首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the public perception that synthetic pesticides leave harmful residues in crop produce for human consumption, there has been increased interest in using natural products for pest control. The potential of using fruit extracts of hot pepper for controlling the cabbage looper, Trichopulsia ni (Hübner) and spider mite, Tetranychus urticae Koch is explored in this investigation. Crude extracts from fruits of Capsicum chinense, C. frutescens, C. baccatum, and C. annuum, were prepared and tested under laboratory conditions for their insecticidal and acaricidal performance. Mortality was greatest (94%) when fruit extract of accession PI-593566 (C. annuum) was sprayed on larvae of the cabbage looper, while crude extracts of accessions PI-241675 (C. frutescens) and PI-310488 (C. annuum) were repellent to the spider mite. We investigated differences in chemical composition of the crude fruit extracts that may explain the observed differences in mortality and repellency between accessions. Gas Chromatography-Mass Spectrometry spectrometric analysis revealed that capsaicin and dihydrocapsaicin, the pungent components of pepper fruit, were not correlated with toxicity or repellency, indicating that the two capsaicinoids are not likely related to the efficacy of pepper fruit extracts. Major compounds in hot pepper fruit extracts were detected and identified as pentadecanoic acid methyl ester, hexadecanoic acid methyl ester, and octadecanoic acid methyl ester. Spectrometric analysis and toxicity to cabbage looper larvae revealed that pentadecanoic acid methyl ester is likely related to cabbage looper mortality. However, the concentration of pentadecanoic acid methyl ester in some accessions was insufficient to explain the observed mortality of cabbage looper and repellency of spider mite. Fruit extracts of accessions PI-593566 (C. annuum) and PI-241675 (C. frutescens) could be useful for managing populations of cabbage loopers and spider mites, which could reduce reliance on synthetic pesticides. Further study is needed to investigate performance of hot pepper extracts under ultra-violet light and field conditions.  相似文献   

2.
Peppers, a significant component of the human diet in many regions of the world, provide vitamins A (β-carotene) and C, and are also a source of many other antioxidants such as capsaicin, dihydrocapsaicin, and phenols. Enhancing the concentration of antioxidants in plants grown in soil amended with recycled waste has not been completely investigated. Changes in pepper antioxidant content in relation to soil amendments and fruit development were investigated. The main objectives of this investigation were to: (i) quantify concentrations of capsaicin, dihydrocapsaicin, β-carotene, ascorbic acid, phenols, and soluble sugars in the fruits of Capsicum annuum L. (cv. Xcatic) grown under four soil management practices: yard waste (YW), sewage sludge (SS), chicken manure (CM), and no-much (NM) bare soil and (ii) monitor antioxidant concentrations in fruits of plants grown under these practices and during fruit ripening from green into red mature fruits. Total marketable pepper yield was increased by 34% and 15% in SS and CM treatments, respectively, compared to NM bare soil; whereas, the number of culls (fruits that fail to meet the requirements of foregoing grades) was lower in YW compared to SS and CM treatments. Regardless of fruit color, pepper fruits from YW amended soil contained the greatest concentrations of capsaicin and dihydrocapsaicin. When different colored pepper fruits (green, yellow, orange, and red) were analyzed, orange and red contained the greatest β-carotene and sugar contents; whereas, green fruits contained the greatest concentrations of total phenols and ascorbic acid.  相似文献   

