首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cholinesterase activity in the brain, RBC and plasma of Swiss mice was determined following different routes of administration of methamidophos. Continuous feeding with the insecticide caused a progressive inhibition of both plasma- and erythrocyte enzymes. The effect of methamidophos was more pronounced when applied in diet than when administered dermally or intraperitoneally. Following a single injection (i.p.) of methamidophos, the brain enzyme showed maximum inhibition 24 hr following treatment. At the appearance of tremors, the plasma and RBC-enzymes showed considerable inhibition, the former being more inhibited. The plasma enzyme appears to be the most sensitive enzyme and may be taken as a suitable index for exposure to methamidophos.  相似文献   

2.
Abstract

Adult and larval insects from the terrestrial and aquatic environments were exposed to acephate. The chemical was more toxic to adult insects than to larvae, and was a poor insect cholinesterase inhibitor in vitro compared to methamidophos which was a much stronger inhibitor. Both acephate and methamidophos inhibited the adult cholinesterase in vitro much more strongly than they did the larval enzymes. Acephate was metabolized by the insects to methamidophos which did not appear to be the only metabolite, although no other metabolites were looked for. The cholinesterase of insects exposed to sublethal levels of acephate was inhibited, but this inhibition appeared to be due to the combined effect of acephate and methamidophos and not to any hypothetical substance with greater anticholinesterase activity. This was bourne out when acephate was incubated with mixed function oxidases (MFO). No activated product with potent anticholinesterase activity was identified. Methamidophos was not produced by the MFO system but by some other unidentified mechanism.  相似文献   

3.
Abstract

Levels of acephate (OrtheneR) and its principle metabolite, methamidophos, in/on greenhouse‐grown pepper and cucumber fruits and leaves in relation to the applied methamidophos were monitored. Dislodgeable and total residues of acephate and methamidophos were determined by gas‐liquid chromatography equipped with a flame ionization detector (GC‐FID) and were confirmed by nitrogen phosphorus detector (GC‐NPD). The dissipation curves of the residues followed first‐order kinetics (R2> 0.96). Initial residues of acephate on fruits varied between pepper (15.12 ppm) and cucumber (2.16 ppm) . Total residues in fruits and leaves determined at intervals following application revealed the greater persistence of acephate on pepper fruits (half‐life [t1/2] of 6 d) than on cucumber fruits (t1/2 was 3.7 d) . T1/2 values for the applied methamidophos were 4.7 and 5.3 d on pepper and cucumber fruits, respectively. Deacety‐lation of acephate (formation of its metabolite) was detectable 1 d following acephate treatment and reached a maximum of 2.05% of initial acephate residues 3 d after application on pepper fruits. On cucumber fruits, acephate metabolite reached a maximum of 2.12% one wk following application. No acephate residues were detected above the limit of detection of 0.001 ppm in pepper fruits 50 d following acephate application while its metabolite was detectable at that time (detectability limit was 0.0001 ppm).  相似文献   

4.
Abstract

The effect of mercuric chloride (HgCl2) on the activities of catalase, Superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and its effect on glutathione (GSH) content were evaluated in different organs (liver, kidneys, and brain) of mice after administration at 0, 0.25, 0.5 and 1.0 mg/kg/day for 14 days. The uptake of mercury shows that the kidneys accumulated the highest levels of mercury compare to brain and liver. The enzyme levels varied in mercury treated organs compare to control. A dose dependent increase of antioxidant enzymes occurred in the liver and kidneys. The increase in enzyme activities correlated with highest mercury accumulation in the kidneys and liver. Mercury is known to generate reactive oxygen species (ROS) in vivo and in vitro, therefore, it is likely that enzyme activities increased to scavenge ROS levels produced as a result of mercury accumulation. Glutathione content increased in liver and kidneys of mercury treated mice compare to control. The results showed that the highest oral dose of mercury significantly increased antioxidant enzymes in kidneys and liver. The increased antioxidant enzymes enhance the antioxidant potential of the organs to reduce oxidative stress.  相似文献   

