首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The contamination level of 92 samples (12 species) of wild edible mushrooms and underlying substrates with heavy metals (Cd, Cu, Hg, Pb and Zn) in the Slovak Paradise National Park that borders with a region of historical mining and processing of polymetallic ores, were determined. The collected samples were analyzed using of atomic absorption spectrophotometry. The metals were determined separately in hymenophore (H) and rest of fruit bodies (RFB). Bioaccumulation factor as well as ratio of metal content in H and RFB were calculated. Cadmium and lead contents in hymenophore exceeded statutory limits of the EU (Cd: 0.5 mg/kg dry weight (dw), Pb: 1.0 mg/kg dw) for edible mushrooms in 96% and 83% of the samples, respectively. The risk from the consumption of the collected mushroom species was calculated based on the provisionally tolerable weekly intake (PTWI) values, and the highest health risk arising with consumption of particularly Macrolepiota procera, Marasmius oreades and Russula vesca from the observed area was demonstrated. It was shown that average weekly consumption of tested mushrooms species results the threat of exceeding of PTWI limits in the case of cadmium values (by 164%, 86% and 4% of PTWI for M. oreades, R. vesca and R. puellaris, respectively) and of mercury (by 96% of PTWI for M. procera) but not lead.  相似文献   

2.
ABSTRACT

Lead (Pb), cadmium (Cd), and mercury (Hg) contents in ten species of edible mushrooms in Trako??an, Croatia were determined. In addition, the similarity between the studied species was determined by cluster analysis. The caps and stipes of the fruiting bodies were analysed separately. The analyses were carried out by inductively coupled plasma - optical emission spectrometry (ICP-OES). The greatest mean lead concentrations of 1.91 and 1.60 mg kg ?1 were determined in caps and stipes of Macrolepiota procera. The greatest mean concentrations of cadmium (3.23 and 2.24 mg kg?1) were determined in caps and stipes of Agaricus campestris and of mercury (2.56 and 2.35 mg kg?1) in Boletus edulis. In terms of the anatomical parts of the fruiting body (cap-stipe), a considerably greater concentration of the analysed elements was found in the cap for all mushroom species. According to calculated bio-concentration factors, all the examined species were found to be bio-accumulators of Cd and Hg. On the basis of the accumulation of the studied metals, great similarity of mushroom species belonging to the same genus and partial similarity of species of the same ecological affiliation was obtained by cluster analysis.  相似文献   

3.
This paper reports the results of the study of Hg contents of four species of Boletus mushroom (Boletus reticulatus Schaeff. 1763, B. pinophilus Pilát & Dermek 1973, B. impolitus Fr. 1838 and B. luridus Schaeff. 1774) and the surface soils (0–10 cm layer, ~100 g) samples beneath the mushrooms from ten forested areas in Poland and Belarus by cold-vapour atomic absorption spectroscopy. The ability of the species to bioconcentrate Hg was calculated (as the BCF) while Hg intakes from consumption of these mushroom species were also estimated. The median Hg content of the caps of the species varied between 0.38 and 4.7 mg kg?1 dm; in stipes between 0.13 and 2.5 mg kg?1 dm and in the mean Hg contents of soils varied from 0.020 ± 0.01 mg kg?1 dm to 0.17 ± 0.10 mg kg?1 dm which is considered as “background” Hg level. The median Hg content of caps of B. reticulatus and B. pinophilus were up to 4.7 and 3.6 mg kg?1 dm, respectively, and they very efficiently bioaccumulate Hg with median BCF values of up to 130 for caps and 58 for stipes. The caps and stipes of these mushrooms if eaten will expose consumer to elevated dose of total Hg estimated at 1.4 mg for caps of Boletus reticulatus from the Kacze ??gi site, which is a nature reserve area. Nevertheless, the occasional consumption of the valued B. reticulatus and B. pinophilus mushrooms maybe safe.  相似文献   

4.

