首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Sediment samples from 25 sites in 17 rivers of the Pantanal (Brazil) were analyzed with the objective of evaluating pesticide contamination in sediments. Samples were extracted with an acetone, ethylacetate, and water mixture 2:2:1 (v/v/v). The extract was purified by flash chromatography with aluminum oxide and florisil. A multiresidue gas chromatography-mass spectrometry method was applied to monitor 23 pesticides of different chemical classes (organochlorine, organophosphorus, triazines, anilides and pyrethroids) with some of their degradation products. Compounds identified in sediment samples included λ -cyhalothrin (1.0 to 5.0 μ g kg? 1), p,p′-DDT (3.6 μ g kg? 1), deltamethrin (20.0 μ g kg? 1) and permethrin (1.0 to 7.0 μ g kg? 1).  相似文献   

2.
The main aim of this study was to assess the impact of pesticidal residues on soil microbial and biochemical parameters of the tea garden soils. The microbial biomass carbon (MBC), basal (BSR) and substrate induced respirations (SIR), β -glucosidase activity and fluorescein diacetate hydrolyzing activity (FDHA) of six tea garden soils, along with two adjacent forest soils (control) in West Bengal, India were measured. The biomass and its activities and biochemical parameters were generally lower in the tea garden soils than the control soils. The MBC of the soils ranged from 295.5 to 767.5 μ g g? 1. The BSR and SIR ranged from 1.65 to 3.08 μ g CO2-C g? 1 soil h? 1 and 3.08 to 10.76 μ g CO2-C g? 1h? 1 respectively. The β -glucosidase and FDHA of the soils varied from 33.3 and 76.3 μ g para-nitrophenol g? 1 soil h? 1 and 60.5 to 173.5 μ g fluorescein g? 1h? 1respectively. The tea garden soils contained variable residues of organophosphorus and organochlorine pesticides, which negatively affected the MBC, BSR, SIR, FDHA and β -glucosidase activity. Ethion and chlorpyriphos pesticide residues in all the tea garden soils varied from 5.00 to 527.8 ppb and 17.6 to 478.1 ppb respectively. The α endosulfan, β endosulfan and endosulfan sulfate pesticide residues in the tea garden soils ranged from 7.40 to 81.40 ppb, 8.50 to 256.1 ppb and 55 to 95.9 ppb respectively. Canonical correlation analysis shows that 93% of the total variation was associated with the negative impact of chlorpyriphos, β and α endosulfan and endosulfan sulfate on MBC, BSR and FDHA. At the same time ethion had negative impact on SIR and β -glucosidase. Data demonstrated that the pesticide residues had a strong impact on the microbial and biochemical components of soil quality.  相似文献   

3.
A simple and efficient residue analysis method for direct determination of ioxynil octanoate in maize and soil was developed and validated with High Performance Liquid Chromatography-Ultra Violet (HPLC-UV). The samples were extracted with mixtures of acetonitrile and deionized water followed by Solid Phase Extraction (SPE) to remove co-extractives prior to analysis by HPLC-UV. The recoveries of ioxynil octanoate extracted from maize and soil samples ranged from 86 %–104 % and 84 %–96 %, respectively, with relative standard deviation (RSD) less than 7.84% and sensitivity of 0.01 mg kg?1. The method was applied to determine the residue of ioxynil octanoate in maize and soil samples from experimental field. Data had shown that the dissipation rate in soil was described as pseudo-first-order kinetics and the half-life (t1/2) was less than 1.78 days. No ioxynil octanoate residue (<0.01 mg kg?1) was detected in maize at harvest time withholding period of 60 days after treatments of the pesticide. Direct confirmation of the analytes in field trial samples was realized by Liquid Chromatography-Mass Spectrometry (LC-MS).  相似文献   