5.
The toxicity of acephate to four species of aquatic insects, as well as the metabolism and cholinesterase-inhibiting properties of the chemical in the rat were studied. The results indicated that mayfly larvae were very sensitive to the toxic effects of acephate, whereas larvae of the stonefly, damselfly and mosquito were much less sensitive. In the rat, orally-administered acephate was rapidly absorbed from the intestines and severely inhibited the cholinesterases in the blood and brain. The enzymes began to recover after 24 hours, while the chemical was completely eliminated within three days. The amount of methamidophos observed in the liver was extremely low. The cholinesterase-inhibiting properties of acephate and methamidophos were compared in vitro to that of paraoxon, a known strong anticholinesterase. Enzymes from four vertebrates were used. In all cases, except one, acephate was found to be six orders of magnitude weaker than paraoxon, whereas methamidophos was three orders weaker. Trout brain cholinesterase was the exception; it was as sensitive to paraoxon as it was to methamidophos. Finally, four cholinesterases were inhibited with methamidophos, and their ability to reactivate spontaneously or to recover by induction with pyridine aldoxime methiodide (PAM) in vitro were determined. The results suggested that methamidophos-inhibited cholinesterases did not reactivate spontaneously; instead the enzymes remained inhibited either in a phosphorylated or an aged state. The significance of these results are discussed in relation to the use of acephate for forest insect pests.  相似文献   

6.
Abstract

Disulfoton and methamidophos (both at 1.12 kg a.i./ha), oxydemeton‐methyl and demeton, (both at 0.56 kg a.i./ha) were applied as post‐harvest foliar sprays to control the European asparagus aphid, Brachycolus asparagi. Oxidation of disulfoton, oxydemeton‐methyl and demeton to their corresponding sulfoxides and sulfones occurred in asparagus foliage 2 to 5 days after application. The total residues of these three compounds, including their toxic oxidative metabolites declined to less than 0.5 ppm about 47 days after the spray application whereas methamidophos persisted longer; 0.84 ppm of its residue was found even after 85 days. No residue was found above the limit of detection of 0.002 ppm in any asparagus spears which were produced in the following spring; the four compounds were sprayed on the asparagus plants during the previous season at realistic rates for aphid control.  相似文献   

7.
Abstract

Monitoring observations made on 60 operators involved in pesticide application work in godowns and warehouses and 60 matched control workers are reported. Occupational exposure history and medical history are noted. Biochemical investigations, plasma and RBC cholinesterase estimations are included along with medical examination of the workers. Workers were found to be mostly exposed to Celphos, DDVP, Malathion, Pyrethrum, etc, and the use of protective devices were very limited. Cases of significant reduction in plasma and RBC cholinesterase activity were found. Frequency of symptoms like dizziness, headache, lachrymation, burning sensation in eyes, nausea and anorexia, etc, were much more in the exposed workers. No cases of clinical poisoning attributable to occupational exposure to pesticides were reported by the workers.  相似文献   

8.
Abstract

Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) activities were determined in rat tissues after dermal exposure to pesticides. Two experiments were conducted in male SD rats, 190–210 g body weight. Acephate (ACP), methamidophos (MAP) and nicotine (NIC) were dissolved either individually or together in 0.25 mL of 50% ethanol, which contained: AP=12.6 or MAP 1.3 or NIC= 9.6 mg; EXP 1 ‐ individual pesticide exposure; 64 rats, 16/group; EXP 2 ‐ mixture of AP+MAP+NIC at levels of IX, 2X, 3X; 48 rats, 12/group; 0.25 mL of solution or ethanol (Controls) was applied to 25 mm2 area of shaved skin 3 times a week. Half the rats were terminated after 4 weeks and the rest after 4 weeks of stopping exposure. Single pesticides decreased erythrocyte (RBC) SOD by 17 % after exposure and in the NIC group after post exposure (P#0.05). Increasing concentrations of AP+MAP+NIC mixture elevated RBC SOD by 22 % in the 2X and 3X groups and CAT by 13 % in the 3X group (P#0.05); post exposure increased RBC SOD by 2–3 fold and CAT activity by 13 % in all 3 groups. Liver GPX increased by 30–40 % and CAT decreased by 12 % in all exposed and post exposed groups (P#0.05). The results suggest that dermal exposure to mixtures of pesticides can selectively induce SOD, CAT and GPX activities in RBC and liver.  相似文献   

