首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The residues of disulfoton and permethrin in an organic soil and in vegetables grown in soil treated with a granular formulation of the pesticides were determined by gas chromatography. The residues were removed from soil or plant samples by successive extractions with acetone and hexane. Permethrin persisted in the soil for the initial 28 days and declined slowly during the rest of the season but disulfoton after persisting for one week at the applied concentration was degraded in the next two weeks. The insecticides did not translocate into the edible parts of the vegetables but were present in the root system of onion and lettuce. Carrot and lettuce yields were not singificantly different from those of the controls but onion yields were substantially decreased by the use of permethrin.  相似文献   

2.
Abstract

Residue disappearance and leaching of 14C‐allyl‐alcohol from different soils were studied in laboratory experiments. Additionally, the uptake of residues by lettuce and carrots was investigated in the greenhouse. In laboratory experiments, residue disappearance and leaching from soils was correlated negatively to the organic matter content. In greenhouse experiments with a sandy loam soil at an application rate normally used in practice, an average of 12.5 % of the applied radioactivity was recovered after an eight day interval between application and sowing. Furthermore, an average of 8 % (sum in soil and plants) of the applied radioactivity was recovered after lettuce or carrot growing. Uptake of residues was higher by carrots than by lettuce, and higher by lettuce roots than by lettuce tops. No bioaccumulation was observed. The residues in soils and plants were, to a high percentage, unextractable and, to a smaller extent, fully water‐soluble products. Unchanged allylalcohol could not be detected by the analytical methods used.  相似文献   

3.
The effects of the photochemical oxidant air pollutant ozone (O(3)) on growth and yield of three garden crops, broccoli (Brassica oleracea L.), lettuce (Lactuca sativa L.), and onion (Allium cepa L.) were studied in an open-top chamber experiment conducted in the field in southern California. Four cultivars each of leaf lettuce, broccoli, and globe onion were exposed to charcoal-filtered air (CF), non-filtered (NF) air, or NF plus 1.5 times ambient O(3) concentration from 4 weeks after germination in January or February until harvest. Exposures lasted 31 days for lettuce, 55 to 78 days for broccoli, and 105 days for onion. Results showed that despite severe O(3) injury to outer leaves, lettuce yields were not affected by O(3). Broccoli also was resistant to O(3) and no growth reduction was observed at ambient O(3) concentrations. Onions were more susceptible to O(3), but only one cv. 'Rio Bravo' had significant yield losses (ca. 5%) at ambient O(3) levels. These results suggest that, in general, concentrations of O(3) in the winter and spring may be below the threshold for adverse effects on yields of broccoli, lettuce and onion.  相似文献   

4.
Abstract

Potatoes were grown during 1992 in 2 m2 plots of loam which had received 1, 2 or 3 annual treatments of Di‐Syston 15G, equivalent to 3.36 kg AI/ha, in furrow at planting. The presence of enhanced degradative activity to the sulfoxide and sulfone metabolites of disulfoton in the soil treated in the previous two years was confirmed by laboratory tests prior to the 1992 treatments. Soil, seed potato and foliage from the three treatments were analyzed for disulfoton and its sulfoxide and sulfone metabolites for 12 wk following planting/treatment. Disulfoton was the major insecticidal component of the soil, a minor component of the seed piece and was not detected (<0.02 ppm) in potato foliage. Disulfoton concentrations in each of the three substrates sampled were similar for the three treatments. Disulfoton sulfoxide and sulfone were the major insecticidal components of the seed piece and foliage. Their maximum concentrations in 1st year soil, seed pieces and foliage were ca. 2x, 2x and 6x, respectively, those measured in the 2nd and 3rd year treatments. The results demonstrate that enhanced microbial degradation of relatively minor insecticidal compounds in the soil can profoundly affect insecticide levels in the plant when these compounds are the major insecticidal components accumulated. The broader implications for crop protection using soil‐applied systemic insecticides are discussed.  相似文献   

5.
Abstract

Foliar sprays of dimethoate at 150 or 300 g a.i./ha, methamidophos at 450 or 900 g a.i./ha and pirimicarb at 140 or 280 g a.i./ha were applied for control of the green peach aphid, Myzus pericae (Sulzer), and the lettuce aphid, Nasonovia ribisnigri (Mosley), about 2 weeks before the lettuce started heading, and again about 1 week from harvest. In lettuce, dimethoate partially oxidized to its oxon and pirimicarb converted to its methylamino‐ and/or formyl methylamino‐analogues. Most residues were present in the outer leaves which were exposed directly to the sprays; only traces of residues were detected in samples of the inner head leaves. Total residues disappeared rapidly. Pirimicarb was the least persistent and only traces of residues (<0.01 ppm) were detected in marketable heads. Concentrations of dimethoate, including the oxon and of methamidophos were well below their respective tolerances of 2 and 1 ppra respectively.  相似文献   