4.
A method for the identification and quantification of pesticide residues in water, soil, and sediment samples has been developed, validated, and applied for the analysis of real samples. The specificity was determined by the retention time and the confirmation and quantification of analyte ions. Linearity was demonstrated over the concentration range of 20 to 120 µg L?1, and the correlation coefficients varied between 0.979 and 0.996, depending on the analytes. The recovery rates for all analytes in the studied matrix were between 86% and 112%. The intermediate precision and repeatability were determined at three concentration levels (40, 80, and 120 µg L?1), with the relative standard deviation for the intermediate precision between 1% and 5.3% and the repeatability varying between 2% and 13.4% for individual analytes. The limits of detection and quantification for fipronil, fipronil sulfide, fipronil-sulfone, and fipronil-desulfinyl were 6.2, 3.0, 6.6, and 4.0 ng L?1 and 20.4, 9.0, 21.6, and 13.0 ng L?1, respectively. The method developed was used in water, soil, and sediment samples containing 2.1 mg L?1 and 1.2% and 5.3% of carbon, respectively. The recovery of pesticides in the environmental matrices varied from 88.26 to 109.63% for the lowest fortification level (40 and 100 µg kg?1), from 91.17 to 110.18% for the intermediate level (80 and 200 µg kg?1), and from 89.09 to 109.82% for the highest fortification level (120 and 300 µg kg?1). The relative standard deviation for the recovery of pesticides was under 15%.  相似文献   

5.
A method for trace analysis of two plasticizers, di-2-ethylhexyl phthalate (DEHP) and di-2-ethylhexyl adipate (DEHA), contaminated in packaged curry paste were investigated by gas chromatography with flame ionization detector (GC-FID). Curry paste samples were extracted by ultrasonic and solid phase extraction using Florisil® cartridge. Analysis by the GC-FID system provided limits of detection for DEHA and DEHP at 12 and 25 μ g L? 1 and a linear dynamic range between 25 μ g L? 1 to 60 mg L? 1 with a coefficient of determination (R2) greater than 0.99. High recoveries were obtained, ranged from 91 to 99% and 88 to 98% for DEHP and DEHA with RSD lower than 7 and 10% respectively. The method detection limit and limits of quantitation were ranged from 27 to 30 and 90 to 100 μ g L? 1. The analysis of curry paste samples showed concentrations of DEHP and DEHA in the range of 4.0 ng g? 1 to 0.61 μg g? 1.  相似文献   

6.
Sulfonylurea herbicides are widely used in crop production on the Canadian prairies and a portion of these herbicides applied to cropland are inevitably lost to surrounding aquatic ecosystems. Little is known regarding the presence of sulfonylurea herbicides in wetlands located amongst cropland. This paper describes a new analytical method for the extraction and the determination of seven sulfonylurea herbicides (thifensulfuron-methyl, tribenuron-methyl, ethametsulfuron-methyl, metsulfuron-methyl, rimsulfuron, nicosulfuron and sulfosulfuron) in wetland sediment. The method provided > 85% analyte recovery from fortified sediment for six of the seven sulfonylurea herbicides with a limit of quantification (LOQ) of 1.0 μ g kg? 1. Tribenuron-methyl had significantly lower recovery compared to the other six sulfonylurea herbicides (LOQ = 2 μ g kg? 1). Mean recovery standard deviations were < 10%. This methodology was used to quantify sulfonylurea herbicide residues in sediment samples collected from prairie wetlands situated within the agricultural landscape of Saskatchewan and Manitoba, Canada. This is the first-known detection of sulfonylurea herbicide residues in prairie wetland sediments. Ethametsulfuron-methyl, sulfosulfuron and metsulfuron-methyl, the three most environmentally persistent of the seven sulfonylurea herbicides monitored in the surveillance component of this study, were most frequently detected in wetland sediment with mean concentrations ranging from 1.2 to 10 μ g kg? 1.  相似文献   