Heavy metals cause serious problems in the environment, and they can be accumulated in organisms, especially in the higher fungi. The concentration of Ni, Cr, Pb, Cd, and Hg in 10 species of edible mushrooms in Medvednica Nature Park, Croatia was therefore determined. In addition, the similarity between the studied species was determined by cluster analysis based on concentrations of the aforementioned metals in the fruiting bodies. The contents of nickel, chromium, lead, cadmium, and mercury in the fruiting bodies of mushrooms were obtained by X-ray fluorescence spectrometry. The highest concentrations of Ni (3.62 mg kg?1), Cr (3.01 mg kg?1), and Cd (2.67 mg kg?1) were determined in Agaricus campestris. The highest concentration of Pb (1.67 mg kg?1) was determined in Macrolepiota procera, and the highest concentration of Hg (2.39 mg kg?1) was determined in Boletus edulis. The concentration of all heavy metals significantly differed (p?<?0.001) between examined saprophytic and ectomycorrhizal mushrooms. Considering anatomical part of the fruiting body (cap-stipe), a considerably higher concentration of the analyzed elements was found in the cap for all mushroom species. According to calculated bioconcentration factors, all the examined species were found to be bioexclusors of Ni, Cr, and Pb and bioaccumulators of Cd and Hg. Cluster analysis performed on the basis of the accumulation of the studied metals revealed great phenotypic similarity of mushroom species belonging to the same genus and partial similarity of species of the same ecological affiliation.

  相似文献   

5.
The aim of the study was to estimate copper (Cu) accumulation efficiency in whole-fruiting bodies of 18 edible and non-edible wild growing mushrooms collected from 27 places in the Wielkopolska Voivodeship. Mushrooms were collected each time from the same places to estimate the diversity in Cu accumulation between tested mushroom species within 3 consecutive years of study (2011–2013). The study results revealed various accumulation of Cu in the whole-tested mushroom fruiting bodies. The highest mean accumulation of Cu was observed in Macrolepiota procera (119.4 ± 20.0 mg kg?1 dm), while the lowest was in Suillus luteus and Russula fellea fruiting bodies (16.1 ± 3.0 and 18.8 ± 4.6 mg kg?1 dm, respectively). Significant differences in Cu accumulation between mushroom species collected in 2011 and in the two following years (2012 and 2013) were observed. The results indicated that sporadic consumption of these mushrooms was not related to excessive intake of Cu for the human body (no toxic influence on health).  相似文献   

6.
This study was performed to determine the concentrations of some trace metals (Cd, Cu, Pb, Ni, Zn, and Fe) in Holothuria tubuosa (Gmelin, 1788) belonging to Echinoderm species and in sediments that they live at three different stations (Gelibolu, Umur Bey/Lapseki, and Dardanos) on Dardanelles Strait between April 2013 and March 2014. The mean trace metal concentrations determined in H. tubulosa and sediment were as follows: Cd 0.18 mg/kg, Cu 2.43 mg/kg, Pb 2.09 mg/kg, Ni 14.58 mg/kg, Zn 16.86 mg/kg, and Fe 73.46 mg/kg and Cd 0.70 mg/kg, Cu 5.03 mg/kg, Pb 14.57 mg/kg, Ni 27.15 mg/kg, Zn 54.52 mg/kg, and Fe 3779.9 mg/kg, respectively. It was detected that the statistical difference between trace metals determined seasonally in muscle tissue of H. tubulosa was significant (p?>?0.05). As a result of the study, it was detected that H. tubulosa is a bioindicator species in determining Ni trace metal in sediment. The results were compared to the limit values of National and International Food Safety, and it was detected that Cd and Ni concentrations measured in sediment were above LEL of Ni and Cd concentrations according to Sediment Quality Guidelines.  相似文献   

