首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methoxychlor was found to be sufficiently persistent in soil and its residues were present even 18 months after the soil treatment. Saprophytes, fungi and actinomyces were unaffected by varying concentrations of methoxychlor, azotobacter however was susceptable. Soil strains isolated did not utilize methoxychlor as a sole carbon source except for 9 cultures belonging to the genera Bacillus, Acinetobacter and Rhodococcus which carried out the complete dechlorination, demethylation and splitting of one of methoxychlor aromatic rings. Anaerobic conditions were more favorable for methoxychlor biodegradation by soil and pure microbial cultures.  相似文献   

2.

The white rot fungus Stereum hirsutum was used to degrade methoxychlor [2,2,2-trichloro-1,1-bis(4-methoxyphenyl)ethane] in culture and the degraded products were extensively determined. The estrogenic activity of the degraded products of methoxychlor was examined using cell proliferation and pS2 gene expression assays in MCF-7 cells. S. hirsutum showed high resistance to methoxychlor 100 ppm, and the mycelial growth was fully completed within 8 days of incubation at 30°C. Methoxychlor in liquid culture medium was gradually converted into 2,2-dichloro-1,1-bis(4-methoxyphenyl)ethane, 2,2-dichloro-1,1-bis(4-methoxyphenyl)ethylene, 2-chloro-1,1-bis(4-methoxyphenyl) ethane, 2-chloro-1,1-bis(4-methoxyphenyl) ethylene, and 1,1-bis(4-methoxyphenyl)ethylene, indicating that methoxychlor is dominantly degraded by dechlorination and dehydrogenation. MCF-7 cells were demonstrated to proliferate actively at the 10?5 M concentration of methoxychlor. However, cell proliferation was significantly inhibited by the incubation with methoxychlor culture media containing S. hirsutum. In addition, the expression level of pS2 mRNA was increased at the concentration (10?5 M) of methoxychlor. The reductive effect of S. hirsutum for methoxychlor was clear but not significant as in the proliferation assay.  相似文献   

3.
Abstract

The persistence and disappearance (washoff or dryfall) of methoxychlor [2,2‐bis(p‐methoxypheny1)‐1,1,1‐trichloroethane] from mature soybean [Glycine max (L.) Merrill] foliage was investigated in a small field plot study under natural rainfall conditions in 1977 and 1978. Residue analyses were conducted using whole plant samples‐ Methoxychlor washoff rate was 8±4% of the amount on plants (prior to rain) per centimeter of rainfall, regardless of time after application. Total seasonal washoff for 1978 accounted for 33.5% of the applied pesticide; however, 30.5% of the total loss was removed by washoff on the second day after application. Dryfall or dislodgeable residue accounted for less than 1% of the amount applied. The amount of dryfall was significantly greater in plots entered by workers than in those where entry was avoided. More than 19% of the applied methoxychlor was lost as a result of through‐fall to the ground during application to the plots. Statistical analyses indicated that within‐sample variation for mechanical chopping of plant samples was significantly smaller at the 5% level than for a hand chopping method. Results from this study will be useful in defining research objectives for the development of algorithms to describe the behavior of foliar‐applied compounds. Such algorithms are necessary for estimating runoff losses of insecticides to water bodies.  相似文献   

4.
The impact of methoxychlor exposure on aquatic insects inhabiting artificial substrates was monitored at three downstream sites relative to an upstream untreated site of the North Saskatchewan River. Treatment impact was studied for selected species of Simuliidae (Diptera), Perlodidae (Plecoptera), Hydropsychidae (Trichoptera), Baetidae and Heptageniidae (Ephemeroptera). At sites subjected to methoxychlor exposure which were 21, 38, and 107 km from injection, population changes varied depending on species and distance from the injection point. Although populations of some species were not significantly affected by treatment at any downstream site (P > 0.05), others were significantly reduced at one or more of the sites (P < 0.05- P < 0.01). Nymphs of Stenonema terminatum (Walsh) and Baetis tricaudatus Dodds (Ephemeroptera) apparently recolonized after dislodgement due to methoxychlor exposure. Species are categorized on the basis of their responses to methoxychlor treatment. Factors which probably caused different treatment impacts among species are discussed.  相似文献   

5.
Abstract

The biological effects of clofibrate (ethyl p‐chlorophenoxy‐isobutyric acid) on the growth and metabolism of the soil‐borne wheat pathogen Fusarium culmorum, were examined.

