首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
The effect of the consecutive annual additions of pig slurry at rates of 0 (control), 90 and 150 m3 ha(-1) y(-1) over a 4-year period on the binding affinity for Cu(II) of soil humic acids (HAs) and fulvic acids (FAs) was investigated in a field plot experiment under semiarid conditions. A ligand potentiometric titration method and a single site model were used for determining the Cu(II) complexing capacities and the stability constants of Cu(II) complexes of HAs and FAs isolated from pig slurry and control and amended soils. The HAs complexing capacities and stability constants were larger than those of the corresponding FA fractions. With respect to the control soil HA, pig-slurry HA was characterized by a much smaller binding capacity and stability constant. Amendment with pig slurry decreased the binding affinity of soil HAs. Similar to the corresponding HAs, the binding affinity of pig-slurry FA was much smaller while that of amended-soil FAs were slightly smaller when compared to the control soil FA. The latter effect was, however, more evident with increasing the amount of pig slurry applied to soil per year and the number of years of pig slurry application.  相似文献   

2.
Zhang T  Wu YX  Huang XF  Liu JM  Xia B  Zhang WH  Qiu RL 《Chemosphere》2012,88(6):730-735
Soil washing is one of the few permanent treatment alternatives for removing metal contaminants. Ethylenediaminetetraacetic acid and its salts (EDTA) is very effective at removing cationic metals and has been utilized globally. However it is ineffective for anionic metal contaminants or metals bound to soil organic matter. The simultaneous removal of cationic and anionic metal contaminants by soil washing is difficult due to differences in their properties. The present study evaluated the potential of a washing process using two synthesized EDTA-derivatives, C6HEDTA (2,2′-((2-((carboxymethyl)(2-(hexanoyloxy)ethyl)amino)ethyl)azanediyl)diacetic acid) and C12HEDTA (2,2′-((2-((carboxymethyl) (2-(dodecanoyloxy)ethyl)amino)ethyl)azanediyl)diacetic acid), which consist of a hydrophilic polycarboxylic moiety and a hydrophobic moiety with a monoalkyl ester group. A series of equilibrium batch experiments at room temperature were conducted to investigate the efficacy of C6HEDTA and C12HEDTA as extractants for both oxyanion Cr(VI) and cationic Cu(II). Results showed that either C6HEDTA or C12HEDTA can extract both Cr(VI) and Cu(II) from humic acid simultaneously. However, C6HEDTA was less effective for Cr(VI) probably because it has no surface activities to increase solubility of humic acid, like C12HEDTA. Extraction of Cr(VI) was mainly attributed to the decreased surface tension and enhanced solubility of organic matter. Extraction of Cu(II) was attributed to both the Cu(II) chelation and enhanced solubility of humic acid. It was demonstrated that the hydrophilic polycarboxylic moiety of C12HEDTA chelates cations while the monoalkyl ester group produces surface active properties that enhance the solubility of humic acid.  相似文献   

3.
Fluorescence excitation–emission matrices (EEM) of aqueous solutions of Laurentian soil fulvic acid (LFA) at three concentrations (50, 75 and 100 mg/l) were obtained at two pH values (pH = 4.0 and 6.0) and as function of the Cu(II) ion concentration. The presence of Cu(II) ion provokes quenching of the intrinsic LFA fluorescence due to complex formation. Multivariate curve resolution (MCR-ALS) was used to successfully decompose single EEM into excitation and emission spectra for the detected components. Moreover, multidimensional (up to six dimensions) data matrices were generated by adding EEM collected as function of the LFA and Cu(II) concentrations and pH. MCR-ALS was able to resolve the excitation and emission spectra from these multidimensional data matrices given further information about the spectral variation profiles induced by the experimental factors. Conditional stability constants (log KLFACu) were calculated from the quenching profiles observed as function of the Cu(II) concentration, as well as, their trends as function of pH and LFA concentration were obtained – average (and standard deviation) of log KLFACu = 4.6 ± 0.2. This EEM/MCR-ALS methodology constitutes a new tool for the study of natural organic matter under varying experimental conditions that characterize natural environmental systems.  相似文献   