6.
The persistence and dissipation kinetics of trifloxystrobin and tebuconazole on onion were studied after application of their combination formulation at a standard and double dose of 75 + 150 and 150 + 300 g a.i. ha?1. The fungicides were extracted with acetone, cleaned-up using activated charcoal (trifloxystrobin) and neutral alumina (tebuconazole). Analysis was carried out by gas chromatograph (GC) and confirmed by gas chromatograph mass spectrometry (GC-MS). The recovery was above 80% and limit of quantification (LOQ) 0.05 mg kg?1 for both fungicides. Initial residue deposits of trifloxystrobin were 0.68 and 1.01 mg kg?1 and tebuconazole 0.673 and 1.95 mg kg?1 from standard and double dose treatments, respectively. Dissipation of the fungicides followed first-order kinetics and the half life of degradation was 6–6.6 days. Matured onion bulb (and field soil) harvested after 30 days was free from fungicide residues. These findings suggest recommended safe pre-harvest interval (PHI) of 14 and 25 days for spring onion consumption after treatment of Nativo 75 WG at the standard and double doses, respectively. Matured onion bulbs at harvest were free from fungicide residues.  相似文献   

7.
Abstract

The use of sewage sludge and effluent as a source of nutrients and water for crop production is increasing worldwide. A study was conducted in 2001 at Pension farm (near Harare) to determine the effect of long term (>30 yrs) application of sewage sludge and effluent on Zn and Cu accumulation in top soil, uptake of these metals by lettuce (Lactuca sativa L.) and mustard rape (Brassica juncea L.), and dry matter yield. Application of sewage sludge/effluent significantly (p < 0.001) increased total Zn (13.7–1563.9 mg kg?1) and Cu (2.5–133.3 mg kg?1) in the top soil (0–20 cm depth) compared to the control. Sewage sludge/effluent addition significantly (p < 0.001) increased Zn uptake by both test crops, while Cu uptake was significant in the first crop of lettuce and the second crop of mustard rape. Based on the dietary patterns of poor urban households in Zimbabwe, the maximum possible intake of Cu will only constitute 40% the Maximum Daily Intake (MDI). The toxicological implications for Zn will however be more severe, exceeding the MDI by 77% through exposure by lettuce consumption and by 251% consumption of mustard rape. It was concluded that long-term addition of sewage sludge/effluent to soil at Pension farm had increased the concentration of Zn and Cu in top soil to levels that pose environmental concern. The consumption of leafy vegetables produced on these soils pose a health risk to poor communities that reside around the study site, especially children, through possible Zn toxicity.  相似文献   

8.
Lettuce plants (Lactuca sativa, L., cv. 'trocadero') were grown in pots filled with an Alfisol Udalf or an Andisol Udand soil, under greenhouse conditions. Treatments consisted of adding vanadium to soils (0, 100, 250, 500 and 10001mg1kg1 or as foliar sprays (0, 10, 25, 50, and 1001mg111. Soil chemical characteristics, the cationic nutrition of lettuce and their yields were assessed. No relation was found among vanadium treatments and soil pH, organic matter, or available Ca, Mg, and K. Vanadium added to soils increased available vanadium in the soil, but foliar sprays did not. Treatments did not influence foliar K, Ca, Mg, Cu, Mn and Zn concentrations, and only foliar iron levels showed a correlation with available vanadium in the soils treated with this heavy metal. Higher concentrations of vanadium added to soil or in foliar sprays significantly increased the vanadium content of the lettuces, but they did not affect the yields of either fresh or dry matter.  相似文献   