In mid log phase (16 hr) cultures both phenylalanine uptake and secondary spore production were stimulated at 0.1 μM concentration; the net sterol content was reduced 50% at 0.35 μM; oxygen uptake was stimulated at 0.1 mM; growth was inhibited 50% at 0.1 mM concentration. Both phenylalanine and oxygen uptake were inhibited at 1.0 mM and pyruvate dehydrogenase activity was reduced 50% at 50 mM concentration of clofibrate.

The data indicate that clofibrate affects a number of biological and enzyme systems. The inhibitory effect on the growth of the pathogen suggest a potential use of hypolipidemic agents like clofibrate as an antifungal agent for seed protection.  相似文献   

6.
Abstract

Mass balance and fate of atrazine‐ 14C and pentachlorophenol‐ 14C (PCP‐ 14C) were studied in short‐term tests in a closed aerated laboratory soil‐plant system, using two concentrations in soil and two plant species, as well as under outdoor conditions for one vegetation period. In the laboratory, for both pesticides bioaccu‐mulation factors of radiocarbon taken up by the roots into plants were low. They were higher for lower (1 ppm) than for higher soil concentrations (6 ppm for atra‐zine, 4 ppm for pentachlorophenol) and varied with the plant species. Mineralization to 14CO2 in soil was negatively related to soil concentration only for PCP‐ 14C. Conversion rates in soil including the formation of soil‐bound residues were higher for the lower concentrations of both pesticides than for the higher ones; conversion rates in plants were species‐dependent. In 14 terms of CO2 formation and of conversion rates, PCP was less persistent in soil than was atrazine. For both pesticides, laboratory data on conversion and mineralization gave a rough prediction of their persistence in soil under long‐term outdoor conditions, whereas bio‐accumulation factors in plants under long‐term outdoor conditions could not be predicted by short‐term laboratory experiments.  相似文献   

7.
Abstract

The objective of this study was to determine whether fermentation by a cecal probiotic co‐culture of an Enterococcus sp. and Veillonella sp. would inhibit the in vitro growth of a S typhimurium poultry isolate. The growth rates of S. typhimurium and Enterococcus were significantly reduced at pH 5. At the two pH levels, there was a significant (p < 0.001) increase at 24 h in colony forming units for each of the bacteria enumerated from the mixed culture compared to the respective pure culture enumerations. S. typhimurium was not inhibited in mixed cultures. The mixed cultures produced more acetate than any of the pure cultures and lactate produced by Enterococcus appeared to be utilized by Veillonella.  相似文献   

8.
The white rot fungus Stereum hirsutum was used to degrade methoxychlor [2,2,2-trichloro-1,1-bis(4-methoxyphenyl)ethane] in culture and the degraded products were extensively determined. The estrogenic activity of the degraded products of methoxychlor was examined using cell proliferation and pS2 gene expression assays in MCF-7 cells. S. hirsutum showed high resistance to methoxychlor 100 ppm, and the mycelial growth was fully completed within 8 days of incubation at 30 degrees C. Methoxychlor in liquid culture medium was gradually converted into 2,2-dichloro-1,1-bis(4-methoxyphenyl)ethane, 2,2-dichloro-1,1-bis(4-methoxyphenyl)ethylene, 2-chloro-1,1-bis(4-methoxyphenyl) ethane, 2-chloro-1,1-bis(4-methoxyphenyl) ethylene, and 1,1-bis(4-methoxyphenyl)ethylene, indicating that methoxychlor is dominantly degraded by dechlorination and dehydrogenation. MCF-7 cells were demonstrated to proliferate actively at the 10-5 M concentration of methoxychlor. However, cell proliferation was significantly inhibited by the incubation with methoxychlor culture media containing S. hirsutum. In addition, the expression level of pS2 mRNA was increased at the concentration (10-5 M) of methoxychlor. The reductive effect of S. hirsutum for methoxychlor was clear but not significant as in the proliferation assay.  相似文献   

9.
Abstract

Wheat is more sensitivity to CdO and ZnO compared with rice plant. The yield of wheat decreased by 30% in the presence of 30 ppm Cd, but that of rice plants by only 8%. The critical levels of meal uptake by wheat and rice plants for applying metal oxides to soil (CdO, ZnO, PbO) were determined. The highest concentration obtained for wheat grain was 141 μg/g Cd at the Cd 10,000 ppm in soil. This value is higher the value of 4.97 μg/g for unpolished rice and higher than any other we have seen in the reports for treatment with CdO. Also, as concentration of more than 1.0 μg/g Cd in wheat was obsertced at 5 ppm Cd, while similar concentrations for rice plants were observed at 30 ppm Cd in soil.  相似文献   

10.
Abstract

The depressive effect of metoxuron which is sometimes observed on nitrifying bacteria, evolves with time to become harmless a month later, under laboratory conditions.