9.
Abstract

The effect of a chronic exposure to sublethal concentration of mercuric chloride (0.3 mg/1) on the activities of some enzymes in the digestive system of the teleost fish Channa punctatus was examined after 15 and 30 days of treatment. Glucose‐6‐phosphatase was significantly inhibited in the intestine and pyloric caeca. No marked alterations were observed in the activities of maltase and lactase except for elevation in maltase activity and inhibition in lactase activity in the intestine and pyloric caeca after 15 days of treatment. Three peptidases (aminotripeptidase, glycylglycine dipeptidase and glycyl‐1‐leucine dipeptidase) showed decreased activities in all parts of the digestive system. A decrease was also observed in the activity of lipase except for the stomach where inhibition after 15 days was insignificant. The results indicate that the activities of all the enzymes examined are inhibited in intestine and pyloric caeca and digestion of proteins and lipids may be more affected by mercury than the digestion of some carbohydrates.  相似文献   

10.
The present study was conducted in order to investigate pro-oxidant activity of dimethoate in liver and brain tissues following sublethal pesticide exposure for 5, 15 and 30 d by using SOD, GPx, CAT enzyme activities and lipid peroxidation as biomarkers as well as DNA damaging potential via detecting% Tail DNA, Tail moment and Olive tail moment as endpoints in erythrocytes of Oncorhynchus mykiss in an in vitro experiment. Antioxidant enzyme activities were found to elicit two staged response which was an initial induction followed by a sharp inhibition in liver tissue while a sustained increase in GPx activity and slight stimulation in SOD activity were detected in brain tissue. Lipid peroxidation showed an ascending pattern throughout the exposure period in both tissues and a decreasing trend was determined in tissue protein levels which was proved to be positively correlated with duration. Similar findings were obtained from outcomes preferred to quantify DNA damage and TM was decided to reflect the extent of damage more sensitively because of determined positive correlation with concentrations applied. Considering these results, it can be concluded that oxidative stress condition evoked by dimethoate could not be responded effectively and genotoxic nature of pesticide was proven by determined clastogenic effect possibly via being an alkylation agent or stimulating the production of reactive species.  相似文献   

11.
Abstract

Penicillic acid and ochratoxin A are environmentally important toxic fungal metabolites (mycotoxins) that are synergistic in combination. The effects of penicillic acid on the pancreatic enzyme, :arboxypeptidase A were investigated in vitro and in vivo. A broad range of inhibition in vitro of the enzyme by PA was demonstrated with a half‐maximal inhibitory concentration equal to 1.1 x 10‐4M PA. Inhibition of carboxypeptidase A was time and temperature dependent, and resulted in decreased conversion of parent ochratoxin A to the non‐toxic metabolite, ochratoxin alpha. Studies in vivo demonstrated a penicillic acid‐dependent inhibition of pancreatic carboxypeptidase A activity in the mouse and the chicken following multiple oral exposure. It is postulated that the mode of toxic interaction of the two mycotoxins may be due, in part, to impaired detoxification of ochratoxin A through peni‐cillic acid depletion of carboxypeptidase A activity.  相似文献   

12.
In the context of massive summer mortality events of the Pacific oyster Crassostrea gigas, the aim of this study was to investigate the early effects on genes, enzymes and haemocyte parameters implicated in immune defence mechanisms in C. gigas oysters exposed to a potentially hostile environment, i.e. to an herbicide alone or within a mixture. Following 2 h of exposure to the herbicide diuron at 1 μg L−1, the repression of different genes implicated in immune defence mechanisms in the haemocytes and the inhibition of enzyme activities, such as laccase-type phenoloxidase (PO) in the plasma, were observed. The inhibition of superoxide dismutase (SOD) activity in the plasma was also observed after 6 and 24 h of exposure. In the mixture with the herbicides diuron and isoproturon, and the pharmaceutical ibuprofen, catecholase-type PO activity in the plasma and the percentage of phagocytosis in the haemocytes were reduced after 6 h of exposure. Our results showed that early effects on molecular, biochemical and cellular parameters can be detected in the presence of diuron alone or within a mixture, giving an insight of its potential effect in situations that can be found in natural environments, i.e. relatively high concentrations for short periods of time.  相似文献   