3.
Ninety Capsicum accessions selected from the USDA Capsicum germplasm collection were screened for their capsaicinoids content using gas hromatography with nitrogen phosphorus detection (GC/NPD). Fresh fruits of Capsicum chinense, C. frutescens, C. baccatum, C. annuum, and C. pubescens were extracted with methanol and analyzed for capsaicin, dihydrocapsaicin, and nordihydrocapsaicin. Mass spectrometry of the fruit crude extracts indicated that the molecular ions at m/z 305, 307, and 293, which correspond to capsaicin, dihydrocapsaicin, and nordihydrocapsaicin, respectively, have a common benzyl cation fragment at m/z 137 that can be used for monitoring capsaicinoids in pepper fruit extracts. Capsaicin and dihydrocapsaicin were the dominant capsaicinoids detected. Capsaicin concentrations were typically greater than dihydrocapsaicin. Concentrations of total capsaicinoids varied from not detectable to 11.2 mg fruit(-1). Statistical analysis revealed that accession PI-441624 (C. chinense) had the highest capsaicin content (2.9 mg g(-1) fresh fruit) and accession PI-497984 (C. frutescens) had the highest dihydrocapsaicin content (2.3 mg g(-1) fresh fruit). Genebank accessions PI-439522 (C. frutescens) and PI-497984 contained the highest concentrations of total capsaicinoids.  相似文献   

4.

Ninety Capsicum accessions selected from the USDA Capsicum germplasm collection were screened for their capsaicinoids content using gas hromatography with nitrogen phosphorus detection (GC/NPD). Fresh fruits of Capsicum chinense, C. frutescens, C. baccatum, C. annuum, and C. pubescens were extracted with methanol and analyzed for capsaicin, dihydrocapsaicin, and nordihydrocapsaicin. Mass spectrometry of the fruit crude extracts indicated that the molecular ions at m/z 305, 307, and 293, which correspond to capsaicin, dihydrocapsaicin, and nordihydrocapsaicin, respectively, have a common benzyl cation fragment at m/z 137 that can be used for monitoring capsaicinoids in pepper fruit extracts. Capsaicin and dihydrocapsaicin were the dominant capsaicinoids detected. Capsaicin concentrations were typically greater than dihydrocapsaicin. Concentrations of total capsaicinoids varied from not detectable to 11.2 mg fruit?1. Statistical analysis revealed that accession PI-441624 (C. chinense) had the highest capsaicin content (2.9 mg g?1 fresh fruit) and accession PI-497984 (C. frutescens) had the highest dihydrocapsaicin content (2.3 mg g?1 fresh fruit). Genebank accessions PI-439522 (C. frutescens) and PI-497984 contained the highest concentrations of total capsaicinoids.  相似文献   

5.
Increasing concern about persistence and environmental impact of synthetic pesticide residues require development of biodegradable and environmentally safe alternatives. The potential of using fruit extracts of hot pepper as alternatives to synthetic acaricides for controlling the two-spotted spider mite, Tetranychus urticae Koch, is explored in this study. Twenty-four Capsicum accessions (Solanaceae) were screened for their toxicity and repellency to the spider mites. Crude extracts from fruits of C. chinense, C. frutescens, C. baccatum, C. annuum, and C. pubescens were prepared in methanol and tested for their acaricidal properties. Spider mite mortality was greatest (45%) when fruit extract of accession Grif-9169 (C. annuum) was used. Results from diving board bioassays indicated that mites avoided filter paper strips treated with hot pepper extracts from accessions PI-596057 (C. baccatum), PI-195299 (C. annuum), and Grif- 9270 (C. annuum). This investigation suggests that methanolic extracts of these three accessions may have a great potential for repelling spider mites and should be field-tested on a large-scale to assess their value in managing populations of spider mites, which could reduce reliance on synthetic acaricides. An attempt was made to correlate repellency with chemical constituents of fruit extracts of the most repellent accessions to identify chemical sources of repellency. Capsaicin and dihydrocapsaicin, the pungent components of pepper fruit, were not correlated with toxicity or repellency, indicating that these are not likely related to the toxicity or repellency of the pepper fruit extracts. Other, unidentified chemicals are likely responsible for toxicity and repellency to the two-spotted spider mite.  相似文献   

6.

