首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A sensitive and specific method for the determination of propineb and its metabolites, propylenethiourea (PTU) and propylenediamine (PDA), using gas chromatography with flame photometric detection (GC-FPD) and LC–MS/MS was developed and validated. Propineb and its metabolite residue dynamics in supervised field trials under Good Agricultural Practice (GAP) conditions in banana and soil were studied. Recovery of propineb (as CS2), PDA and PTU ranged from 75.3 to 115.4% with RSD (n = 5) of 1.3–11.1%. The limit of quantification (LOQ) of CS2, PDA and PTU ranged from 0.005 to 0.01 mg kg?1, and the limit of detection (LOD) ranged from 0.0015 to 0.0033 mg kg?1. Dissipation experiments showed that the half-life of propineb in banana and soil ranged from 4.4 to 13.3 days. PTU was found in banana with a half-life of 31.5–69.3 days, while levels of PDA were less than 0.01 mg kg?1 in banana and soil. It has been suggested that PTU is the major metabolite of propineb in banana. The method was demonstrated to be reliable and sensitive for the routine monitoring of propineb and its metabolites in banana and soil. It also serves as a reference for the detection and monitoring of dithiocarbamates (DTCs) residues and the evaluation of their metabolic pathway.  相似文献   

2.
To study the dissipation rates and final residual levels of chlorantraniliprole and thiamethoxam in maize straw, maize, and soil, two independent field trials were conducted during the 2014 cropping season in Beijing and Anhui Provinces of China. A 40% wettable powder (20% chlorantraniliprole?+?20% thiamethoxam) was sprayed onto maize straw and soil at an application rate of 118 g of active ingredient per hectare (g a.i.ha?1). The residual concentrations were determined by ultra-high-performance liquid chromatography–tandem mass spectrometry. The chlorantraniliprole half-lives in maize straw and soil were 9.0–10.8 and 9.5–21.7 days, respectively. The thiamethoxam half-lives in maize straw and soil were 8.4–9.8 and 4.3–11.7 days, respectively. The final residues of chlorantraniliprole and thiamethoxam in maize straw, maize, and soil were measured after the pesticides had been sprayed two and three times with an interval of 7 days using 1 and 1.5 times the recommended rate (72 g a.i. ha?1 and 108 g a.i. ha?1, respectively). Representative maize straw, maize, and soil samples were collected after the last treatment at pre-harvest intervals of 7, 14, and 28 days. The chlorantraniliprole residue was below 0.01 mg kg?1 in maize, between 0.01 and 0.31 mg kg?1 in maize straw, and between 0.03 and 1.91 mg kg?1 in soil. The thiamethoxam residue concentrations in maize, maize straw, and soil were <0.01, <0.01, and 0.01–0.03 mg kg?1, respectively. The final pesticide residues on maize were lower than the maximum residue limit (MRL) of 0.02 mg kg?1 after a 14-day pre-harvest interval. Therefore, a dosage of 72 g a.i. ha?1 was recommended, as it can be considered safe to human beings and animals.  相似文献   

3.
This investigation was undertaken to compare the dissipation pattern of flubendiamide in capsicum fruits under poly-house and open field after giving spray applications at the recommended and double doses of 48 g a.i. ha?1 and 96 g a.i. ha?1. Extraction and purification of capsicum fruit samples were carried out by the QuEChERS method. Residues of flubendiamide and its metabolite, des-iodo flubendiamide, were analyzed by high-performance liquid chromatography–photodiode array, and confirmed by liquid chromatography–mass spectrometry/mass spectrometry. Limit of quantification of the method was 0.05 mg kg?1, and recovery of the insecticides was in the range of 89.6–104.3%, with relative standard deviation being 4.5–11.5%. The measurement uncertainty of the analytical method was in the range of 10.7–15.7%. Initial residue deposits of flubendiamide on capsicum fruits grown under poly-house conditions were (0.977 and 1.834 mg kg?1) higher than that grown in the field (0.665 and 1.545 mg kg?1). Flubendiamide residues persisted for 15 days in field-grown and for 25 days in poly-house-grown capsicum fruits. The residues were degraded with the half-lives of 4.3–4.7 and 5.6–6.6 days in field and poly-house respectively. Des-iodo flubendiamide was not detected in capsicum fruits or soil. The residues of flubendiamide degraded to below the maximum residue limit notified by Codex Alimentarius Commission (FAO/WHO) after 1 and 6 days in open field, and 3 and 10 days in poly-house. The results of the study indicated that flubendiamide applied to capsicum under controlled environmental conditions required longer pre-harvest interval to allow its residues to dissipate to the safe level.  相似文献   