7.
Organochlorine pesticides present in sewage sludge can contaminate soil and water when they are used as either fertilizer or agricultural soil conditioner. In this study, the technique solid–liquid extraction with low temperature purification was optimized and validated for determination of ten organochlorine pesticides in sewage sludge and soil samples. Liquid–liquid extraction with low temperature purification was also validated for the same compounds in water. Analyses were performed by gas chromatography-mass spectrometry operating in the selective ion monitoring mode. After optimization, the methods showed recoveries between 70% and 115% with relative standard deviation lower than 13% for all target analytes in the three matrices. The linearity was demonstrated in the range of 20 to 70 µg L?1, 0.5 to 60 µg L?1, and 3 to 13 µg L?1, for sludge, soil, and acetonitrile, respectively. The limit of quantification ranged between 2 and 40 µg kg?1, 1 and 6 µg kg?1, and 0.5 µg L?1 for sludge, soil, and water, respectively. The methods were used in the study of pesticide lixiviation carried out in a poly vinyl chlorine column filled with soil, which had its surface layer mixed with sludge. The results showed that pesticides are not leached into soil, part of them is adsorbed by the sewage sludge (4–40%), and most pesticides are lost by volatilization.  相似文献   

8.
To study the dissipation rates and final residual levels of chlorantraniliprole and thiamethoxam in maize straw, maize, and soil, two independent field trials were conducted during the 2014 cropping season in Beijing and Anhui Provinces of China. A 40% wettable powder (20% chlorantraniliprole?+?20% thiamethoxam) was sprayed onto maize straw and soil at an application rate of 118 g of active ingredient per hectare (g a.i.ha?1). The residual concentrations were determined by ultra-high-performance liquid chromatography–tandem mass spectrometry. The chlorantraniliprole half-lives in maize straw and soil were 9.0–10.8 and 9.5–21.7 days, respectively. The thiamethoxam half-lives in maize straw and soil were 8.4–9.8 and 4.3–11.7 days, respectively. The final residues of chlorantraniliprole and thiamethoxam in maize straw, maize, and soil were measured after the pesticides had been sprayed two and three times with an interval of 7 days using 1 and 1.5 times the recommended rate (72 g a.i. ha?1 and 108 g a.i. ha?1, respectively). Representative maize straw, maize, and soil samples were collected after the last treatment at pre-harvest intervals of 7, 14, and 28 days. The chlorantraniliprole residue was below 0.01 mg kg?1 in maize, between 0.01 and 0.31 mg kg?1 in maize straw, and between 0.03 and 1.91 mg kg?1 in soil. The thiamethoxam residue concentrations in maize, maize straw, and soil were <0.01, <0.01, and 0.01–0.03 mg kg?1, respectively. The final pesticide residues on maize were lower than the maximum residue limit (MRL) of 0.02 mg kg?1 after a 14-day pre-harvest interval. Therefore, a dosage of 72 g a.i. ha?1 was recommended, as it can be considered safe to human beings and animals.  相似文献   

9.
The total concentration of toxic elements (aluminum, cadmium, chromium and lead) and selected macro and micro elements (iron, manganese, copper and zinc) are reported in six leafy edible vegetation species, namely lettuce, spinach, cabbage, chards and green and red types of Amaranth herbs. Although spinach and chards had greater than 125 mv of iron, both the amaranthus herbs recorded > than 320 μ g g? 1 dry weight. In both the spinach and chard species, the Mn and Zn levels were appreciable recording > 225 μ g g? 1 and 150 μ g g? 1 dry weight, respectively. Aluminum concentrations were (in μ g g? 1 dry weight) lettuce (10), cabbage (11), spinach (167), chards (65), amaranthus green (293) and amaranthus red (233). All the micro and macro elements and the toxic elements (Ni, Cr, Cd and Pb) elements analyzed, were below the recommended maximum permitted levels (RMI) in vegetables. Further the elemental uptake and distribution of the nine elements, at three growth stages of the lettuce plant grown on soil bed under controlled conditions are detailed. In the soil, except for iron (16%), greater than 33% of the other cations were in exchangeable form. Generally in the lettuce plant, roots retained much of the iron (> 224 μ g g? 1) and aluminum (> 360 μ g g? 1), while leaves had less than 200 μ g g? 1 of iron and 165 μ g g? 1 of Al. Although the concentrations of elements marginally decreased with growth, the lettuce leaves had significant amounts of Mn (30 μ g g? 1), Zn (50 μ g g? 1) and Cu (3.6 μ g g? 1). Some presence of lead in leaves (2.0 μ g g? 1) was noticed, but all the toxic and other elements analyzed were well below the RMI values for the vegetables.  相似文献   