9.
The total concentration of toxic elements (aluminum, cadmium, chromium and lead) and selected macro and micro elements (iron, manganese, copper and zinc) are reported in six leafy edible vegetation species, namely lettuce, spinach, cabbage, chards and green and red types of Amaranth herbs. Although spinach and chards had greater than 125 mv of iron, both the amaranthus herbs recorded > than 320 μ g g? 1 dry weight. In both the spinach and chard species, the Mn and Zn levels were appreciable recording > 225 μ g g? 1 and 150 μ g g? 1 dry weight, respectively. Aluminum concentrations were (in μ g g? 1 dry weight) lettuce (10), cabbage (11), spinach (167), chards (65), amaranthus green (293) and amaranthus red (233). All the micro and macro elements and the toxic elements (Ni, Cr, Cd and Pb) elements analyzed, were below the recommended maximum permitted levels (RMI) in vegetables. Further the elemental uptake and distribution of the nine elements, at three growth stages of the lettuce plant grown on soil bed under controlled conditions are detailed. In the soil, except for iron (16%), greater than 33% of the other cations were in exchangeable form. Generally in the lettuce plant, roots retained much of the iron (> 224 μ g g? 1) and aluminum (> 360 μ g g? 1), while leaves had less than 200 μ g g? 1 of iron and 165 μ g g? 1 of Al. Although the concentrations of elements marginally decreased with growth, the lettuce leaves had significant amounts of Mn (30 μ g g? 1), Zn (50 μ g g? 1) and Cu (3.6 μ g g? 1). Some presence of lead in leaves (2.0 μ g g? 1) was noticed, but all the toxic and other elements analyzed were well below the RMI values for the vegetables.  相似文献   

10.
The main objective of the review is to document, assess and analyze the results of the previously reported data on levels of different pesticides in selected fruits and vegetables from Pakistan. The findings of the previous studies clearly indicated that more than 50 % of the samples were contaminated with organophosphate, pyrethroids and organochlorine pesticides. Many studies reported that among fresh fruits and vegetables tomato, apple, melon, mango, grapes, and plum crossed the FAO/WHO permissible limits for these contaminants residual levels. The comparison of other regions showed that observed levels were found above maximum residue limits (MRLs) in 50 % of the samples but were in agreement with the studies from neighboring countries like China and Bangladesh. Higher hazard risk index (HRI) values were calculated for dieldrin, methamidophos, o,p′-DDT, diazinon and p,p′-DDT in apple, mango, banana, melon, potato and onion. The review also highlights that data on pesticide residues in foodstuff is scarce which should be overcome by further extending studies from different areas of Pakistan. In order to ascertain the provision of food suitable for human consumption, it is imperative to monitor pesticides in food commodities by the country’s authorities and enforce guidelines based on permissible limits.  相似文献   

11.
Abstract

Dissipation, degradation and leaching of fresh 14C coumaphos, alkylated 14C coumaphos and aged residues of 14C coumaphos from vats were studied in alkaline sandy loam soil in soil columns in the field under subtropical conditions in Delhi for a year. Dissipation, degradation and bound residue formation was more in case of alkali treated coumaphos than fresh coumaphos. After 365 days total residues of fresh coumaphos accounted for 33.25% while that of alkali treated coumaphos was 19.12%. Bound residue formation was almost double in case of alkali treated coumaphos (18.95%) than fresh coumaphos (9.53%) after 150 days followed by release of bound residue in both the cases. The proportion of metabolites 4 ‐ methylumbelliferone, chlorferon and potasan collectively was 86.05% in fresh coumaphos extractable residues while the same was 91.74% in alkali treated coumaphos after 365 days. Aged residues from vats containing copper sulphate and buffer were found to be more persistent in soil as total residues remained were 95.58% in comparison with 83.09% total residues of aged residues from vats containing only buffer after 150 days of treatment. Copper sulphate seems to inhibit the degradatiion of coumaphos in soil by microorganisms. Chlorferon was the major metabolite in generally all the samples. Coumaphos did not leach below 10 cm in all the cases.  相似文献   

12.
Leaching of arsenic (As) from chromated copper arsenate (CCA)-treated wood may elevate soil arsenic levels. Thus, an environmental concern arises regarding accumulation of As in vegetables grown in these soils. In this study, a greenhouse experiment was conducted to evaluate As accumulation by vegetables from the soils adjacent to the CCA-treated utility poles and fences and examine the effects of soil amendments on plant As accumulation. Carrot (Daucus carota L.) and lettuce (Lactuca sativa L.) were grown for ten weeks in the soil with or without compost and phosphate amendments. As expected, elevated As concentrations were observed in the pole soil (43 mg kg(-1)) and in the fence soil (27 mg kg(-1)), resulting in enhanced As accumulation of 44 mg kg(-1) in carrot and 32 mg kg(-1) in lettuce. Addition of phosphate to soils increased As accumulation by 4.56-9.3 times for carrot and 2.45-10.1 for lettuce due to increased soil water-soluble As via replacement of arsenate by phosphate in soil. However, biosolid compost application significantly reduced plant As uptake by 79-86%, relative to the untreated soils. This suppression is possibly because of As adsorbed by biosolid organic mater, which reduced As phytoavailability. Fractionation analysis showed that biosolid decreased As in soil water-soluble, exchangeable, and carbonate fraction by 45%, whereas phosphate increased it up to 2.61 times, compared to the untreated soils. Our results indicate that growing vegetables in soils near CCA-treated wood may pose a risk of As exposure for humans. Compost amendment can reduce such a risk by reducing As accumulation by vegetables and can be an important strategy for remediating CCA-contaminated soils. Caution should be taken for phosphate application since it enhances As accumulation.  相似文献   