4.
A microcosm experiment was conducted to investigate the dissipation of available benzo[a]pyrene (BaP) in soils co-contaminated with cadmium (Cd) and pyrene (PYR) during aging process. The available residue of BaP in soil was separated into desorbing and non-desorbing fractions. The desorbing fraction contributed more to the dissipation of available BaP than the non-desorbing fraction did. The concentration of bound-residue fraction of BaP was quite low across all treatments. Within the duration of this study (250 days), transformation of BaP from available fractions to bound-residue fraction was not observed. Microbial degradation was the dominant mechanism of the dissipation of available BaP in the soil. The dissipation of available BaP was significantly inhibited with the increment in Cd level in the soil. The addition of PYR (250 mg kg?1) remarkably promoted the dissipation of available BaP without reducing Cd availability in the soil. The calculated half-life of available BaP in the soil prolonged with the increment in Cd level; however, the addition of PYR shortened the half-life of available BaP by 13.1, 12.7, and 32.8 % in 0.44, 2.56, and 22 mg Cd kg?1 soils, respectively. These results demonstrated that the inhibiting effect of Cd and the promoting effect of PYR on the dissipation of available BaP were competitive. Therefore, this study shows that the bioremediation process of BaP can be more complicated in co-contaminated soils.  相似文献   

5.
The persistence and dissipation kinetics of trifloxystrobin and tebuconazole on onion were studied after application of their combination formulation at a standard and double dose of 75 + 150 and 150 + 300 g a.i. ha?1. The fungicides were extracted with acetone, cleaned-up using activated charcoal (trifloxystrobin) and neutral alumina (tebuconazole). Analysis was carried out by gas chromatograph (GC) and confirmed by gas chromatograph mass spectrometry (GC-MS). The recovery was above 80% and limit of quantification (LOQ) 0.05 mg kg?1 for both fungicides. Initial residue deposits of trifloxystrobin were 0.68 and 1.01 mg kg?1 and tebuconazole 0.673 and 1.95 mg kg?1 from standard and double dose treatments, respectively. Dissipation of the fungicides followed first-order kinetics and the half life of degradation was 6–6.6 days. Matured onion bulb (and field soil) harvested after 30 days was free from fungicide residues. These findings suggest recommended safe pre-harvest interval (PHI) of 14 and 25 days for spring onion consumption after treatment of Nativo 75 WG at the standard and double doses, respectively. Matured onion bulbs at harvest were free from fungicide residues.  相似文献   

6.
A greenhouse experiment was carried out to investigate the single effect of benzo[a]pyrene (B[a]P) or chromium (Cr) and the joint effect of Cr–B[a]P on the growth of Zea mays, its uptake and accumulation of Cr, and the dissipation of B[a]P over 60 days. Results showed that single or joint contamination of Cr and B[a]P did not affect the plant growth relative to control treatments. However, the occurrence of B[a]P had an enhancing effect on the accumulation and translocation of Cr. The accumulation of Cr in shoot of plant significantly increased by?≥?79 % in 50 mg kg?1 Cr–B[a]P (1, 5, and 10 mg kg?1) treatments and by?≥?86 % in 100 mg kg?1 Cr–B[a]P (1, 5, and 10 mg kg?1) treatments relative to control treatments. The presence of plants did not enhance the dissipation of B[a]P in lower (1and 5 mg kg?1) B[a]P contaminated soils; however, over 60 days of planting Z. mays seemed to enhance the dissipation of B[a]P by over 60 % in 10 mg kg?1 single contaminated soil and by 28 to 41 % in 10 mg kg?1B[a]P co-contaminated soil. This suggests that Z. mays might be a useful plant for the remediation of Cr–B[a]P co-contaminated soil.  相似文献   