13.
Effect of isoflavone on cypermethrin-induced changes in enzyme activities and free radicals was studied in plasma, liver, brain and testes of male New Zealand White rabbits. Rabbits were orally given sublethal dose of cypermethrin (24 mg/kg BW; 1/100 LD50), while isoflavone (2 mg/kg BW) was given alone or in combination with cypermethrin. The tested doses were given to rabbits every other day for 12 weeks. Results obtained showed that cypermethrin significantly (P < 0.05) induced free radicals in plasma, liver, brain and testes. The activities of glutathione S-transferase (GST) (liver, brain and testes), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) (liver and testes), and alkaline phosphatase (AlP) (liver) were significantly (P < 0.05) decreased due to cypermethrin administration. Contrariwise, the activities of GST, AST, ALT and AIP were increased in plasma. The activity of acetylcholinesterase (AChE) did not change in plasma and brain of treated rabbits with cypermethrin. Isoflavone alone significantly (p < 0.05) decreased the levels of free radicals in plasma, liver, brain and testes, while did not produce any significant effect on the investigated enzymes. However, isoflavone is able to reverse the changes in enzyme activities due to the effect of cypermethrin. Results concluded that isoflavone confers marked protection against cypermethrin-induced oxidative stress in rabbit's plasma, liver, brain and testes.  相似文献   

14.
Acephate was incubated in distilled water of three different pH's at 37 degrees C for 7 days. Three hydrolytic products were formed: methamidophos, O,S-dimethyl phosphorothiolate (DMPT), and O-methylacetyl phosphoramidothiolate (OMPT). A single dose of acephate was also fed to mice, and their livers were excised and analyzed for metabolic products up to 30 hours. Three products were detected: methamidophos, DMPT, and S-methylacetyl phosphoramidothiolate (SMPT). The anticholinesterase properties of acephate, methamidophos, DMPT, SMPT, and OMPT were determined. Only acephate and methamidophos had measurable inhibitory effects on the mouse erythrocyte enzyme, methamidophos being about ten times more effective than acephate. The amount of methamidophos formed in the water and mouse liver was too low to have any direct effect on the toxicity of acephate. Acephate toxicity to aquatic insects would depend on its persistence in water, its uptake by the insects, its conversion to methamidophos, and the combined inhibitory effect of acephate and methamidophos on the cholinesterase enzyme. The toxicity of acephate to mammals would depend on the direct anticholinesterase effect of the chemical and to a small extent on methamidophos.  相似文献   

15.
The effects of a novel phosphorothionate (RPR-V) synthesized at Indian Institute of Chemical Technology, Hyderabad, was studied using three sub-chronic doses of 0.033 (low), 0.066 (medium) and 0.099 (high) mg kg(-1) in male and female rats for a period of 90 days. This long term and repeated treatment of RPR-V revealed that the membrane bound target enzymes Aspartate aminotransferase and Alanine aminotransferase increased significantly in serum and kidney, whereas these enzymes significantly decreased in liver and lung tissues when measured after 45 and 90 days of treatment. This compound also caused significant inhibition of RBC Acetylcholinesterase, target enzyme of organophosphorus compounds revealing its effect on normal synaptic transmission. Two way Anova studies disclosed that the alterations were mostly dose and time dependent, sexual dimorphism was not observed when the activities of male rats were compared with female rats. Enzyme recoveries were recorded after 28 days of post treatment, high degree positive correlation was observed with regard to these enzymes between serum versus kidney, whereas in case of serum versus liver and lung tissues high degree negative correlation was recorded. These enzyme profiles elucidates that they increased in serum but they decreased significantly in liver and lung indicating necrosis of these tissues. However, in case of kidney the level of these enzymes increased significantly with parallel to serum, which is suggestive of an increase synthesis of these enzymes, may be an adaptive mechanism due to the stress of the toxicant. These biomarker enzymes can be detected rapidly and hence may be used for the prediction and diagnosis of pesticide insults.  相似文献   