7.
Metal contamination is a recurring problem in Peru, caused mainly by mine tailings from a past active mining activity. The Ancash region has the largest number of environmental liabilities, which mobilizes high levels of metals and acid drainages into soils and freshwater sources, posing a standing risk on human and environmental health. Native plant species spontaneously growing on naturally acidified soils and acid mine tailings show a unique tolerance to high metal concentrations and are thus potential candidates for soil phytoremediation. However, little is known about their propagation capacity and metal accumulation under controlled conditions. In this study, we aimed at characterizing nine native plant species, previously identified as potential hyperaccumulators, from areas impacted by mine tailings in the Ancash region. Plants were grown on mine soils under greenhouse conditions during 5 months, after which the concentration of Cd, Cu, Ni, Pb, and Zn was analyzed in roots, shoots, and soils. The bioaccumulation (BAF) and translocation factor (TF) were calculated to determine the amount of each metal accumulated in the roots and shoots and to identify which species could be better suited for phytoremediation purposes. Soil samples contained high Cd (6.50–49.80 mg/kg), Cu (159.50–1187.00 mg/kg), Ni (3.50–8.70 mg/kg), Pb (1707.00–4243.00 mg/kg), and Zn (909.00–7100.00 mg/kg) concentrations exceeding national environmental quality standards. After exposure to mine tailings, concentrations of metals in shoots were highest in Werneria nubigena (Cd, 16.68 mg/kg; Cu, 41.36 mg/kg; Ni, 26.85 mg/kg; Zn, 1691.03 mg/kg), Pennisetum clandestinum (Pb, 236.86 mg/kg), and Medicago lupulina (Zn, 1078.10 mg/kg). Metal concentrations in the roots were highest in Juncus bufonius (Cd, 34.34 mg/kg; Cu, 251.07 mg/kg; Ni, 6.60 mg/kg; Pb, 718.44 mg/kg) and M. lupulina (Zn, 2415.73 mg/kg). The greatest BAF was calculated for W. nubigena (Cd, 1.92; Cu, 1.20; Ni, 6.50; Zn, 3.50) and J. bufonius (Ni, 3.02; Zn, 1.30); BCF for Calamagrostis recta (Cd, 1.09; Cu, 1.80; Ni, 1.09), J. bufonius (Cd, 3.91; Cu, 1.79; Ni, 18.36), and Achyrocline alata (Ni, 137; Zn, 1.85); and TF for W. nubigena (Cd, 2.36; Cu, 1.70; Ni, 2.42; Pb, 1.17; Zn, 1.43), A. alata (Cd, 1.14; Pb, 1.94), J. bufonius (Ni, 2.72; Zn, 1.63), and P. clandestinum (Zn, 1.14). Our results suggest that these plant species have a great potential for soil phytoremediation, given their capability to accumulate and transfer metals and their tolerance to highly metal-polluted environments in the Andean region.  相似文献   

8.
Concentrations of Hg, Pb, Cd, and Cr in 240 shellfish including oyster, short-necked clam, razor clam, and mud clam collected from six administrative regions in Xiamen of China were measured. The daily intakes of heavy metals through the consumption of shellfish were estimated based on both of the metal concentrations in shellfish and the consuming amounts of shellfish. In addition, the target hazard quotients (THQ) were used to evaluate the potential risk of heavy metals in shellfish on human body. Results showed that the concentrations of heavy metals in shellfish ranged at the following sequence: Cr > Cd > Pb > Hg. The concentrations of Hg and Pb in most samples were below the limits (0.3 mg?kg?1 for Hg and 0.5 mg?kg?1 for Pb) of national standard (GB 18406.4-2001) set in China. About 57 % of samples were found to contain more than 0.1 mg?kg?1 of Cd, in which the highest level was found in oyster from Xiangan with a value of 1.21 mg?kg?1. The average concentrations of Cd in oyster and mud clam samples were 0.338 and 0.369 mg?kg?1, respectively, which were significantly higher (p?<?0.05) than those in the samples of short-necked clam and razor clam. The highest concentration of Cr was found to present in short-necked clam from Jimei with a value of 10.4 mg?kg?1, but a mean value of 1.95 mg?kg?1 in all the shellfish was observed, and no significant difference was found among the different sampling regions. The calculated daily intakes of Hg, Pb, Cd, and Cr through consuming the shellfish were 0.005, 0.122, 0.137, and 1.20 μg?kg?1 day?1, respectively, which accounted for 2.19, 3.42, 13.7, and 40.1 % of the corresponding tolerable limits suggested by the Joint FAO/WHO Expert Committee on Food Additives. The THQ values of the four metals were far below 1 for most samples, except for those of Cd and Cr in the four shellfish species with the mean values of 0.132 and 0.385, respectively. The highest THQ values of Cd were observed in the species of oyster (0.719) and mud clam (0.568). But the high THQ values of Cr observed in all the four species were derived from the applied reference dose (RfD) data of Cr(VI) due to the unavailable RfD value of total Cr. The results indicate that the intakes of heavy metals by consuming shellfish collected from Xiamen of China do not present an appreciable hazard risk on human health, but attention should be paid to consuming those with relatively high THQ values, such as oyster, mud clam, and short-necked clam.  相似文献   