13.
Abstract

A field study was conducted on a Lowell silty loam soil of 2.7% organic matter at the Kentucky State University Research Farm, Franklin County, Kentucky. Eighteen universal soil loss equation (USLE) standard plots (22 × 3.7 m each) were established on a 10% slope. Three soil management practices were used: (i) class-A biosolids (sewage sludge), (ii) yard waste compost, each mixed with native soil at a rate of 50 ton acre?1 on a dry-weight basis, and (iii) a no-mulch (NM) treatment (rototilled bare soil), used for comparison purposes. Devrinol 50-DF “napropamide” [N,N-diethyl-2-(1-naphthyloxy) propionamide]was applied as a preemergent herbicide, incorporated into the soil surface, and the plots were planted with 60-day-old sweet bell pepper seedlings. Napropamide residues one hour following spraying averaged 0.8, 0.4, and 0.3 μ g g? 1 dry soil in sewage sludge, yard waste compost, and no-mulch treatments, respectively. Surface runoff water, runoff sediment, and napropamide residues in runoff were significantly reduced by the compost and biosolid treatments. Yard waste compost treatments increased water infiltration and napropamide residues in the vadose zone compared to sewage sludge and NM treatments. Total pepper yields from yard waste compost amended soils (9187 lbs acre?1) was significantly higher (P < 0.05) than yield from either the soil amended with class-A biosolids (6984 lbs acre?1) or the no-mulch soil (7162 lbs acre ?1).  相似文献   

14.
Abstract

The degradation of 14C‐chlorpyrifos and its hydrolysis product, 3,5,6‐trichloro‐2‐pyridinol (TCP), was investigated in soil in laboratory experiments. Between 12 and 57% of the applied chlorpyrifos persisted in a variety of agricultural soils after a 4‐week incubation. Concentrations of TCP present in these soils ranged from 1 to 34% of the applied dose. Two patterns of persistence were observed. In some soils, significant quantities of TCP and soil‐bound residues were produced, but little 14CO2. In other soils, neither TCP nor soil‐bound residues accumulated, but large quantities of 14CO2 were evolved. Direct treatment of fresh samples of each of these soils with 14C‐TCP resulted in rapid mineralization of TCP to 14CO2 only in those soils in which TCP had not accumulated after chlorpyrifos treatment. The rapid mineralization of TCP in these soils was microbially mediated, but populations of soil microorganisms capable of using TCP as a sole carbon‐energy source were not detected.  相似文献   

15.
Abstract

Insecticide fingerprinting technique enables the detection and location of DDT and HCII residues in vegetables through the development of green and Prussian blue colors respectively. Cut vegetables are pressed against o‐tolidine impregnated paper and exposed to sunlight where colored spots appear instantly. The studies on 18 vegetable varieties revealed the pesticide residues and their distribution in different tissues. This direct method is sensitive (0.3 μg for HCII & 0.5 μg for DDT) and has special applications in quality control laboratorios and food industry.  相似文献   

16.
Abstract

A pressurized liquid extraction (PLE) method was presented for the determination of six neonicotinoid pesticides, acetamiprid, clothianidin, dinotefuran, imidacloprid, thiacloprid, and thiamethoxam in green onion. The critical parameters of PLE, e.g. extraction solvent, temperature, pressure, number of cycles, and static extraction time, were optimized by test on the spiked green onion with six neonicotinoids and the incurred green onion applied with four commercial neonicotinoid insecticide formulations (acetamiprid, dinotefuran, imidacloprid, and thiamethoxam). As a result, the recoveries of six neonicotinoids obtained by one cycle PLE with acetonitrile at 140?°C and 50?bar for 10?min were 94.7–99.5%. These results were acceptable according to the validation guideline for testing method of agricultural chemicals in food by Ministry of Health, Labour, and Welfare in Japan. PLE was also validated by the test on the incurred green onion. The analytical values of four neonicotinoids obtained by PLE were good agreement with those obtained by solid–liquid extraction with homogenizer, which is employed for Japanese official method for the analysis of pesticide residues in food (the ratios of analytical values obtained by PLE to those obtained by solid–liquid extraction were 99.7–101.2%). These results indicate that PLE is applicable for the determination of neonicotinoids in green onion.  相似文献   