16.
Santos TG  Martinez CB 《Chemosphere》2012,89(9):1118-1125
The effects of Atrazine, an herbicide used worldwide and considered as a potential contaminant in aquatic environments, were assessed on the Neotropical fish Prochilodus lineatus acutely (24 and 48 h) exposed to 2 or 10 μg L−1 of atrazine by using a set of biochemical and genetic biomarkers. The following parameters were measured in the liver: activity of the biotransformation enzymes ethoxyresorufin-O-deethylase (EROD) and glutathione S transferase (GST), antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), content of reduced glutathione (GSH), generation of reactive oxygen species (ROS) and occurrence of lipid peroxidation (LPO); in brain and muscle the activity of acetylcholinesterase (AChE) and DNA damage (comet assay) on erythrocytes, gills and liver cells. A general decreasing trend on the biotransformation and antioxidant enzymes was observed in the liver of P. lineatus exposed to atrazine; except for GR, all the other antioxidant enzymes (SOD, CAT and GPx) and biotransformation enzymes (EROD and GST) showed inhibited activity. Changes in muscle or brain AChE were not detected. DNA damage was observed in the different cell types of fish exposed to the herbicide, and it was probably not from oxidative origin, since no increase in ROS generation and LPO was detected in the liver. These results show that atrazine behaves as enzyme inhibitor, impairing hepatic metabolism, and produces genotoxic damage to different cell types of P. lineatus.  相似文献   

17.
Abstract

Crude enzyme from a soil fungus, Aspergillus flavus, was isolated from a field soil following repeated applications of metolachlor [2-Chloro-N-(methoxy-1-methylethyl)-2′-ethyl-6′-methyl acetanilide]. Metolachlor hydrolysis by the crude enzyme extract was determined by enzyme assay. The tests were performed in phosphate buffer, pH 7.5, and the reaction was carried out at two herbicide concentrations (20 and 100 μg mL?1) and two crude extract volumes (0.2 and 0.5 mL of the homogenized crude extract mixture). The rate of metolachlor degradation was found faster in samples containing higher volume of crude extract, (T 1/2, 5.7 h) for both concentrations of the herbicide. The activities of enzymes responsible for dechlorination coupled with hydroxylation, N-dealkylation, and breaking of amide linkage were found responsible in the degradation.  相似文献   

18.
Abstract

The effect of methomyl and cypermethrin insecticides on the B6‐dependent kynurenine hydrolase(KH) and kynurenine aminotransferase (KATE) was studied. These insecticides induced pronounced inhibition on the (KH) and (KATE) enzymes after single dose treatment. Repeated doses of methomyl induced inhibition on the (KH) and (KATE) activities, whereas repeated treatment with cypermethrin had no effect on the activities of these enzymes. In vitro methomyl inhibited (KH) and (KATE) enzymes at 10 M up to 10‐3 M, through a competitive mechanism. Methomyl and cypermethrin are capable of causing alterations in the kynurenine metabolizing enzymes of mouse liver.  相似文献   

19.
采用体内染毒的方法,以鲤鱼脑乙酰胆碱酯酶(AchE)活力为指标,研究了有机磷农药对硫磷与氯乐果、甲胺磷涕灭威之间的联合毒性效应.结果表明,这些农药之间均产生较强的协同作用,但是两种农药以不同比例加入,其产生的毒性效应有明显差别,涕灭威/对硫磷之间的协同作用要强于同类农药间的作用.  相似文献   

20.
Due to their broad-spectrum antimicrobial activity, silver nanoparticles (AgNPs) have been used in a large number of commercial and medical products. Such proliferated AgNP production poses toxicological and environmental issues which need to be addressed. The present study aimed to investigate the effects of AgNPs on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), important enzymes in areas of neurobiology, toxicology and pharmacology. Three different AgNPs, prepared by the chemical reduction using trisodium citrate, hydroxylamine hydrochloride (Cl-AgNPs), and borohydride following stabilization with poly(vinyl alcohol), were purified and characterised with respect to their sizes, shapes and optical properties. Their inhibition potential on AChE and BChE was evaluated in vitro using an enzyme assay with o-nitrophenyl acetate or o-nitrophenyl butyrate as substrates, respectively. All three studied AgNPs were reversible inhibitors of ChEs. Among tested nanoparticles, Cl-AgNP was found to be the most potent inhibitor of both AChE and BChE. Although the detailed mechanism by which the AgNPs inhibit esterase activities remains unknown, structural perturbation of the enzyme may be the common mode of ChE inhibition by AgNPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号