9.
This study quantified Cd, Pb, and Cu content, and the soil–plant transfer factors of these elements in rice paddies within Cam Pha, Quang Ninh province, northeastern Vietnam. The rice paddies are located at a distance of 2 km from the large Coc Sau open-pit coal mine. Electron microprobe analysis combined with backscattered electron imaging and energy-dispersive spectroscopy revealed a relatively high proportion of carbon particles rimmed by an iron sulfide mineral (probably pyrite) in the quartz–clay matrix of rice paddy soils at 20–30 cm depth. Bulk chemical analysis of these soils revealed the presence of Cd, Cu, and Pb at concentrations of 0.146?±?0.004, 23.3?±?0.1, and 23.5?±?0.1 mg/kg which exceeded calculated background concentrations of 0.006?±?0.004, 1.9?±?0.5, and 2.4?±?1.5 mg/kg respectively at one of the sites. Metals and metalloids in Cam Pha rice paddy soils, including As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn, were found in concentrations ranging from 0.2?±?0.1 to 140?±?3 mg/kg, which were in close agreement with toxic metal contents in mine tailings and Coc Sau coal samples, suggesting mining operations as a major cause of paddy soil contamination. Native and model Oryza sativa L. rice plants were grown in the laboratory in a growth medium to which up to 1.5 mg/kg of paddy soil from Cam Pha was added to investigate the effects on plant growth. A decrease in growth by up to 60 % with respect to a control sample was found for model plants, whereas a decrease of only 10 % was observed for native (Nep cai hoa vang variety) rice plants. This result suggests an adaptation of native Cam Pha rice plants to toxic metals in the agricultural lands. The Cd, Cu, and Pb contents of the native rice plants from Cam Pha paddies exceeded permitted levels in foods. Cadmium and Pb were highest in the rice plant roots with concentrations of 0.84?±?0.02 and 7.7?±?0.3 mg/kg, suggesting an intake of these metals into the rice plant as shown, for example, by Cd and Pb concentrations of 0.09?±?0.01 and 0.10?±?0.04 mg/kg respectively in the rice grain endosperm. The adaptation of native rice plants, combined with bioaccumulation ratios of 1?±?0.6 to 1.4?±?0.7 calculated for Cd transfer to the rice grain endosperm, and maximum Cd transfer factors of 4.3?±?2.1 to the plant roots, strongly suggest a continuous input of some toxic metals from coal-mining operations to agricultural lands in the region of Cam Pha. In addition, our results imply a sustained absorption of metals by native rice plant varieties, which may lead to metal accumulation (e.g., Cd) in human organs and in turn to severe disease.  相似文献   

10.
ABSTRACT

Dried sclerotia of Wolfiporia extensa have been used as medicine in Asia from Eastern Han Dynasty, and also used as traditional snack called “fulingjiabing” in Beijing, China. In this paper, 18 macro and trace elements (Ag, As, Ba, Cd, Co, Cr, Cs, Cu, Fe, Li, Mn, Ni, Pb, Rb, Se, Sr, V, and Zn) in both flesh and peel of Wolfiporia extensa from seven sites of Yunnan province in China were determined by inductively coupled plasma mass spectrometer. The average recovery rates of certified reference materials for GBW10015 (spinach leaves) ranged from 90.5 to 113%, for GBW10028 (citrus leaves) from 92.8 to 106%, and for GBW07603 (bush branch and leaves) from 83.3 to 114.6%. Generally speaking, the concentration of all elements determined was at common level. The results of this survey indicate that mineral compositions in peel were higher than in flesh. In peel, the contents of investigated trace metals in mushroom samples were found to be in the range of 1,660–13,400 µg·g?1 dry matter (dm) for Fe and 29.6–710 µg·g?1 dm for Mn. The mean contents of Cr, Cu, Rb, V, and Zn in peel were between 10 and 20 µg·g?1 dm, followed by As, Co, Li, Ni, Pb, Se, and Sr with mean contents between 1 and 10 µg·g?1 dm, while Ag, Cd, and Cs had mean contents of <1 µg·g?1 dm. In flesh, the concentration of Fe was in the range of 54–900 µg·g?1 dm, and it was 1.5–49 µg·g?1 dm for Mn, followed by Ba, Cu, Rb, and Zn in the range of 1 to 10 µg·g?1 dm, while for Ag, As, Cd, Co, Cr, Cs, Li, Ni, Pb, Se, Sr, and V it was <1 µg·g?1 dm. The concentration of toxic elements, such as As, Cd, and Pb, in both flesh and peel was below the permissible limits of World Health Organization. However, As and Pb contents in peel were higher than the limits permitted in the Chinese Pharmacopoeia. The results of principal component analysis showed that the flesh of Wolfiporia extensa from all the seven sites of the Yunnan province tend to cluster together, most probably because the origin of mineral elements in both flesh and peel is wood substrate (old and dead pine trees).  相似文献   