4.
Alyssum discolor biomass was collected from serpentine soil and was used for removal of metal ions. The plant species grown on serpentine soils are known to be rich with metals ions and thus have more capability for accumulating heavy metals. Native and acid-treated biomass of A. discolor (A. discolor) were utilized for the removal of Ni(II) and Cu(II) ions from aqueous solutions. The effects of contact time, initial concentration, and pH on the biosorption of Ni(II) and Cu(II) ions were investigated. Biosorption equilibrium was established in about 60 min. The surface properties of the biomass preparations were varied with pH, and the maximum amounts of Ni(II) and Cu(II) ions on both A. discolor biomass preparations were adsorbed at pH 5.0. The maximum biosorption capacities of the native, and acid-treated biomass preparations for Ni(II) were 13.1 and 34.7 mg g−1 and for Cu(II) 6.15 and 17.8 mg g−1 dry biomass, respectively. The biosorption of Ni(II) and Cu(II) ions from single and binary component systems can be successfully described by Langmuir and Freundlich isotherms. When the heavy metal ions were in competition, the amounts of biosorbed metal ions on the acid treated plant biomass were found to be 0.542 mmol g−1 for Ni(II) and 0.162 mmol g−1 for Cu(II), the A. discolor biomass was significantly selective for Ni(II) ions. The information gained from these studies was expected to indicate whether the native, and acid-treated forms can have the potential to be used for the removal and recovery of Ni(II) ions from wastewaters.  相似文献   

5.
Abstract

A study was undertaken to determine the effect of Cu(II) in degradation of methylparathion (o,o-dimethyl o, 4-nitrophenyl phosphoriotioate) in acid medium. Initial electrochemical characterization of Cu(II) and methylparathion was done in an aqueous medium at a pH range of 2–7. Cu(II) was studied in the presence of different anions and it was observed that its electroactivity depends on pH and is independent of the anion used. Methylparathion had two reduction signals at pH ≤ 6 and only one at pH > 6. The pesticide's transformation kinetic was then studied in the presence of Cu(II) in acid buffered aqueous medium at pH values of 2, 4, and 7. Paranitrophenol appeared as the only electroactive product at all three pH values. The reaction was first order and had k values of 5.2 × 10?3 s?1 at pH 2, 5.5 × 10?3 s?1 at pH 4 and 9.0 × 10?3 s?1 at pH 7. It is concluded that the principal degradation pathway of methylparathion in acid medium is a Cu(II) catalyzed hydrolysis reaction.  相似文献   

6.
Chen Y  Qian H  Wu F  Zhou J 《Chemosphere》2011,83(9):1214-1219
An effective method to actualize the recycling use of Cd(II) in industrial wastewater was developed by using the magnetic beads, which was modified with ethylenediamine. When the industrial wastewater was treated with these magnetic beads, the Cd(II) concentration in the solution was sharply reduced to the governmental standard (0.1 μg mL−1) of China. Based on the monolayer adsorption of Cd(II) on the surface of these magnetic beads, the saturation capacity for Cd(II) reached to 68 mg g−1 dried magnetic beads. On the other hand, the binding Cd(II) could be easily recovered in acid conditions and the recovery efficiency exceeded 99%. Thus, in the process of the wastewater purification, the recycling utilization of Cd(II) was realized. Additionally, the excellent capability of regeneration and recycling utilization of these magnetic beads made this technology much suitable for the large-scale application. Compared with the conventional purification methods, the rapid process, simple equipments, easy operation and high efficiency, brought this technology with great potentialities in the treatment of industrial wastewater.  相似文献   