7.
Dissipation of fungicide difenoconazole (3-chloro-4-[(2RS,4RS;2RS,4SR)-4-methyl-2-(1H-1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-2-yl]phenyl 4-chlorophenyl ether) was studied following its application on apples intended for production of baby food. The apples (varieties: Jonagold Decosta, Gala and Idared) were sprayed with the formulation to control pathogens causing fungal diseases: powdery mildew (Podosphaera leucotricha ELL et Ev./Salm.) and apple scab (Venturia inaequalis Cooke/Aderh.). A validated gas chromatography-based method with simultaneous electron capture and nitrogen phosphorus detection (GC-ECD/NPD) was used for the residue analysis. The analytical performance of the method was highly satisfactory, with expanded uncertainties ≤ 19% (a coverage factor, k = 2, and a confidence level of 95%). The dissipation of difenoconazole was studied in pseudo-first-order kinetic models (for which the coefficients of determination, R2, ranged between 0.880 and 0.977). The half-life of difenoconazole was 12–21 days in experiments conducted on three apple varieties. In these experiments, the initial residue levels declined gradually and reached the level of 0.01 mg kg?1 in 50–79 days. For the residue levels to remain below 0.01 mg kg?1 (the maximum acceptable concentration for baby foods), difenoconazole must be applied approximately 3 months before harvest, at a dose of 0.2 L ha?1 (50 g of an active ingredient per ha).  相似文献   

8.
ABSTRACT

The aim of this study is to assess the disappearance of boscalid (IUPAC name: 2-chloro-N-[2-(4-chlorophenyl)phenyl]pyridine-3-carboxamide) and pyraclostrobin (IUPAC name: methyl N-[2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-N-methoxycarbamate) residues in apple fruit, and to verify whether an organic fertilizer enriched with strains of antagonistic microorganisms can reduce pesticide residue levels. Field trials were conducted in a commercial orchard on apples of the Gloster variety, during 21 days after the treatment with Bellis 38 WG and the subsequent application of Zumba Plant formulation containing Bacillus spp., Trichoderma spp. and Glomus spp. In control samples, the decrease rate of boscalid and pyraclostrobin residue levels followed an exponential function, described by formulae Rt = 0.2824e?0.071t and Rt = 0.1176e?0.060t, with the coefficient of determination of r2 = 0.8692 and r2 = 0.9268, respectively. These levels dropped to half (t1/2) of their initial values after 9.8 and 11.5 days, respectively. The treatment with Zumba Plant resulted in a reduction in boscalid and pyraclostrobin residue levels by 52% and 41%, respectively. The results of this study are of importance for horticulture sciences and for producers of apples using plant protection products (PPPs).  相似文献   

9.
The aim of this work was to evaluate the fate of ivermectin (IVM) at two concentrations in cattle feces and its movement to the nearby soil and plants. Feces were spiked with IVM at two levels: 3000 ng g?1 (high group, HG) and 300 ng g?1 (low group, LG). Artificial dung pats were prepared and deposited in an experimental field area. Feces and underlying soil were sampled up to 60 days post-deposition (dpd). As an additional analysis, grasses growing around the pats were sampled at 30 and 60 dpd. Ivermectin concentrations in all matrices were determined by HPLC. Mean IVM fecal concentrations were in the range between 3901.9 ng g?1 and 2419.2 ng g?1 (high group) and 375.3 ng g?1 and 177.49 ng g?1 (low group). Mean times for 50% and 90% dissipation were 88.23 and 293.03 days (HG) and 39.1 and 129.9 days (LG). Soil concentrations ranged from 26.1 ng g?1 to 71.1 ng g?1 (HG) and 3.4 to 5.9 ng g?1 (LG); in plants, concentrations were between 71.4 and 380.8 ng g?1 and 5.40 and 51.8 ng g?1 in HG and LG, respectively. These results confirm that IVM moves from feces to the underlying soil as well as to nearby plants. The potential risk of detrimental effects on soil organisms and the impact on herbivorous animals should be further evaluated.  相似文献   

10.

The method of residue analysis of kresoxim-methyl and its dissipation rate in cucumber and soil in a greenhouse were studied. Residues of kresoxim-methyl were extracted from cucumber and soil matrices with acetone, purified by liquid-liquid extraction and Florisil cartridges, and then determined by GC with NP-detector. The limit of detection was estimated to be 9× 10?12 g, and the minimum determination concentration of kresoxim-methyl in the samples was 0.005 mg kg?1. The average recoveries ranged from 89.4 to 100.2% with a coefficient variation between 2.4 and 8.9%. Dissipation study showed that the half-lives of kresoxim-methyl in cucumber were approximately 6.5 days at both the recommended and double the recommended dosage. Half-lives for both the treatments were approximately 8 days in soil. The present study revealed that the residues in cucumber were below the MRL (0.05 mg kg?1, fixed by EU) after 7 days for both treatments.  相似文献   