10.
Fluazinam is a widely used pesticide employed against the fungal disease late blight in potato cultivation. A specific, repeatable, and rapid high-performance liquid chromatography (HPLC) method utilizing a diode array detector (DAD) was developed to determine the presence of fluazinam in soil. The method consists of acetonitrile (ACN) extraction, clean-up with solid-phase extraction (SPE), and separation using a mobile phase consisting of 70% ACN and 30% water (v/v), including 0.02% acetic acid. HPLC was performed with a C18 column and the detection wavelength was 240 nm. The method was successfully applied to an incubation experiment and to soil samples taken from potato fields where fluazinam had been applied two to three times during the on-going growing season. In the 90-day incubation experiment, analytical standard fluazinam and the commercial fungicide Shirlan® were added to soil samples that had never been treated with fluazinam, and were then extracted with ACN and 0.01 M calcium chloride (CaCl2). Fluazinam was not extractable with CaCl2, indicating that it does not leach to watercourses in the dissolved form. Recovery with ACN extraction for sandy soils was 72–95% immediately after application and 53–73% after 90 days of incubation. Out of the eight potato field soil samples, fluazinam was found in two samples at concentrations of 2.1 mg kg?1 and 1.9 mg kg?1, well above the limit of quantification (0.1 mg kg?1).  相似文献   

11.
The current environmental legislations recommend monitoring chemical contaminants such as polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans before the use of sewage sludge on the agricultural land. In this study, a solid–liquid extraction with low-temperature purification (SLE-LTP) was optimized and validated to determine 2,3,7,8-tetrachlorodibenzo-p-dioxin and 2,3,7,8-tetrachlorodibenzofuran in sewage sludge and soil samples. The analyses were performed by gas chromatography-mass spectrometry operating in the selective ion mode (GC-MS-SIM). Acetonitrile:ethyl acetate 6.5:1.5 (v/v) was the best extraction phase, and the recoveries percentages were close to 100%. The linearity was demonstrated in the range of 1.25–25 µg L?1 of 1.25–20 µg L?1 for sewage sludge and soil, respectively. Matrix effect was proved for the two compounds and in the two matrices studied. Extraction percentages were between 78 and 109% and relative standard deviations ≤ 19%. The proposed method is faster than methods described in the literature because showed a few steps. The quantification limits (LOQ) in sewage sludge were 6.4 and 32 ng TEQ kg?1 for 2,3,7,8-TCDF and 2,3,7,8-TCDD, respectively. In soil, LOQs were 0.8 and 8.0 ng TEQ kg?1 for 2,3,7,8-TCDF and 2,3,7,8-TCDD, respectively. These values are lower than the maximum residue limits established by European Legislation. The method was applied to 22 agricultural soil samples from different Brazilian cities and 2,3,7,8-TCDF was detected in one of these samples.  相似文献   

