization with water-soaking.  相似文献   

16.
A simultaneous method for quantifying eight metabolites of organophosphate pesticides and pyrethroid pesticides in urine samples has been established. The analytes were extracted using liquid–liquid extraction coupled with WCX solid phase extraction (SPE) cartridges. Eight metabolites were chemically derivatized before analysis using gas chromatography–tandem mass spectrometry (GC–MS–MS). The separation was performed on a HP-5MS capillary column (30 m × 0.25 mm × 0.25 µm) with temperature programming. The detection was performed under electro-spray ionization (ESI) in multiple reaction monitoring (MRM) mode. An internal standard method was used. The extraction solvent, types of SPE cartridges and eluents were optimized by comparing the sample recoveries under different conditions. The results showed that the calibration curves of the five organophosphorus pesticides metabolites were linear in the range of 0.2–200 μg/L (r2 ≥ 0.992) and that of the three pyrethroid pesticides metabolites were linear in the range of 0.025–250 μg/L (r2 ≥ 0.991). The limits of detection (LODs, S/N ≥ 3) and the limits of quantification (LOQs, S/N ≥ 10) of the eight metabolites were 0.008–0.833 μg/L and 0.25–2.5 μg/L, respectively. The recoveries of the eight metabolites ranged from 54.08% to 82.49%. This efficient, stable, and cost-effective method is adequate to handle the large number of samples required for surveying the exposure level of organophosphorus and pyrethroid pesticides in the general population.  相似文献   

17.
A low-cost, high throughput bioanalytical screening method was developed for monitoring cis/trans-permethrin in dust and soil samples. The method consisted of a simple sample preparation procedure [sonication with dichloromethane followed by a solvent exchange into methanol:water (1:1)] with bioanalytical detection using a magnetic particle enzyme-linked immunosorbent assay (ELISA). Quantitative recoveries (83–126 %) of cis/trans-permethrin were obtained for spiked soil and dust samples. The percent difference of duplicate ELISA analyses was within ± 20 % for standards and ± 35 % for samples. Similar sample preparation procedures were used for the conventional gas chromatography/mass spectrometry (GC/MS) analysis except that additional cleanup steps were required. Recoveries of cis/trans-permethrin ranged from 81 to 108 % for spiked soil and dust samples by GC/MS. The ELISA-derived permethrin concentrations were highly correlated with the GC/MS-derived sum of cis/trans-permethrin concentrations with a correlation coefficient (r) of 0.986. The ELISA method provided a rapid qualitative screen for cis/trans-permethrin in soil and dust while providing a higher sample throughput with a lower cost as compared to the GC/MS method. The ELISA can be applied as a complementary, low-cost screening tool to prioritize and rank samples prior to instrumental analysis for exposure studies.  相似文献   

18.
A fast and simple multi-residue method for the analysis of 15 organophosphorus (OP), 17 organochlorine (OC), 8 pyrethroids (PYR), 12 N-methyl-carbamate (NMC) pesticide residues and bromopropylate in honey is presented. Ready–to–use EXtrelut®NT 20 column, eluted with dichloromethane, was used to extract the pesticide residues from the aqueous-acetone honey sample, obtaining a clean extract directly analyzable. Determination was carried out by gas chromatography (GC) coupled with flame photometric detector (FPD) for OP compounds and by GC coupled with mass spectrometry detector (MSD) for OC and PYR pesticides and bromopropylate. The NMC pesticides were analysed by liquid chromatography-double derivatization coupled with spectrofluorimetric detector (LC/DD/Fl). This method allows the determination of the 53 pesticide residues at low concentrations (0.0005–0.074 mg/kg) and can be used to assess the compliance with the Maximum Residues Levels (MRLs) set by the European Union. The performance of the method was evaluated and specificity, linearity, recovery, repeatability, reproducibility, limit of quantification (LOQ) and limit of detection (LOD) were determined. A good linearity (r2? 0.99) was found in the range 0.0005–0.074 mg/kg for the majority of the compounds studied. Most of the pesticides had recoveries in the range 70–103 % and values of relative standard deviation (RSD) < 20 for repeatability and reproducibility, showing good accuracy and precision of the method. Aldicarb partially degraded in aldicarb sulphoxide during the analytical procedure, giving anomalous values. The LOQ for all pesticides investigated was from 0.0005 to 0.025 mg/kg while the LOD ranged from 0.0002 to 0.008 mg/kg.  相似文献   

19.
Tris(4-chlorophenyl)methanol (TCP) and tris(4-chlorophenyl)methane (TCPMe) were determined in aquatic organisms and sediment by a method based on Soxhlet extraction, gel permeation chromatography, fractionation over silica and gas chromatography/mass spectrometry (GC/MS) analysis. TCPMe was identified as the 4-substituted isomer after synthesis of this compound. TCP could be determined by GC/MS with negative chemical ionistation (GC/NCI-MS) with a detection limit of 0.02 g kg(-1) and a recovery of 90%. TCP concentrations in marine mammals from the North Sea and Dutch Wadden Sea ranged from 0.2 to 2 mg kg(-1), and those in marine and freshwater fish samples from 0.005 to 0.4 mg kg(-1) on a lipid wt basis. TCP concentrations in two Rhine delta sediment samples were 1.2 and 3.0 microg kg(-1) dry wt, respectively. TCPMe concentrations, determined by GC/MS with electron impact (GC/EI-MS), were 10-50% of the TCP concentration in all samples analysed.  相似文献   

20.
A multiresidue method was developed to determine 19 carbamate pesticides in tea samples. Optimizations of different parameters, such as the type of extraction solvents, clean-up cartridges, and elution solvents were carried out. The developed method used acetonitrile as extraction solvent, amino cartridge for adsorbents and acetone-n-hexane as the eluting solution. Nineteen carbamate residues were then analyzed by high-pressure liquid chromatography (HPLC) with fluorescence detector. The present results showed good linearity by correlation coefficients of more than 0.9999 for all analyses. Limits of detection and quantification varied from 0.0005–0.023 mg L? 1, 0.008–0.077 mg L? 1, respectively. Recoveries of sixteen carbamate pesticides ranged from 65% to 135% at the spiked level of 0.5, 1.0 and 2.0 mg L? 1. The relative standard deviations were lower than 20% and coefficient of variations were lower than 15%. The results indicate that the proposed method provides an effective multi and trace level screening determination of carbamate pesticides residues for tea samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号