17.
Abstract

Potatoes were grown from cut seed in Plainfield sand treated in‐furrow with disulfoton (Di‐Syston 15G, 3.36 kg Al/ha) in 1983 and from whole seed in similarly treated loam in 1991. Soils were contained in 2 m2 field plots. Soil, seed potato and foliage were analyzed for the insecticide and its sulfoxide and sulfone metabolites during the 8–12 wk following planting. Disulfoton disappeared at different rates from the two soils (ksand=0.024 day‐1, kloam=0.056 day‐1) with partial conversion to the sulfoxide and sulfone in both. Larger quantities of the three insecticidal components were absorbed by the seed potato in the cut‐seed/sand combination. The relative amounts of these components in the seed potato also differed between treatments with disulfoton being the largest component of the cut‐seed/sand and smallest in the whole‐seed/loam. Disulfoton sulfoxide and sulfone were the major insecticidal components of the foliage and concentrations in the initial foliage (each ca. 10 ppm) were similar for both treatments. Sulfoxide concentrations in the foliage decreased more rapidly than the sulfone and the decrease in concentration of each of the components was similar for the two treatments.  相似文献   

18.
Reducing the transfer of contaminants from soils to plants is a promising approach to produce safe agricultural products grown on contaminated soils. In this study, 0-400 mg/kg cetyltrimethylammonium bromide (CTMAB) and dodecylpyridinium bromide (DDPB) were separately utilized to enhance the sorption of PAHs onto soils, thereby reducing the transfer of PAHs from soil to soil solution and subsequently to plants. Concentrations of phenanthrene and pyrene in vegetables grown in contaminated soils treated with the cationic surfactants were lower than those grown in the surfactant-free control. The maximum reductions of phenanthrene and pyrene were 66% and 51% for chrysanthemum (Chrysanthemum coronarium L.), 62% and 71% for cabbage (Brassica campestris L.), and 34% and 53% for lettuce (Lactuca sativa L.), respectively. Considering the impacts of cationic surfactants on plant growth and soil microbial activity, CTMAB was more appropriate to employ, and the most effective dose was 100-200 mg/kg.  相似文献   

19.
Abstract

Tomatoes have been widely planted in greenhouses and fields in China. Soil-borne diseases are more harmful to tomatoes than other types of diseases. Dimethyl disulfide (DMDS) was used as a novel fumigant instead of methyl bromide to control soil-borne diseases. To assess the safety of DMDS for use on tomatoes, its dissipation and terminal residues were investigated at three different locations under greenhouse and open field conditions. The QuEChERS method was simplified using gas chromatography with mass spectrometry detection and combined with liquid-liquid extraction purification to allow determination of DMDS levels in both the tomatoes and the soil. The average recovery of the method was between 85.3 and 98.6%, with the relative standard deviation (RSD) ranging from to 1.9–10.3%. The dissipation and terminal residues of DMDS in the tomatoes and the soil were analyzed using the method, the results of which showed that the half-life of DMDS ranged from 0.3–6.5 d in the soil at three different locations. The terminal residues of DMDS in the tomatoes and the soil were not detected. This study provided data that the Chinese government can use to support appropriate and safe guidance for the use of DMDS on agriculture.  相似文献   

20.
Abstract

[Carbonyl‐ C]methabenzthiazuron (MBT) was applied to growing winter wheat in an outdoor lysimeter. The amount applied corresponded to 4 kg Tribunil/ha. 140 days after application the 0–2,5 cm soil layer was removed from the lysimeter. This soil contained about 40 % of the applied radioactivity. Using 0,01 M CaCl2 solution or organic solvents, the extractable residues were removed from the soil. The bioavailability of the non‐extractable as well as aged residues remaining in the soil was investigated in standardized microecosystems containing 1.5 kg of dry soil. During a 4 weeks period the total uptake (4 maize plants/pot) amounted up to 3,6; 2,2; and 0,9 % of the radioactivity from soils containing aged MBT residues, MBT residues non‐extractable‐with 0,01 MCaCl2 or MBT residues non‐extractable with organic solvents, respectively. About 20 % of the radioactivity found in maize leaves represented chromatographically characterized parent compound. At the end of the plant experiment the soil was extracted again with 0,01 M CaCl2 and with organic solvents. The soil extracts and also the organic phases obtained from the aqueous fulvic acid solution contained unchanged parent compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号