12.
The spatial distribution of persistent organic pollutants (POPs) was examined in soils surrounding the Tanggu Chemical Industrial District in Tianjin, China. The concentrations of hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs), hexachlorobenzenes (HCBs), and polychlorinated biphenyls (PCBs) were determined in 70 surface soils using accelerated solvent extraction and gas chromatography with electron capture detection. The results showed that the ranges of ∑HCH, ∑DDT, ΣHCB, and ∑PCB concentrations in soils were 2.1–12,549 μg?kg?1 (average, 965 μg?kg?1), n.d.–2,033 μg?kg?1 (average, 88.4 μg?kg?1), n.d.–1,924 μg?kg?1 (average, 349 μg?kg?1), and n.d.–373 μg?kg?1 (average, 46.2 μg?kg?1), respectively. Of these, HCHs were the dominant POPs, accounting for 75 % of the total organochlorine pesticide (OCP) residues. Overall, the spatial distribution of OCP concentrations showed a decreasing trend from the center of the Tanggu District to the surrounding areas. Two major pollution sources were Tianjin Dagu Chemical Co., Ltd. in the district center and the Tianjin Chemical Plant in Hangu District. In contrast, PCB concentrations were relatively high in the Haihe estuary to the east and low to the west of the study area. Component analysis of OCPs in these soils showed that they mainly came from industrial point sources. Compared with soils in other regions, soil DDT pollution was at a medium level in the Tanggu Chemical Industrial District, but associated HCH, HCB, and PCB pollution was relatively heavy. By multivariate statistical analyses, Tianjin Dagu Chemical Co., Ltd. was recognized as the main source of POPs, and soil properties were clarified to play an important role on the distribution and composition of POPs, especially the organic carbon content.  相似文献   

13.
A survey was carried out from 2008 to 2010 to determine the concentrations of 16 organochlorine pesticide residues (OPRs) from Tizayuca, Hidalgo, Mexico. Organochlorine residue determinations were made from milk fat, using chromatographic cleanup and analysis by gas chromatography with an electron capture detector. The OPR concentrations found were from below the detection limit (DL) to 0.91 ng g?1 in 2008, DL to 0.38 ng g?1 in 2009 and DL to 0.59 ng g?1 in 2010. In general concentrations of organochlorine pesticides were higher in the wet season (3.37 ng g?1 and 4.79 ng g?1) than the dry season (1.92 ng g?1 and 2.71 ng g?1) for 2009 and 2010, due to control of pests in the pasture and sheds. According to Codex Alimentarius regulations, individual pesticides did not exceed the permissible limits, which for example were 10 μg kg?1 for alpha hexachlorocyclohexane (HCH) and endosulfan I, 20 μg kg?1 for p,p’-DDT, and 6 μg kg?1 for dieldrin, endrin and heptachlor. A reduction of organochlorine pesticide concentrations in cow's milk was noted, indicating that the Mexican government has achieved reduction or elimination of some organochlorine pesticides in response to global agreements on persistent organic pollutants.  相似文献   

14.

The method of residue analysis of kresoxim-methyl and its dissipation rate in cucumber and soil in a greenhouse were studied. Residues of kresoxim-methyl were extracted from cucumber and soil matrices with acetone, purified by liquid-liquid extraction and Florisil cartridges, and then determined by GC with NP-detector. The limit of detection was estimated to be 9× 10?12 g, and the minimum determination concentration of kresoxim-methyl in the samples was 0.005 mg kg?1. The average recoveries ranged from 89.4 to 100.2% with a coefficient variation between 2.4 and 8.9%. Dissipation study showed that the half-lives of kresoxim-methyl in cucumber were approximately 6.5 days at both the recommended and double the recommended dosage. Half-lives for both the treatments were approximately 8 days in soil. The present study revealed that the residues in cucumber were below the MRL (0.05 mg kg?1, fixed by EU) after 7 days for both treatments.  相似文献   

15.
A simple multi-residue method based on modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) approach was established for the determination of 17 organochlorine (OC), 15 organophosphorous (OP) and 7 synthetic pyrethroid (SP) pesticides in an economically important medicinal plant of India, Senna (Cassia angustifolia), by gas chromatography coupled to electron capture and flame thermionic detectors (GC/ECD/FTD) and confirmation of residues was done on gas chromatograph coupled with mass spectrometry (GC-MS). The developed method was validated by testing the following parameters: linearity, limit of detection (LOD), limit of quantification (LOQ), matrix effect, accuracy–precision and measurement uncertainty; the validation study clearly demonstrated the suitability of the method for its intended application. All pesticides showed good linearity in the range 0.01–1.0 μg mL?1 for OCs and OPs and 0.05–2.5 μg mL?1 for SPs with correlation coefficients higher than 0.98. The method gave good recoveries for most of the pesticides (70–120%) with intra-day and inter-day precision < 20% in most of the cases. The limits of detection varied from 0.003 to 0.03 mg kg?1, and the LOQs were determined as 0.01-0.049 mg kg?1. The expanded uncertainties were <30%, which was distinctively less than a maximum default value of ±50%. The proposed method was successfully applied to determine pesticide residues in 12 commercial market samples obtained from different locations in India.  相似文献   