Increasing concern about persistence and environmental impact of synthetic pesticide residues require development of biodegradable and environmentally safe alternatives. The potential of using fruit extracts of hot pepper as alternatives to synthetic acaricides for controlling the two-spotted spider mite, Tetranychus urticae Koch, is explored in this study. Twenty-four Capsicum accessions (Solanaceae) were screened for their toxicity and repellency to the spider mites. Crude extracts from fruits of C. chinense, C. frutescens, C. baccatum, C. annuum, and C. pubescens were prepared in methanol and tested for their acaricidal properties. Spider mite mortality was greatest (45%) when fruit extract of accession Grif-9169 (C. annuum) was used. Results from diving board bioassays indicated that mites avoided filter paper strips treated with hot pepper extracts from accessions PI-596057 (C. baccatum), PI-195299 (C. annuum), and Grif- 9270 (C. annuum). This investigation suggests that methanolic extracts of these three accessions may have a great potential for repelling spider mites and should be field-tested on a large-scale to assess their value in managing populations of spider mites, which could reduce reliance on synthetic acaricides. An attempt was made to correlate repellency with chemical constituents of fruit extracts of the most repellent accessions to identify chemical sources of repellency. Capsaicin and dihydrocapsaicin, the pungent components of pepper fruit, were not correlated with toxicity or repellency, indicating that these are not likely related to the toxicity or repellency of the pepper fruit extracts. Other, unidentified chemicals are likely responsible for toxicity and repellency to the two-spotted spider mite  相似文献   

7.
Endosulfan 3 EC, a mixture of α- and β-stereo isomers, was sprayed on field-grown pepper, melon, and sweet potato plants at the recommended rate of 0.44 kg A.I. acre?1. Plant tissue samples (leaves, fruits, or edible roots) were collected 1 h to 30 days following spraying and analyzed for endosulfan isomers (α- and β-isomers). Analysis of samples was accomplished using a gas chromatograph (GC) equipped with a mass detector in total ion mode. The results indicated the formation of endosulfan sulfate as the major metabolite of endosulfan sulfite and the relatively higher persistence of the β-isomers as compared to the α-isomer. The initial total residues (α- and β-isomers plus endosulfan sulfate) were higher on leaves than on fruits. On pepper and melon fruits, the α-isomer, which is the more toxic to mammals, dissipated faster (T1/2 = 1.22 and 0.95 d, respectively) than the less toxic β-isomer (T1/2 = 3.0 and 2.5 d, respectively). These results confirm the greater loss of the α-isomer compared to the β-isomer, which can ultimately impact endosulfan dissipation in the environment. Additionally, the higher initial residues of endosulfan on pepper and sweet potato leaves should be considered of great importance for timing field operations and the safe entry of harvesters due to the high mammalian toxicity of endosulfan.  相似文献   

8.
Abstract

A commercial formulation of Bacillus thuringiensis Berliner var. kurstaki (BTK), Foray® 48B, was sprayed aerially over four blocks B13, B14, B15A and B15B in an oak forest in Wayne County, Pennsylvania during May 1990. B13 and B14 were sprayed at 75 billion international units (BIU) in 5.91 litres/ha and the other two at 50 BIU in 3.94 litres/ha. Oak foliage was collected at different intervals of time after treatment. Three types of bioassays were conducted against fourth instar gypsy moth larvae, viz., direct feeding of sprayed foliage, feeding on diet containing homogenized foliage, and force‐feeding of foliar extracts. Larval mortalities were converted into international units of BTK activity per unit area (IU/cm2) of foliage. Foliar extracts were also subjected to enzyme‐linked immunosorbent assay (ELISA) to determine the concentration of delta‐endotoxin protein. Regardless of the type of bioassay used, bioactivity of BTK persisted in foliage for about a week in all the blocks. The half‐life of inactivation, DT50, ranged from ca 12 to 22 h. The immunoassay data indicated a shorter duration of persistence (i.e., about 2 d) of the delta‐endotoxin protein, with DT50 values ranging from 10 to 15 h. Formulation ingredients present in Foray 48B played a role in the toxicity of BTK to gypsy moth larvae.  相似文献   