11.
The purpose of the research conducted was to investigate and evaluate the behavior of pyrimethanil, pyraclostrobin, boscalid, cypermethrin and chlorpyrifos, the active ingredients of selected fungicides and insecticides, on ripe fruit and in fully developed leaves of raspberry of the Laszka variety. The field trial was carried out in the period of one month starting from the first fruit picking. The results obtained indicated that residue levels on the day of the first crop picking did not even approximate the corresponding EU-MRLs (http://ec.europa.eu/sanco_pesticides). Individual substances in raspberry fruits and leaves disappeared at a similar rate. As a result of chlorpyrifos application to the soil, its residue in fruits and leaves occurred for the whole period of fruit bearing, though in fruit they dropped successively. To produce raspberries with residues below or equal to 0.01 μg g?1, the application of pesticides should be stopped at least 2–3 weeks before the first crop picking, and on condition that an appropriate preparation (active in low doses) is applied to the last treatments.  相似文献   

12.
Oxyfluorfen, a diphenyl-ether herbicide is being used to control annual and perennial broad-leaved weeds and sedges in a variety of field crops including onion. The present study was aimed to investigate the dynamics and field persistence of oxyfluorfen in onion plant, bulb and soil under Indian tropical conditions. Application of four rates of oxyfluorfen viz., 200, 250, 300 and 400 g AI ha?1 as pre-emergence gave good weed control in field experiment with onion. The oxyfluorfen residue dissipated faster in plant than in soil respectively, with a mean half-life of 6.1 and 11.2 days. Dissipation followed first-order kinetics. In laboratory column leaching experiments, 17 percent of the applied oxyfluorfen was recovered from the soil and indicates its solubility in water and mobility in sandy clay loam soil was low. A sorption study revealed that the adsorption of oxyfluorfen to the soil was highly influenced by the soil organic carbon with the Koc value of 5450. The study concludes that the dissipation of oxyfluorfen in soil and onion was dependent on the physico-chemical properties of the soil and environmental conditions.  相似文献   

13.
Pyraclostrobin is a new broad-spectrum foliar applied and seed protectant fungicide of the strobilurin group. In this paper, adsorption-desorption of pyraclostrobin has been investigated in three different soils viz. Inceptisol (sandy loam, Delhi), Vertisol (sandy clay, Hyderabad) and Ultisol (sandy clay loam, Thrissur). Effect of organic matter and clay content on sorption was also studied in Inceptisol of Delhi. Leaching potential of pyraclostrobin as influenced by rainfall was studied in intact soil columns to confirm the results of adsorption-desorption studies. The adsorption studies were carried out at initial concentrations of 0.05, 0.1, 0.5, 1 and 1.5 μg mL?1. The distribution coefficient (Kd) values in three test soils ranged from 4.91 to 18.26 indicating moderate to high adsorption. Among the three test soils, adsorption was the highest in Ultisol (Kd 18.26), followed by Vertisol (Kd 9.87) and Inceptisol (Kd 4.91). KF value was also highest for Ultisol soil (66.21), followed by Vertisol (40.88) and Inceptisol (8.59). S-type adsorption isotherms were observed in all the three test soils. Kd values in organic carbon-removed soil and clay-removed soil were 3.57 and 2.83 respectively, indicating lower adsorption than normal Inceptisol. Desorption studies were carried out at initial concentrations of 0.5, 1 and 1.5 μg mL?1. Desorption was the greatest in Inceptisol, followed by Vertisol and Ultisol. Amounts of pyraclostrobin desorbed in three desorption cycles for different concentrations were 23.1–25.3%, 9.4–20.7% and 8.1–13.6% in Inceptisol, Vertisol and Ultisol respectively. Desorption was higher in clay fraction-removed and organic carbonremoved soils than normal Inceptisol. Desorption was slower than adsorption in all the test soils, indicating hysteresis effect (with hysteresis coefficient values varying from 0.05 to 0.20). Low values of hysteresis coefficient suggest high hysteresis effect indicating easy and strong adsorption, and slow desorption, of pyraclostrobin in soils. Higher hysteresis coefficient values in organic carbon removed soil (0.25–0.30) and clay fraction removed soil (0.28–0.36) as compared to normal Inceptisol soil suggest relatively weak adsorption and easy desorption of pyraclostrobin. Results of regression analysis suggest that the organic matter and pH of the soil play a major role in adsorption of pyraclostrobin. Leaching studies were carried out in intact soil columns in Inceptisol. The columns were leached with different amounts of water simulating different amounts of rainfall. The results suggest that most of the pyraclostrobin residues will remain present in the top soil layers even under high rainfall conditions and chances of pyraclostrobin moving to lower soil depth are almost negligible.  相似文献   