7.
合成了以N-甲基咪唑为配体,Cu为活性中心的络合金属多相催化剂Cu(I)-NHC-SBA-15。通过1H-NMR、13C-NMR、有机元素分析和FTIR对各步合成反应产物结构经行了鉴定;用SEM、N2吸附脱附等方法对催化剂进行了表征;用ICP测定了催化剂Cu含量。对催化剂催化2,4-二甲氧基溴苯还原脱溴活性进行了测试。在反应时间为24 h,通过正交实验和单因素实验,考察了催化剂用量、反应温度、还原剂用量等因素对脱溴率的影响,并确定了最佳反应条件:催化剂用量为0.05 g、水合肼用量为2 mL、反应温度为80℃,脱溴效果较好,脱溴率达到98.5%。对催化剂重复使用进行了初步研究。对催化反应动力学进行了初步研究,结果表明,该多相催化反应是由表面反应速度控制,并符合一级动力学反应。对反应机理进行了初步探讨。  相似文献   

8.
Ryu JY  Mulholland JA  Chu B 《Chemosphere》2003,51(10):1031-1039
Dibenzofuran (DF) is formed from phenol and benzene in combustion gas exhaust streams prior to particle collection equipment. Subsequent chlorination at lower temperatures on particle surfaces is a potential source of chlorinated dibenzofuran (CDF). Gas streams containing 8% O2 and approximately 0.1% DF vapor were passed through particle beds containing copper (II) chloride (0.5% Cu, mass) at temperatures ranging from 200 to 400 °C to investigate the potential for CDF formation during particle collection. Experiment duration was sufficient to provide an excess amount of DF (DF/Cu=3). The efficiency of DF chlorination by CuCl2 and the distribution of CDF products were measured, with effects of temperature, gas velocity, and experiment duration assessed. Results of a more limited investigation of dibenzo-p-dioxin (DD) chlorination by CuCl2 to form chlorinated DD (CDD) products are also presented.

The efficiency of DF/DD chlorination by CuCl2 was high, both in terms of CuCl2 utilization and DF/DD conversion. Total yields of Cl on CDF/CDD products of up to 0.5 mole Cl per mole CuCl2 were observed between 200 and 300 °C; this suggests that nearly 100% CuCl2 was utilized, assuming a conversion of two moles of CuCl2 to CuCl per mole Cl added to DD/DF. In a short duration experiment (DF/Cu=0.3), nearly 100% DF adsorption and conversion to CDF was achieved. The degree of CDF chlorination was strongly dependent on gas velocity. At high gas velocity, corresponding to a gas–particle contact time of 0.3 s, mono-CDF (MCDF) yield was largest, with yields decreasing with increasing CDF chlorination. At low gas velocity, corresponding to a gas–particle contact time of 5 s, octa-CDF yield was largest. DF/DD chlorination was strongly favored at lateral sites, with the predominant CDF/CDD isomers within each homologue group those containing Cl substituents at only the 2,3,7,8 positions. At the higher temperatures and lower gas velocities studied, however, broader isomer distributions, particularly of the less CDD/CDF products, were observed, likely due to preferential destruction of the 2,3,7,8 congeners.  相似文献   


9.
Iron-catalyzed oxidation of As(III) to As(V) can be highly effective for toxic arsenic removal via Fenton reaction and Fe(II) oxygenation. However, the contribution of ubiquitous organic ligands is poorly understood, despite its significant role in redox chemistry of arsenic in natural and engineered systems. In this work, selected naturally occurring organic ligands and synthetic ligands in co-oxidation of Fe(II) and As(III) were examined as a function of pH, Fe(II), H2O2, and radical scavengers (methanol and 2-propanol) concentration. As(III) was not measurably oxidised in the presence of excess ethylenediaminetetraacetic acid (EDTA) (i.e. Fe(II):EDTA < 1:1), contrasting with the rapid oxidation of Fe(II) by O2 and H2O2 at neutral pH under the same conditions. However, partial oxidation of As(III) was observed at a 2:1 ratio of Fe(II):EDTA. Rapid Fe(II) oxidation in the presence of organic ligands did not necessarily result in the coupled As(III) oxidation. Organic ligands act as both iron speciation regulators and radicals scavengers. Further quenching experiments suggested both hydroxyl radicals and high-valent Fe species contributed to As(III) oxidation. The present findings are significant for the better understanding of aquatic redox chemistry of iron and arsenic in the environment and for optimization of iron-catalyzed arsenic remediation technology.  相似文献   