This phenomenon is explained by the present work carried out with two different soils, freshly sampled or airdried.

Metoxuron disappeared very quickly in the soil; the kinetics of disappearance were similar for the two soils studied.

This phenomenon, which results from a biological degradation, was not modified by supplying soil with ammoniacal nitrogen.  相似文献   

11.
Land application of biosolids from processed sewage sludge may deteriorate soil, water, and plants. We investigated the impact of the N-Viro biosolids land-application on the quality of the soil water that moved through Orthic Humo-Ferric Podzols soil of Nova Scotia (NS) at the Wild Blueberry Research Institute, Debert, NS Canada. In addition, the response of major soilproperties and crop yield was also studied. Wild blueberry (Vaccinium angustifolium. Ait) was grown under irrigated and rainfed conditions in 2008 and 2009. Four experimental treatments including (i) NI: N-Viro irrigated, (ii) NR: N-Viro rainfed, (iii) FI: inorganic fertilizer irrigated, and (iv) FR: inorganic fertilizer rainfed (control) were replicated 4 times under randomized complete block design. Soil samples were collected at the end of each year and analyzed for changes in cation exchange capacity (CEC), soil organic matter (SOM), and pH.Soil water samples were collected four times during the study period from the suction cup lysimeters installed within and below crop root zone at 20 and 40 cm depths, respectively. The samples were analyzed for a range of water quality parameters including conductance, hardness, pH, macro- and micronutrients, and the infectious pathogens Escherichia coli (E. coli) and salmonella. Berries were harvested for fruit yield estimates. Irrigation significantly increased CEC during 2008 and the soil pH decreased from 4.93 (2008) to 4.79 (2009). There were significant influences of irrigation, fertilizer, and their interaction, in some cases, on most of the soil water quality parameters except on the infectious bacteria. No presence of E. coli or salmonella were observed in soil and water samples, reflecting the absence of these bacteria in biosolids used in this experiment. Nutrient concentration in the soil water samples collected from the four treatments were higher in the sequence NI > NR > FI > FR. The irrigation treatment had significant effect on the unripe fruit yield. We conclude that the comparable performance of N-Viro biosolids and the increasing prices of inorganic fertilizers would compel farmers to use economically available N-Viro biosolids that, coupled with the supplemental irrigation, did not deteriorate the studied soil properties, soil water quality, and the wild blueberry yield during this experiment.  相似文献   

12.
Abstract

The persistence of aflatoxin in the soil environment could potentially result in a number of adverse environmental consequences. To determine the persistence of aflatoxin in soil, 14C‐labeled aflatoxin B1, was added to silt loam, sandy loam, and silty clay loam soils and the subsequent release of 14CO2 was determined. After 120 days of incubation, 8.1% of the original aflatoxin added to the silt loam soil was released as CO2 ? Aflatoxin decomposition in the sandy loam soil proceeded more quickly than the other two soils for the first 20 days of incubation. After this time, the decomposition rate declined and by the end of the study, 4.9% of the aflatoxin was released as CO2. Aflatoxin decomposition proceeded most slowly in the silty clay loam soil. Only 1.4% of aflatoxin added to the soil was released as CO2 after 120 days incubation. To determine whether aflatoxin was bound to the silty clay loam soil, aflatoxin B1 was added to this soil and incubated for 20 days. The soil was periodically extracted and the aflatoxin species present were determined using thin layer chromatographic (TLC) procedures. After one day of incubation, the degradation products, aflatoxins B2 and G2, were observed. It was also found that much of the aflatoxin extracted from the soil was not mobile with the TLC solvent system used. This indicated that a conjugate may have formed and thus may be responsible for the lack of aflatoxin decomposition.  相似文献   