14.
Chlordecone is an organochlorine insecticide that has been widely used to control banana weevil in the French West Indies. As a result of this intense use, up to 20,000 ha are contaminated by this insecticide in the French West Indies, and this causes environmental damage and health problems. A scenario of exposure was drawn by French authorities, based on land usage records. Many efforts have been made to monitor the occurrence of chlordecone and its main metabolites using different analytical methods, including GC, GC/MS, LC/MS, and NIRS. Although these different methods allow for the detection and quantification of chlordecone from soils, none of them estimate the bottleneck caused by extraction of this organochlorine from soils with high adsorption ability. In this study, we used 13C10-chlordecone as a tracer to estimate chlordecone extraction yield and to quantify chlordecone in soil extracts based on the 13C/12C isotope dilution. We report the optimization of 13C10-chlordecone extraction from an Andosol. The method was found to be linear from 0.118 to 43 mg kg?1 in the Andosol, with an instrumental detection limit estimated at 8.84 μg kg?1. This method showed that chlordecone ranged from 35.4 down to 0.18 mg kg?1 in Andosol, Nitisol, Ferralsol, and Fluvisol soil types. Traces of the metabolite β-monohydrochlordecone were detected in the Andosol, Nitisol, and Ferralsol soil samples. This last result indicates that this method could be useful to monitor the fate of chlordecone in soils of the French West Indies.  相似文献   

15.
Methane-oxidizing bacteria (methanotrophs) in the soil are a unique group of methylotrophic bacteria that utilize methane (CH4) as their sole source of carbon and energy which limit the flux of methane to the atmosphere from soils and consume atmospheric methane. A field experiment was conducted to determine the effect of nitrogen application rates and the nitrification inhibitor dicyandiamide (DCD) on the abundance of methanotrophs and on methane flux in a grazed pasture soil. Nitrogen (N) was applied at four different rates, with urea applied at 50 and 100 kg N ha?1 and animal urine at 300 and 600 kg N ha?1. DCD was applied at 10 kg ha?1. The results showed that both the DNA and selected mRNA copy numbers of the methanotroph pmoA gene were not affected by the application of urea, urine or DCD. The methanotroph DNA and mRNA pmoA gene copy numbers were low in this soil, below 7.13?×?103 g?1 soil and 3.75?×?103 μg?1 RNA, respectively. Daily CH4 flux varied slightly among different treatments during the experimental period, ranging from ?12.89 g CH4 ha?1 day?1 to ?0.83 g CH4 ha?1 day?1, but no significant treatment effect was found. This study suggests that the application of urea fertilizer, animal urine returns and the use of the nitrification inhibitor DCD do not significantly affect soil methanotroph abundance or daily CH4 fluxes in grazed grassland soils.  相似文献   

16.
A survey was carried out from 2008 to 2010 to determine the concentrations of 16 organochlorine pesticide residues (OPRs) from Tizayuca, Hidalgo, Mexico. Organochlorine residue determinations were made from milk fat, using chromatographic cleanup and analysis by gas chromatography with an electron capture detector. The OPR concentrations found were from below the detection limit (DL) to 0.91 ng g?1 in 2008, DL to 0.38 ng g?1 in 2009 and DL to 0.59 ng g?1 in 2010. In general concentrations of organochlorine pesticides were higher in the wet season (3.37 ng g?1 and 4.79 ng g?1) than the dry season (1.92 ng g?1 and 2.71 ng g?1) for 2009 and 2010, due to control of pests in the pasture and sheds. According to Codex Alimentarius regulations, individual pesticides did not exceed the permissible limits, which for example were 10 μg kg?1 for alpha hexachlorocyclohexane (HCH) and endosulfan I, 20 μg kg?1 for p,p’-DDT, and 6 μg kg?1 for dieldrin, endrin and heptachlor. A reduction of organochlorine pesticide concentrations in cow's milk was noted, indicating that the Mexican government has achieved reduction or elimination of some organochlorine pesticides in response to global agreements on persistent organic pollutants.  相似文献   