11.
This study examined the mercury concentration in the Grisette Amanita vaginata Fr. and soil below the fruiting bodies collected between 2000 and 2008 from the wild at seven distant sites across Poland. The Hg content in samples was determined by cold atomic absorption method (CV-AAS) at a wavelength of 253.7 nm. Mean Hg contents varied from 0.096 ± 0.052 to 0.48 ± 0.13 mg kg?1 dry matter (dm) in caps (range, 0.043–0.73 mg kg?1), from 0.047 ± 0.02 to 0.23 ± 0.07 mg kg?1 dm (range, 0.028–0.47 mg kg?1) in stipes, and in underlying soil were from 0.035 ± 0.018 to 0.096 ± 0.036 mg kg?1 dm (range, 0.017 to 0.16 mg kg?1). The median Qc/s values ranged from 1.2 to 2.2 (mean 1.2 ± 0.4 to 2.1 ± 0.5) indicating that Hg content in stipes was generally lower than in caps. This mushroom species has some potential to bioconcentrate Hg in the fruiting bodies, as the values of the bioconcentration factor (BCF) varied for the sites between 1.2 ± 0.6 to 11 ± 5 for caps and 0.61 ± 0.26 to 7.4 ± 3.9 for stipes. Also available literature data on Hg in A. vaginata are reviewed and discussed.  相似文献   

12.
Fast-growing metal-accumulating woody plants are considered potential candidates for phytoextraction of metals. Shuikoushan mining, one of the biggest Pb and Zn production bases in China, presents an important source of the pollution of environment during the last 100 years. Over 150 km2 of fertile soil have been contaminated by the dust, slag, and tailings from this mining. The goal of the present work has been to determine the content of Pb, Zn, Cd, and Cu in wild woody plants (18 species) naturally growing in this area. Two hundred five plant and soil samples from 11 contaminated sites were collected and analyzed. In addition, to assess the ability of multi-metal accumulation of these trees, we proposed a predictive comprehensive bio-concentration index (CBCI) based on fuzzy synthetic assessment. Our data suggest some adult trees could also accumulate a large amount of metals. Pb concentrations in leaves of Paulownia fortunei (Seem.) Hemsl. (1,179 mg/kg) exceeded the hyperaccumulation threshold (1,000 mg/kg). Elevated Pb concentrations (973.38 mg/kg) were also found in the leaves of Broussonetia papyrifera (L.) Vent., with a Pb bio-concentration factor of up to 0.701. Endemic species, Zenia insignis Chun exhibited huge potential for Zn and Cd phytoextraction, with the highest concentrations of Zn (1,968 mg/kg) and Cd (44.40 mg/kg), characteristic root nodules, and fast growth rates in poor soils. As for multi-metal accumulation ability, native species B. papyrifera was calculated to have the most exceptional ability to accumulate various metals simultaneously (CBCI 2.93), followed by Amorpha fruticosa L. (CBCI 2.72) and Lagerstroemia indica L. (CBCI 2.53). A trend of increasing metal from trunks to leaves (trunks?<?branches?<?leaves) and towards fine roots has been shown by metal partitioning between tissues. The proposed CBCI would allow for the selection of suitable trees for phytoremediation in the future.  相似文献   