16.
An analytical method for simultaneous determination of the active substance (chlorpyrifos) and its relevant impurity (sulfotep) in commercial pesticide formulations has been developed and validated. The proposed method entails extraction of the analytes from samples by sonication with acetone and analysis by gas chromatography-flame ionization detection (GC-FID). The proposed method was characterized by satisfactory accuracy and precision. The repeatability expressed as relative standard deviation (RSD) was lower than the acceptable values calculated from the modified Horwitz equation whereas individual recoveries were in the range of 98–102% and 80–120% for chlorpyrifos and sulfotep, respectively. The limit of quantification (LOQ) for the impurity (sulfotep) was 0.003 mg mL?1 corresponding to the maximum permitted level according to Food and Agricultural Organization of the United Nations (FAO) specifications for the active substance (chlorpyrifos) being 3 g kg?1 of the chlorpyrifos content found. The main advantage of the proposed method was a considerable reduction in the analysis time since both analytes were determined based on a single injection into the GC-FID. Analysis of real samples of commercial pesticide formulations confirmed fitness-for-purpose of the proposed method.  相似文献   

17.
An indirect competitive enzyme-linked immunosorbent assay (ELISA) has been developed and optimized for atrazine determination in soil at different depths (0–10, 10–20, and 20–30 cm) before and after 48 h of application, corn shoot and cow milk samples collected from Dina farm, Egypt. This assay was based on a specific polyclonal antibodies (PAb) raised by immunizing New Zealand rabbits with an immunogen prepared by coupling 3-{4-(ethylamino)-6-(isopropylamino)-1,3,5-triazine-2-yl} thiopropanoic acid to bovine serum albumin (BSA) via N-hydroxysuccinimide (NHS) active ester method. The sensitivity (estimated as IC50value) was 17.5 μg mL?1 with a detection limit of 0.1 ng mL?1. The maximum atrazine concentration was found in soil especially in the deepest layer (325 and 890 μg kg?1 before and after application, respectively). Atrazine concentration in corn shoot was 333.28, μg kg?1 dry plant, while there was no detectable amount in milk. All samples screened by ELISA were validated by gas chromatography mass spectrometer procedure (GC/MS). Good correlation was achieved between the two methods (r = 0.997 for soil and 0.9814 for plant). This study demonstrates the utility and convenience of the simple, practical and cost–effective ELISA method in the laboratory for analysis of environmental samples. The method is ideal for the rapid screening of large numbers of samples in laboratories where access to GC/MS facilities, is limited or lacking.  相似文献   

18.
MC analysis of biological tissue is considered to be very difficult due to the lack of validated methods. This is the primary limiting factor for monitoring potential risks in both the flesh of aquatic organisms and the aquatic ecosystem. In this study, an effective method to determine free MCs (MC-LR and MC-RR) in the muscle and liver tissues of freshwater cultured fish was developed using solid-phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC/MS-MS). The extraction solvent, time of extraction, eluent and purification of the extract were optimized. Various SPE cartridges were also investigated. In this optimized analytical procedure, an 85% methanol/water solution (v/v) was selected as the extraction solvent, after which the extracts were purified by removing fats and proteins; a HLB cartridge was chosen for MCs enrichment; and 90% methanol containing 0.02% formic acid/water solution (v/v) was used as the eluent. Under the optimized pretreatment conditions and instrument parameters, good recoveries of MC-LR and MC-RR were obtained at three concentrations (0.5, 1.0 and 2.0 µg g?1 dry weight (DW)), with values ranging from 92.5 to 98.3% and 92.1 to 98.6%, respectively. The method detection limit (MDL) for muscle samples was 0.5 µg kg?1 and 0.4 µg kg?1 (DW) for MC-LR and MC-RR, respectively. The MDL for the liver samples was 0.8 µg kg?1 (DW) for both MC-LR and MC-RR. The developed procedure was successfully applied to analyze MCs in the muscle and liver of fish samples collected from a Chinese freshwater aquaculture pond during bloom seasons. The MC-LR concentrations ranged from below the MDL to 4.17 µg kg?1 and the MC-RR concentrations ranged from below the MDL to 2.64 µg kg?1.  相似文献   