17.
The effect of ozone fumigation on the reduction of difenoconazole residue on strawberries was studied. Strawberries were immersed in 1.0 L of aqueous solution containing 400 μL of the commercial product (250 g L?1 of difenoconazole) for 1 min. Then, they were dried and exposed to ozone gas (O3) at concentrations of 0.3, 0.6 and 0.8 mg L?1 for 1 h. The ozone fumigation treatments reduced the difenoconazole residue on strawberries to concentrations below 0.5 mg kg?1, which corresponds to a 95% reduction. The strawberries treated with ozone and the control group, which was not treated with ozone, were stored at 4°C for 10 days. Some characteristics of the fruit were monitored throughout this period. Among these, pH, weight loss and total color difference did not change significantly (P > 0.05). The fumigation with ozone significantly affected the soluble solids, titratable acidity and ascorbic acid content (vitamin C) of the strawberries preventing a sharp reduction of these parameters during storage.  相似文献   

18.
Drosophila is a common strawberry pest. In this work, toxicities of the 77.5% EC dichlorvos to 3rd instar larvae and adults of drosophila were evaluated through indoor bioassays and field bioassays, respectively. To insure the safety, dichlorvos dissipation and terminal residue in strawberry by different application methods under field conditions were determined by high-performance liquid chromatography. The decline curves of dichlorvos residues in strawberry corresponded with first-order kinetics, and dichlorvos dissipated rapidly in strawberry with half-life (t1/2) of 7.58–13.17 h. Terminal residues below the maximum residue limit of strawberry and soil in different distance were achieved after 24 h under different application methods. This article provides guidance to the proper and safe use of dichlorvos in agriculture; it is more reasonable that dichlorvos is applied by embedding on the ground near the strawberry plants covered plastic film with holes.  相似文献   

19.
Abstract

To stipulate the rationale of spraying doses and to determine the safe interval period of boscalid suspension concentrate (SC), the degradation dynamics and residual levels were investigated in cucumber and soil using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Field trials were conducted according to Chinese Guideline on pesticide residue trials. Following application, the degradation kinetics was best ascribed to first-order kinetic models with half-life of 2.67–9.90 d in cucumber. Spraying boscalid SC at 1.5-fold the recommended dosage yield terminal residues, which are clearly lower than the maximum residue limit (MRL) established by China (MRL =5?mg.kg?1) in cucumber. At variance, the dissipation dynamics in soil did not fit to first-order kinetics and the half-life was more than 17?days, the finding which denotes that the degradation behavior of boscalid in soil proceeds slowly. It has therefore been shown that boscalid is safe for use on cucumbers under the recommended dosage.  相似文献   

20.
Dissipation of spiromesifen and its metabolite, spiromesifen-enol, on tomato fruit, tomato leaf, and soil was studied in the open field and controlled environmental conditions. Sample preparation was carried out by QuEChERS method and analysis using LC-MS/MS. Method validation for analysis of the compounds was carried out as per “single laboratory method validation guidelines.” Method validation studies gave satisfactory recoveries for spiromesifen and spiromesifen-enol (71.59–105.3%) with relative standard deviation (RSD) < 20%. LOD and LOQ of the method were 0.0015 μg mL?1 and 0.005 mg kg?1, respectively. Spiromesifen residues on tomato fruits were 0.855 and 1.545 mg kg?1 in open field and 0.976 and 1.670 mg kg?1 under polyhouse condition, from treatments at the standard and double doses of 125 and 250 g a.i. ha?1, respectively. On tomato leaves, the residues were 5.64 and 8.226 mg kg?1 in open field and 6.874 and 10.187 mg kg?1 in the polyhouse. In soil, the residues were 0.532 and 1.032 mg kg?1 and 0.486 and 0.925 mg kg?1 under open field and polyhouse conditions, respectively. The half-life of degradation of spiromesifen on tomato fruit was 6–6.5 days in the open field and 8.1–9.3 days in the polyhouse. On tomato leaves, it was 7–7.6 and 17.6–18.4 days and in soil 5.6–7.4 and 8.4–9.5 days, respectively. Metabolite, spiromesifen-enol, was not detected in any of the sample throughout the study period. Photodegradation could be the major route for dissipation of spiromesifen in the tomato leaves, whereas in the fruits, it may be the combination of photodegradation and dilution due to fruit growth. The results of the study can be utilized for application of spiromesifen in plant protection of tomato crop under protected environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号