13.
Concentrations of heavy metals (As, Cd, Pb, Cu, Ni, Fe, Mn, and Zn) in market vegetables and fishes in Beijing, China, are investigated, and their health risk to local consumers is evaluated by calculating the target hazard quotient (THQ). The heavy metal concentrations in vegetables and fishes ranged from not detectable (ND) to 0.21 mg/kg fresh weight (f.w.) (As), ND to 0.10 mg/kg f.w. (Cd), and n.d to 0.57 mg/kg f.w. (Pb), with average concentrations of 0.17, 0.04, and 0.24 mg/kg f.w., respectively. The measured concentrations of As, Cd, Pb, Cu, Ni, Fe, Mn, and Zn are generally lower than the safety limits given by the Chinese regulation safety and quality standards of agriculture products (GB2762-2012). As, Cd, and Pb contaminations are found in vegetables and fishes. The exceeding standard rates are 19 % for As, 3 % for Cd, and 25 % for Pb. Pb contaminations are found quite focused on the fish samples from traditional agri-product markets. The paper further analyzed the health risk of heavy metals in vegetables and fishes respectively from supermarkets and traditional agri-product markets; the results showed that the fishes of traditional agri-product markets have higher health risk, while the supermarkets have vegetables of higher heavy metal risk, and the supervision should be strengthened in the fish supply channels in traditional agri-product markets.  相似文献   

14.
Information about heavy metal concentrations in food products and their dietary intake are essential for assessing the health risk of local inhabitants. The main purposes of the present study were (1) to investigate the concentrations of Zn, Cu, Pb, and Cd in several vegetables and fruits cultivated in Baia Mare mining area (Romania); (2) to assess the human health risk associated with the ingestion of contaminated vegetables and fruits by calculating the daily intake rate (DIR) and the target hazard quotient (THQ); and (3) to establish some recommendations on human diet in order to assure an improvement in food safety. The concentration order of heavy metals in the analyzed vegetable and fruit samples was Zn?>?Cu?>?Pb?>?Cd. The results showed the heavy metals are more likely to accumulate in vegetables (10.8–630.6 mg/kg dw for Zn, 1.4–196.6 mg/kg dw for Cu, 0.2–155.7 mg/kg dw for Pb, and 0.03–6.61 mg/kg dw for Cd) than in fruits (4.9–55.9 mg/kg dw for Zn, 1.9–24.7 mg/kg dw for Cu, 0.04–8.82 mg/kg dw for Pb, and 0.01–0.81 mg/kg dw for Cd). Parsley, kohlrabi, and lettuce proved to be high heavy metal accumulators. By calculating DIR and THQ, the data indicated that consumption of parsley, kohlrabi, and lettuce from the area on a regular basis may pose high potential health risks to local inhabitants, especially in the area located close to non-ferrous metallurgical plants (Romplumb SA and Cuprom SA) and close to T?u?ii de Sus tailings ponds. The DIR for Zn (85.3–231.6 μg/day kg body weight) and Cu (25.0–44.6 μg/day kg body weight) were higher in rural areas, while for Pb (0.6–3.1 μg/day kg body weight) and Cd (0.22–0.82 μg/day kg body weight), the DIR were higher in urban areas, close to the non-ferrous metallurgical plants SC Romplumb SA and SC Cuprom SA. The THQ for Zn, Cu, Pb, and Cd was higher than 5 for <1, <1, 12, and 6 % of samples which indicates that those consumers may experience major health risks.  相似文献   