13.
Abstract

The persistence of two insecticidally active compounds from the neem tree, azadirachtin A and B, was determined at two different temperatures (15 and 25°C) in the laboratory after application of the commercial neem insecticide, Margosan‐O, to a sandy loam soil. The influence of microbial activity on degradation was also examined by comparing autoclaved and non‐autoclaved soils also at 15 and 25°C. Temperature influenced degradation rates. The DT 50 (time required for 50% disappearance of the initial concentration) for azadirachtin A was 43.9 and 19.8 d for non‐autoclaved soil kept at 15 and 25°C, respectively. The DT 50 for azadirachtin B was 59.2 and 20.8 d for non‐autoclaved soil kept at 15 and 25°C, respectively. Microbial activity was also responsible for faster degradation because DT 50 ’s for autoclaved soil were much longer than for non‐autoclaved soils. DT 50 s for azadirachtin A in autoclaved soil were 91.2 (15°C) and 31.5 d (25°C). DT50’s for azadirachtin B in autoclaved soil were 115.5 (15°C) and 42.3 d (25°C). Two degradation products of azadirachtin were detected, but were not identified. Higher levels of the two degradation products were detected in non‐autoclaved soil.  相似文献   

14.

The method of residue analysis of kresoxim-methyl and its dissipation rate in cucumber and soil in a greenhouse were studied. Residues of kresoxim-methyl were extracted from cucumber and soil matrices with acetone, purified by liquid-liquid extraction and Florisil cartridges, and then determined by GC with NP-detector. The limit of detection was estimated to be 9× 10?12 g, and the minimum determination concentration of kresoxim-methyl in the samples was 0.005 mg kg?1. The average recoveries ranged from 89.4 to 100.2% with a coefficient variation between 2.4 and 8.9%. Dissipation study showed that the half-lives of kresoxim-methyl in cucumber were approximately 6.5 days at both the recommended and double the recommended dosage. Half-lives for both the treatments were approximately 8 days in soil. The present study revealed that the residues in cucumber were below the MRL (0.05 mg kg?1, fixed by EU) after 7 days for both treatments.  相似文献   

15.

Microbial displacement in the soil is an important process for bioremediation and dispersal of wastewater pathogens. We evaluated cell movement in surface and subsurface red-yellow podzolic soil driven by advection and microbial motility and also survival of a microbial population at high pressure as is prevalent in deep soil layers. Pseudomonas fluorescens Br 12, resistant to rifampycin and kanamycin, was used as a model organism traceable in non-sterile soil. Our results showed that more than 40% of the P. fluorescens population survived under high pressure, and that microbial motility was not a major factor for its displacement in the soil. Cells were adsorbed in similar amounts to surface and subsurface soils, but more viable cells were present in the leachate of surface than in subsurface soils. The nature of this unexpected cell binding to the subsurface soil was studied by EPR, Mossbauer, NMR, and infrared techniques, suggesting iron had a weak interaction with microbes in soil. P. fluorescens movement in soil resulted mainly from convection forces rather than microbial motility. The transport of this bacterium along the transept toward groundwater encountered restricted viability, although it survived under high pressure conditions simulating those in deep soil layers.  相似文献   

16.
Abstract

Degradation of diuron [3‐(3,4‐dichlorophenyl)‐l,1‐dimethyl‐urea] by microorganisms obtained from pond water and sediment was determined under aerobic conditions. Enrichment procedures were used to isolate cultures capable of degrading the herbicide. Several mixed fungal/bacterial and mixed bacterial cultures were isolated that could degrade diuron. The mixed cultures degraded 67–99% of the added diuron forming from six to seven products which were separated via TLC. The major degradation product detected in most culture extracts was 3,4‐dichloroaniline. Other identified products formed were 3‐(3,4‐dichlorophenyl)‐1‐methylurea and 3‐(3,4‐dichlorophenyl)urea.  相似文献   

17.
Abstract

Effects of soil pH on weak acid and weak base herbicide adsorption by soil are often determined by modifying soil pH in the laboratory. Modification of soil pH with acidic or basic amendments such as HCl or NaOH can cause changes in the soil‐solution system that may affect pesticide adsorption. The partition coefficients (Kd) for atrazine and dicamba by Waukegan, Piano, and Walla Walla silt loam soils stabilized in the field at different pH levels were compared to the Kd obtained when the soil pH was adjusted with acidic or basic amendments before herbicide addition. NaOH addition to raise soil pH generally increased the soluble soil organic carbon (SSOC) concentration in solution compared to field soils at the same pH and to soil treated with Ca(OH)2. NaOH decreased the soil solution ionic strength slightly. Acidifying soils increased the soil solution ionic strength, when compared to field soils at the same pH and had no effect on SSOC concentration. Dicamba adsorption to soil was minimal (Kd < 0.22) and not influenced by soil pH in the range of 4.1 to 6.0; adsorption by laboratory amended soils in some cases underestimated adsorption compared to nonamended soils. Atrazine adsorption increased with decreased pH in all soils, and was overestimated slightly by several laboratory treatments to reduce pH compared to adsorption by field soils. Treatments to raise the pH did not affect atrazine adsorption. Overall, herbicide adsorption differences due to pH modification were small (<30%), and were not affected by soil solution ionic strength, saturating cation, or SSOC concentration in solution.  相似文献   