9.
Dissipation rates of boscalid [2-chloro-N-(4′ -chlorobiphenyl-2-yl)nicotinamide], pyraclostrobin [methyl 2-[1-(4-chlorophenyl) pyrazol-3-yloxymethyl]-N-methoxycarbanilate], lufenuron [(RS)-1-[2,5-dichloro-4-(1,1,2,3,3,3-hexafluoropropoxy)phenyl]-3-(2,6-difluorobenzoyl)urea] and λ-cyhalothrin [(R)-cyano(3-phenoxyphenyl)methyl (1S,3S)-rel-3-[(1Z)-2-chloro-3,3,3-trifluoro-1-propenyl]-2,2-dimethylcyclopropanecarboxylate] in green beans and spring onions under Egyptian field conditions were studied. Field trials were carried out in 2008 in a Blue Nile farm, located at 70 kilometer (km) from Cairo (Egypt). The pesticides were sprayed at the recommended rate and samples were collected at pre-determined intervals. After treatment (T0) the pesticide residues in green beans were 7 times lower than in spring onions. This is due to a different structure of vegetable plant in the two crops. In spring onions, half-life (t1/2) of pyraclostrobin and lufenuron was 3.1 days and 9.8 days respectively. At day 14th (T14) after treatment boscalid residues were below the Maximum Residue Limit (MRL) (0.34 versus 0.5 mg/kg), pyraclostrobin and λ -cyhalothrin residues were not detectable (ND), while lufenuron residues were above the MRL (0.06 versus 0.02 mg/kg). In green beans, at T0, levels of boscalid, lufenuron and λ -cyhalothrin were below the MRL (0.28 versus 2 mg/kg; ND versus 0.02 mg/kg; 0.06 versus 0.2 mg/kg, respectively) while, after 7 days treatment (T7) pyraclostrobin residues were above the MRL (0.03 versus 0.02 mg/kg). However, after 14 days the residue level could go below the MRL (0.02 mg/kg), as observed in spring onions.  相似文献   

10.
Abstract

A commercial flowable formulation of tebufenozide, RH‐5992 2F [N'‐t‐butyl‐N'‐(3,5‐dimethylbenzoyl)‐N‐(4‐ethylbenzoyl) hydrazine], was diluted with water, water and canola oil, and water and the methyl ester of canola oil, to provide six end‐use mixes with concentrations of 35 and 70 g of active ingredient (Al) litre‐1. The mixes were applied at 70 and 140 g Al ha‐1 over white spruce [Picea glauca (Moench) Voss] seedlings in a laboratory spray chamber and foliar concentrations of tebufenozide were determined over a 60‐d period. At intervals of time post‐spray, seedlings were sprayed with monosized droplets of Sunspray®11N as rainfall, and the amount of tebufenozide knocked off from foliage was determined. The potential energy of adhesion (PEA) of the Al particles on the foliage increased with time and varied according to the type of end‐use mix, its viscosity and the dosage sprayed.

The end‐use mixes were applied over white spruce trees under field conditions and persistence of tebufenozide was investigated. DT50 values were influenced by the type of mix and dosage sprayed. Oil‐containing mixes and higher dosages increased the PEA of tebufenozide particles.  相似文献   

11.
Abstract

The effects of washing treatments on removal rates of some pesticides residues (acetamiprid, chlorpyrifos and formetanate hydrochloride) on pepper were investigated. Method verification was conducted through spiking pepper samples at 0.1, 1.0 and 10.0 × MRL. QuEChERS method produced average recovery of 104.91% with relative standard deviation (RSD) of 13.41%. LOQ values of acetamiprid, chlorpyrifos and formetanate hydrochloride were estimated as 2, 10 and 5?µg/kg, respectively. Capia peppers grown in open fields were sprayed three times with pesticides. Peppers were harvested after 1st, 2nd and 3rd day of the treatments. Then the peppers were subjected to tap water, acetic acid and citric acid washing and ultrasonic cleaning treatments (for 2 and 5?min). Based on three different harvest times and two different washing durations, processing factors (PFs) and reduction rates were calculated for each washing treatment. The residues gradually decreased during washing treatments with increasing process duration. Similarly, a gradual reduction was noted with the progress of harvest times. This in turn corresponded to an increase in PF. Ultrasonic cleaning and citric acid (9%) washing were more effective than the others. Non-systemic pesticides (chlorpyrifos) were more readily removed than the systemic ones (acetamiprid). Similarly, highly soluble pesticides exhibited higher reduction.  相似文献   