15.
Leccinum scabrum is an edible mushroom common in European regions in the northern hemisphere. Macro and trace mineral constituents such as Ag, Al, Ba, Ca, Cd, Co, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, P, Rb, Sr and Zn were studied in L. scabrum and in the top soil collected from the same location underneath soil substratum. The “pseudo-total” and labile (extractable fraction of minerals) were measured to get insight into the levels, distribution between the morphological parts of fruiting bodies, potential for their bioconcentration by mushroom and evaluated for human exposure via consumption of the mushroom. The sampling sites include the Dar?lubska Wilderness, Trójmiejski Landscape Park, Sobieszewo Island, Wdzydze Landscape Park and outskirts of the K?trzyn town in Mazury from the norther part of Poland. Median values of K, Rb and P concentrations in dehydrated L. scabrum were for caps in range 27,000–44,000 mg kg?1, 90–320 mg kg?1 and 6,200–9,100 mg kg?1, and followed by Mg at 880–1,000 mg kg?1, Ca at 48–210 mg kg?1 and Al at 15–120 mg kg?1. The median concentrations of Cu, Fe, Mn and Zn in caps were in range 15–27 mg kg?1 db 38–140 mg kg?1, 5.3–27 mg kg?1 and 130–270 mg kg?1. For Ba and Sr, concentrations on the average were at ~1 mg kg?1, and almost equally distributed between the caps and stipes of the fruiting bodies. L. scabrum mushrooms were low in toxic Ag, Cd, Hg and Pb, for which the median values in dried caps from five locations were, respectively, in range 0.48–0.98 mg kg?1 (cap to stipe index, QC/S, was 2.5–4.1), 1.0–5.8 mg kg?1 (QC/S 2.9–3.8), 0.36–0.59 mg kg?1 (QC/S 1.6–2.7) and 0.20–0.91 mg kg?1 (QC/S 1.2–1.9). Substantial variations in the concentrations of the “pseudo-total” fraction (extracted by aqua regia) or labile fraction (extracted by 20% solution of nitric acid) of the elements determined in forest topsoils were noted between some of the locations examined. The elements K, P, Cd, Cu, Hg, Mn, Na, Rb and Zn can be considered as those which were bioconcentrated by L. scabrum in fruiting bodies, while the rates of accumulation varied with the sampling location.  相似文献   

16.
Various hazardous substances contained in waste TV sets might be released into environment via dust during recycling activities. Two brominated flame retardants (BFRs), polybrominated diphenyl ethers (PBDEs), and tetrabromobisphenol A (TBBPA), and five kinds of heavy metals (Cu, Pb, Cd, Cr, and Ni) were detected in indoor dust collected from two workshops (TV dismantling workshop and subsequent recycling workshop). PBDEs concentrations in dust from waste wires recycling line (722,000 ng/g) were the highest among the studied sites, followed by those in manual dismantling–sorting line (117,000 ng/g), whereas TBBPA concentrations were the highest in manual dismantling–sorting line (557 ng/g) and printed circuit board (PCB) recycling line (428 ng/g). For heavy metals, Cu and Pb were the most enriched metals in all dust samples. The highest concentration of Pb (22,900 mg/kg) was found in TV dismantling workshop-floor dust. Meanwhile, Cu was the predominant metal in dust from the PCB recycling line, especially in dust collected from electrostatic separation area (42,700 mg/kg). Occupational exposure assessment results showed that workers were the most exposed to BDE-209 among the four PBDE congeners (BDE-47, BDE-99, BDE-153, and BDE-209) in both workshops. The hazard quotient (HQ) indicated that noncancerous effects were unlikely for both BFRs and heavy metals (HQ?<?1), and carcinogenic risks for Cd, Cr, and Ni (risk?<?10?6) on workers in two workshops were relatively low.  相似文献   

17.
A total of 224 agricultural soil samples from Huanghuai Plain in China were investigated for the concentrations of seven heavy metals (As, Cd, Cr, Hg, Ni, Pb, and Zn). The mean concentrations of the metals were 12, 0.17, 79, 0.04, 35, 25, and 74 mg/kg, respectively. These values are similar or slightly higher than background values in this region, except for Cd with a mean nearly twice the background value. The estimated ecological risks based on contamination factors and potential ecological risk indexes are also mostly low, but considerable for Cd and Hg. Multivariate analysis (including Pearson's correlation analysis, hierarchical cluster analysis, and principal component analysis) clearly revealed three distinct metal groups, i.e., Cr/Ni/Zn, As/Cd/Pb, and Hg, whose concentrations were closely associated with the distribution and pollution characteristics of industries in and around the plain. The main anthropogenic sources for the three metal groups were identified as atmospheric deposition, sewage irrigation/fertilizers usage, and atmospheric deposition/irrigation water, respectively. The present results are well suited for planning, risk assessment, and decision making by environmental managers of this region.  相似文献   