19.
In this study, a two-dimensional liquid chromatography tandem mass spectrometry method was developed and validated for the determination of pesticide residues and contaminants in whole wheat grains and oats. The samples were extracted with a mixture of acetonitrile and water and were injected into the two-dimensional LC-MS/MS system without any further clean-up or sample preparation. Samples were analyzed with four different matrix matched calibrations. Matrix effects were evaluated by comparing analyte signals in the respective matrix matched standard with the neat solvent standards. The final method was validated according to the current Eurachem validation guide and SANTE document. The number of successfully validated analytes throughout all three validation levels in oats and wheat, respectively, were as follows: 330 and 316 out of 370 pesticides, 6 and 13 out of 18 pyrrolizidine alkaloids and 7 out of 9 regulated mycotoxins. Moreover, both plant growth regulators mepiquat and chlormequat as well as the tropane alkaloids atropine and scopolamine met the validation criteria. The majority of pesticides showed limits of detection below 1?µg kg?1, pyrrolizidine alkaloids below 0.7?µg kg?1, tropane alkaloids below 0.2?µg kg?1, growth regulators below 0.7?µg kg?1 and mycotoxins below 8?µg kg?1 in both matrices.  相似文献   

20.
The fate of carbosulfan (seed treatment dry powder) was studied in rice field ecosystem, and a simple and reliable analytical method was developed for determination of carbosulfan, carbofuran, and 3-hydroxyl carbofuran in brown rice, rice straw, paddy water, and soil. The target compounds were extracted using acetonitrile or dichloromethane, cleaned up on acidic alumina or florisil solid phase extraction (SPE) cartridge, and analyzed by gas chromatography. The average recoveries of carbosulfan, carbofuran and 3-hydroxy carbofuran in brown rice, rice straw, paddy water, and soil ranged from 72.71% to 105.07%, with relative standard deviations of 2.00–8.80%. The limits of quantitation (LOQs) of carbosulfan, carbofuran and 3-hydroxy carbofuran in the samples (brown rice, rice straw, paddy water and soil) were 0.011, 0.0091, 0.014, 0.010 mg kg?1, 0.016, 0.019, 0.025, 0.013 mg kg?1, and 0.031, 0.039, 0.035, 0.036 mg kg?1, respectively. The trials results showed that the half-lives of carbosulfan, carbofuran and 3-hydroxy carbofuran in rice straw were 4.0, 2.6 days, 3.9, 6.0 days, and 5.8, 7.0 days in Zhejiang and Hunan, respectively. Carbosulfan, carbofuran and 3-hydroxy carbofuran were detected in soils. Carbosulfan and 3-hydroxy carbofuran were almost undetectable in paddy water. Carbofuran was detected in paddy water. The final residues of carbosulfan, carbofuran and 3-hydroxy carbofuran in brown rice were lower than 0.05 mg kg?1, which were lower than 0.5 mg kg?1 (MRL of carbosulfan) or 0.1 mg kg?1 (MRL of carbofuran). Therefore, a dosage of 420 g active ingredient per 100 kg seed was recommended, which could be considered as safe to human beings and animals. These would contribute to provide the scientific basis of using this insecticide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号