12.
Sorption of acetamiprid ((E)-N1-[(6-chloro-3-pyridyl)methyl]-N2-cyano-N1-methylacetamidine), carbendazim (methyl benzimidazol-2-ylcarbamate), diuron (N-(3,4-dichlorophenyl)-N, N-dimethyl urea) and thiamethoxam (3-(2-chloro-thiazol-5-ylmethyl)-5-methyl-[1,3,5]oxadiazinan-4-ylidene-N-nitroamine) was evaluated in two Brazilian tropical soils, Oxisol and Entisol, from Primavera do Leste region, Mato Grosso State, Brazil. To describe the sorption process, batch experiments were carried out. Linear and Freundlich isotherm models were used to calculate the K d and K f coefficients from experimental data. The K d values were utilized to calculate the partition coefficient normalized to soil organic carbon (K oc ). For the pesticides acetamiprid, carbendazim, diuron and thiamenthoxan the K oc (mL g? 1) values ranged in both soils from 98 – 3235, 1024 – 2644, 145 – 2631 and 104 – 2877, respectively. From the studied pesticides, only carbendazim presented correlation (r2 = 0.82 and p < 0.01) with soil organic carbon (OC) content. Acetamiprid and thiamethoxam showed low sorption coefficients, representing a high risk of surface and ground water contamination.  相似文献   

13.
The rate of degradation of kresoxim methyl and its effect on soil extra-cellular (acid phosphatase, alkaline phosphatase and β-glucosidase) and intra-cellular (dehydrogenase) enzymes were explored in four different soils of India. In all the tested soils, the degradation rate was faster at the beginning, which slowed down with time indicating a non-linear pattern of degradation. Rate of degradation in black soil was fastest followed by saline, brown and red soils, respectively and followed 1st or 1st + 1st order kinetics with half-life ranging between 1–6 days for natural soil and 1–19 days for sterile soils. The rate of degradation in natural against sterilized soils suggests that microbial degradation might be the major pathway of residue dissipation. Although small changes in enzyme activities were observed, kresoxim methyl did not have any significant deleterious effect on the enzymatic activity of the various test soils in long run. Simple correlation studies between degradation percentage and individual enzyme activities did not establish any significant relationships. The pattern and change of enzyme activity was primarily due to the effect of the incubation period rather than the effect of kresoxim methyl itself.  相似文献   

14.
The dried flower heads of Tanacetum cinerariifolium Trev. (Family: Compositae) contain insecticidal compounds collectively called "pyrethrins." Pyrethrins are the subject of intense interest for use in crop protection because their toxicological properties permit control of certain insect species at application rates as low as 5-10 g AI acre(-1). Seedlings of sweet pepper, Capsicum annuum L. cv. Bell Boy Hybrid and tomato, Lycopersicon esculentum Mill. cv. Mountain Spring F1 Hybrid were planted and sprayed with a Multi-Purpose Insecticide formulation that contains 0.2% pyrethrins, 1.0% piperonyl butoxide (PBO), 88% diatomaceous earth, and 10.8% inert ingredients. The formulation was sprayed on pepper and tomato foliage when tomato fruits became red ripe and pepper became mature green at the rate of 6 lbs of formulated product per acre (5.4 and 27.2 g AI of pyrethrins and PBO, respectively). Following spraying, pepper and tomato leaves and fruits were collected at different time intervals for residue analysis using a high performance liquid chromatograph (HPLC) equipped with a UV detector. Residues of pyrethrins and PBO were generally higher on the leaves than fruits. Initial deposits (1 h following spraying) of pyrethrins were significantly higher on pepper than tomato fruits. Half-life (T1/2) values on pepper and tomato fruits did not exceed 2 h. Where concern exists over synthetic pesticide residues on treated crops and in the environment, pyrethrins are suitable alternatives that can be used to reduce the risk of exposure to synthetic pesticide residues.  相似文献   