18.
This study provides, for the first time, data regarding levels of toxic metals (Hg, Cd, and Pb) and organochlorine compounds (PCBs and DDTs) in various aromatic herbs as rosemary (Rosmarinus officinalis), sage (Salvia officinalis), laurel (Laurus nobilis), oregano (Origanum vulgare), and spearmint (Mentha viridis) collected in some towns of the Southern Italy with different anthropogenic and population pressure. Metal and organochlorine compound concentrations were determined using atomic absorption spectrophotometer and gas-chromatography mass spectrometer (GC/MS), respectively. Pb emerged as the most abundant element, followed by Cd and Hg, while between organochlorine compounds, PCB concentrations were higher than those of DDTs. The pollutant concentrations were found to vary depending on the different herbs. The highest Pb levels were observed in rosemary (1.66 μg g?1 dry weight) and sage (1.41 μg g?1 dry weight), this latter showing also the highest Cd concentrations (0.75 μg g?1 dry weight). For PCBs, the major concentrations were found in rosemary (2.75 ng g?1 dry weight) and oregano (2.39 ng g?1 dry weight). The principal component analysis applied in order to evaluate possible similarities and/or differences in the contamination levels among sampling sites indicated differences area-specific contamination.  相似文献   

19.
To develop an efficient bio-immobilization approach for the remediation of heavy metal pollution in soil, a mutant species of Bacillus subtilis (B38) was obtained by ultraviolet irradiation and selection under high concentration of cadmium (Cd) in a previous study. In the present study, to check the applicability of this mutated species to the sorption and immobilization of other metals, the sorption of four heavy metals, Cd, chromium (Cr), mercury (Hg), and lead (Pb), on living and nonliving B38 in single- and multiple-component systems under different conditions was investigated using batch experiments. Rapid metal binding occurred on both living and nonliving B38 during the beginning of the biosorption. The sorption kinetics followed the exponential equation for living biomass and the pseudo-first-order Lagergren model for nonliving biomass, with r 2 values in the range of 0.9004-0.9933. The maximum adsorptive quantity of the heavy metals on B38 changed with the solution pH, temperature, biomass dose, and ionic strength. The nonliving biomass generally showed greater or similar adsorptive capacities as compared with the living biomass and was not likely to be affected by the solution parameters. The bacterium had a stronger affinity to the cationic heavy metals than to the anionic one, and the equilibrium sorption amounts were 210.6, 332.3, and 420.9 mg/g for Cd(II), Hg(II), and Pb(II), respectively. The results of binary and ternary sorption experiments indicated that the metals with the higher sorption capacity in the single-component systems showed greater inhibitory effects on the biosorption of other metal ions in the multiple-component systems, but the sorption sites of Hg and Cd or Pb are likely to be different. The results of this study illustrated that the mutant species is a promising biosorbent for the remediation of multiple heavy metals.  相似文献   

20.
We quantified the contents of four toxic metals in cosmetic products that are commercially available in Jordan; 112 cosmetics, representing 10 product types, were tested in triplicate after acid digestion using inductively coupled plasma optical emission spectrometry and a mercury analyzer. Ni was most abundant, detected in 104/112 (92.8%) products (average, 2.32 ppm; and median, 1.47 ppm); 66/112 (59%) contained >1 ppm and 13/112 (11.6%), >5 ppm Ni. Cd was second-most abundant, detected in 86/112 (76.7%) products (mean, 1.71 ppm; range from< detection limit [DL] to 18.07 ppm); 16 products (14.3%) exceeded the 3 ppm suggested limit. Pb was detected in 82/112 (73.2%) products (mean, 7.8 ppm; range, < detection limit to 190.43 ppm); 20/112 (17.8%) contained more than the suggested 10 ppm limit. Hg was least-frequently detected, present in 29/112 (25.9%) and at >3 ppm in 15/112 (13.4%) products. The highest content of Hg was observed in skin lightening creams (mean concentration, 1,008 ppm). Hg was detected in 20 (62.5%) of the 32 skin lightening creams tested, of which 11/32 (34.4%) contained > 3 ppm Hg. Of the 112 cosmetics tested, 17 (15.1%) products contained Ni, Pb, Cd, and Hg; 19/112 (16.9%) contained Cd, Pb, and Hg –no product exceeded the maximum acceptable limits for all three elements, and 9/112 (8%) products exceed the maximum recommended levels for at least two elements (Hg, Cd, and Pb).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号