18.
Deltamethrin [(S)-cyano-3-phenoxybenzyl-cis-(1R,3R)-2,2-dimethyl) cyclo–propane carboxylate),1] labelled at gem-dimethyl groups of the cyclopropane ring was applied on two Egyptian soils at a level of 10 mg/kg soil for a laboratory incubation experiment under aerobic and anaerobic conditions. A steady decrease of soil extractable14C-residues, accompanied by a corresponding increase of non- extractable bound 14C-residues was observed over a 90-day incubation period. The percentage of evolved 14CO2 increased with time under aerobic and anaerobic conditions in both soils. The effect of deltamethrin on soil microorganisms as well as the counter effect of microorganisms on the insecticide was also investigated. As the incubation period increased, the inhibitory effect of the insecticide on the microorganisms decreased and the evolution of carbon dioxide depended on the applied dose. The nature of soil methanol soluble residues was determined by chromatographic analysis which revealed the presence of the parent insecticide as the main product in addition to four metabolites: 3-(2′,2′-dibromovinyl)-2,2-dimethylcyclopropane carboxylic acid (II); 3-phenoxybenzaldehyde (III); 3-phenoxybenzoic acid (IV); 3-phenoxybenzyl alcohol (V).  相似文献   

19.

In the present study, we isolated three novel bacterial species, namely, Staphylococcus sp., Bacillus circulans–I, and Bacillus circulans–II, from contaminated soil collected from the premises of a pesticide manufacturing industry. Batch experiments were conducted using both mixed and pure cultures to assess their potential for the degradation of aqueous endosulfan in aerobic and facultative anaerobic condition. The influence of supplementary carbon (dextrose) source on endosulfan degradation was also examined. After four weeks of incubation, mixed bacterial culture was able to degrade 71.82 ± 0.2% and 76.04 ± 0.2% of endosulfan in aerobic and facultative anaerobic conditions, respectively, with an initial endosulfan concentration of 50 mg l?1. Addition of dextrose to the system amplified the endosulfan degradation efficiency by 13.36 ± 0.6% in aerobic system and 12.33 ± 0.6% in facultative anaerobic system. Pure culture studies were carried out to quantify the degradation potential of these individual species. Among the three species, Staphylococcus sp. utilized more beta endosulfan compared to alpha endosulfan in facultative anaerobic system, whereas Bacillus circulans–I and Bacillus circulans–II utilized more alpha endosulfan compared to beta endosulfan in aerobic system. In any of these degradation studies no known intermediate metabolites of endosulfan were observed.  相似文献   

20.
Abstract

Organochlorine pesticide and herbicide levels were monitored in samples of a variety of edible finfish harvested from the Maryland section of the Chesapeake Bay and its tributaries over a five‐year period (1976–80). Qualitative and quantitative information was obtained for the various polychlorinated biphenyls (PCB's), heptachlor, α‐BHC, chlordane, DDD, DDE, DDT, dieldrin, endrin, heptachlor‐epoxide, lindane, mirex, methoxychlor, aldrin, toxaphene, hexachlorobenzene, kepone and dacthal.

In addition to analyses of the flesh of the animals, organochlorine residue levels were determined in roe or gonad tissue of several samples. Striped bass, white perch and yellow perch samples showed significantly higher concentrations of certain of these substances in roe or gonad tissue, especially PCB's, chlordane, DDD and dieldrin. Significantly higher levels of six organochlorine residues were found in the gonad tissue of striped bass; however, similar studies on gonad tissue of American Shad, harvested from the same region, show no such enhancement. Rather, the reverse is true; levels of certain organochlorine residues are higher in flesh tissue.

All mean values, and virtually all individual values of organochlorine concentrations in the edible portion of the fish were within the U.S. Food and Drug Administration guideline, where such guidelines have been established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号