15.
The U.S. Department of Agriculture (USDA) pepper (Capsicum spp.) germplasm collection contains several thousand members or accessions. Many of these species and cultivars have not been analyzed for their concentrations of ascorbic acid, capsaicin, and total phenolic compounds, which are important antioxidants having a number of benefits for human health. The objective of this investigation was to select candidate accessions of hot pepper having high concentrations of ascorbic acid, capsaicin, free sugars, and total phenols for use as parents in breeding for these compounds. Seventeen accessions of pepper from the core Capsicum germplasm collection (four accessions of Capsicum chinense; five accessions of C. baccatum; six accessions of C. annuum; and two of C. frutescens) were field grown and their mature fruits were analyzed for their antioxidant composition. Concentrations of these compounds tended to be higher in C. chinense and C. baccatum, than in C. annuum and C. frutescens. Across all accessions the concentration of total phenols was correlated with ascorbic acid (r = 0.97) and free sugars (r = 0.80). Concentrations of total phenols (1.4, 1.3, and 1.3 mg g-1 fruit) and ascorbic acid (1.6, 1.2, and 1.3 mg g-1 fruit) were significantly greater in PI-633757, PI-387833, and PI-633754, respectively, compared to other accessions analyzed. Total capsaicinoids concentrations were greatest (1.3 mg g-1 fruit) in PI-438622 and lowest (0.002 mg g-1 fruit) in Grif-9320. The great variability within and among Capsicum species for these phytochemicals suggests that these selected accessions may be useful as parents in hybridization programs to produce fruits with value-added traits.  相似文献   

16.
The retention and behavior of two herbicides, metribuzin [4-amino-6-tert-butyl-4, 5-dihydro-3-methylthio-1, 2, 4-triazin-5-one] and DCPA [1, 4-Benzenedicarboxylic acid, 2, 3, 5, 6-tetrachloro-, dimethyl] ester, in runoff and seepage water from agricultural fields were investigated. The objectives of this investigation were to: (i) determine the dissipation and half-life (T 1/2) of metribuzin and DCPA herbicides in soil under three management practices: chicken manure (CM), sewage sludge (SS), and no-mulch native soil (NM); (ii) monitor herbicides residues in runoff and infiltration water following addition of soil amendments; and (iii) determine the impact of soil amendments on the transport of NO3, NH4, and PO4 from soil into surface and subsurface water. Half-life (T 1/2) values of metribuzin were 24, 18, and 12 d in CM, SS, and NM treatments, respectively. Similarly, T 1/2 values of DCPA were greater in CM and SS incorporated soil (45.8 and 52.2 d, respectively) compared to NM native soil (26.2 d). Addition of CM and SS to native agricultural soil increased water infiltration, lowering runoff water volume and herbicide residues in runoff following natural rainfall events. We concluded that soil amendments could be used to intercept pesticide-contaminated runoff from agricultural fields. This practice might provide a potential solution to pesticide contamination of surface and seepage water from farmlands.  相似文献   

17.
Abstract

Paper electrophoretic movements of a number of pesticides belonging to organophosphorus, organochlorine and pyethroid groups in various acid background electrolytes have been studied. The effect of pH and pKa of the acids on the movement of these pesticides have also been studied. It has been observed that the movement of most of the pesticides is enhanced with increase in the degree of ionisation of the acids (pKa) studied as background electrolytes. The movement also increases with increase in the pH of acids. On the basis of differential movement of pesticides towards cathode and anode, a number of separations have been achieved from binary mixtures. Monocrotophos, rogor and malathion have been determined quantitatively (28.6 ‐ 29.2 μg) in alcoholic extracts of soil samples.  相似文献   

18.
微生物矿化修复重金属污染土壤   总被引:6,自引:0,他引:6  
以选矿厂附近土壤为研究对象,分析了土壤中交换态重金属含量,As、Pb、Cd、Zn和Cu的交换态浓度为14.01、4.95、0.64、33.46和12.95 mg/kg。基于生物矿化原理,利用碳酸盐矿化菌生长代谢过程产生的脲酶来分解底物尿素,产生碳酸根离子,固结重金属离子,使得土壤中活泼的重金属离子转变为碳酸盐矿物态,降低其危险。研究了温度、pH和重金属离子对酶活性的影响,发现环境30℃温度有利于促进酶活性;在弱酸性条件下,底物分解量减少15%;重金属离子在低浓度时对脲酶活性影响不大,浓度提高后对酶活性抑制作用没有加剧。将制备好的微生物矿化修复制剂喷洒于1 000 m2的污染土壤中,实验结果发现,土壤中交换态重金属离子含量在0~20 cm范围内明显减少,As、Pb、Cd、Zn和Cu的交换态浓度分别减少至2.37、1.25、0.31、16.67和3.42 mg/kg。  相似文献   

19.
Abstract

Levels of acephate (OrtheneR) and its principle metabolite, methamidophos, in/on greenhouse‐grown pepper and cucumber fruits and leaves in relation to the applied methamidophos were monitored. Dislodgeable and total residues of acephate and methamidophos were determined by gas‐liquid chromatography equipped with a flame ionization detector (GC‐FID) and were confirmed by nitrogen phosphorus detector (GC‐NPD). The dissipation curves of the residues followed first‐order kinetics (R2> 0.96). Initial residues of acephate on fruits varied between pepper (15.12 ppm) and cucumber (2.16 ppm) . Total residues in fruits and leaves determined at intervals following application revealed the greater persistence of acephate on pepper fruits (half‐life [t1/2] of 6 d) than on cucumber fruits (t1/2 was 3.7 d) . T1/2 values for the applied methamidophos were 4.7 and 5.3 d on pepper and cucumber fruits, respectively. Deacety‐lation of acephate (formation of its metabolite) was detectable 1 d following acephate treatment and reached a maximum of 2.05% of initial acephate residues 3 d after application on pepper fruits. On cucumber fruits, acephate metabolite reached a maximum of 2.12% one wk following application. No acephate residues were detected above the limit of detection of 0.001 ppm in pepper fruits 50 d following acephate application while its metabolite was detectable at that time (detectability limit was 0.0001 ppm).  相似文献   

20.
Endosulfan 3 EC, a mixture of α- and β-stereo isomers, was sprayed on field-grown pepper, melon, and sweet potato plants at the recommended rate of 0.44 kg A.I. acre(-1). Plant tissue samples (leaves, fruits, or edible roots) were collected 1 h to 30 days following spraying and analyzed for endosulfan isomers (α- and β-isomers). Analysis of samples was accomplished using a gas chromatograph (GC) equipped with a mass detector in total ion mode. The results indicated the formation of endosulfan sulfate as the major metabolite of endosulfan sulfite and the relatively higher persistence of the β-isomers as compared to the α-isomer. The initial total residues (α- and β-isomers plus endosulfan sulfate) were higher on leaves than on fruits. On pepper and melon fruits, the α-isomer, which is the more toxic to mammals, dissipated faster (T(1/2) = 1.22 and 0.95 d, respectively) than the less toxic β-isomer (T(1/2) = 3.0 and 2.5 d, respectively). These results confirm the greater loss of the α-isomer compared to the β-isomer, which can ultimately impact endosulfan dissipation in the environment. Additionally, the higher initial residues of endosulfan on pepper and sweet potato leaves should be considered of great importance for timing field operations and the safe entry of harvesters due to the high mammalian toxicity of endosulfan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号