10.
Dibenzofuran (DF) is formed from phenol and benzene in combustion gas exhaust streams prior to particle collection equipment. Subsequent chlorination at lower temperatures on particle surfaces is a potential source of chlorinated dibenzofuran (CDF). Gas streams containing 8% O2 and approximately 0.1% DF vapor were passed through particle beds containing copper (II) chloride (0.5% Cu, mass) at temperatures ranging from 200 to 400 °C to investigate the potential for CDF formation during particle collection. Experiment duration was sufficient to provide an excess amount of DF (DF/Cu=3). The efficiency of DF chlorination by CuCl2 and the distribution of CDF products were measured, with effects of temperature, gas velocity, and experiment duration assessed. Results of a more limited investigation of dibenzo-p-dioxin (DD) chlorination by CuCl2 to form chlorinated DD (CDD) products are also presented.The efficiency of DF/DD chlorination by CuCl2 was high, both in terms of CuCl2 utilization and DF/DD conversion. Total yields of Cl on CDF/CDD products of up to 0.5 mole Cl per mole CuCl2 were observed between 200 and 300 °C; this suggests that nearly 100% CuCl2 was utilized, assuming a conversion of two moles of CuCl2 to CuCl per mole Cl added to DD/DF. In a short duration experiment (DF/Cu=0.3), nearly 100% DF adsorption and conversion to CDF was achieved. The degree of CDF chlorination was strongly dependent on gas velocity. At high gas velocity, corresponding to a gas–particle contact time of 0.3 s, mono-CDF (MCDF) yield was largest, with yields decreasing with increasing CDF chlorination. At low gas velocity, corresponding to a gas–particle contact time of 5 s, octa-CDF yield was largest. DF/DD chlorination was strongly favored at lateral sites, with the predominant CDF/CDD isomers within each homologue group those containing Cl substituents at only the 2,3,7,8 positions. At the higher temperatures and lower gas velocities studied, however, broader isomer distributions, particularly of the less CDD/CDF products, were observed, likely due to preferential destruction of the 2,3,7,8 congeners.  相似文献   

11.
Kaewsarn P 《Chemosphere》2002,47(10):1081-1085
Biosorption of heavy metals can be an effective process for the removal and recovery of heavy metal ions from aqueous solutions. The biomass of marine algae has been reported to have high uptake capacities for a number of heavy metal ions. In this paper, the adsorption properties of a pre-treated biomass of marine algae Padina sp. for copper(II) were investigated. Equilibrium isotherms and kinetics were obtained from batch adsorption experiments. The biosorption capacities were solution pH dependent and the maximum capacity obtained was 0.80 mmol/g at a solution pH of about 5. The biosorption kinetics was found to be fast, with 90% of adsorption within 15 min and equilibrium reached at 30 min. The effects of light metal ions on copper(II) uptake were studied and the presence of light metal ions did not affect copper(II) uptake significantly. Fixed-bed breakthrough curves for copper(II) removal were also obtained. This study demonstrated that the pre-treated biomass of Padina sp. could be used as an effective biosorbent for the treatment of copper(II) containing wastewater streams.  相似文献   

12.
In the present study, the effects of biosorbent Aspergillus niger dosage, initial solution pH and initial Ni(II) concentration on the uptake of Ni(II) by NaOH pretreated biomass of A. niger from aqueous solution were investigated. Batch experiments were carried out in order to model and optimize the biosorption process. The influence of three parameters on the uptake of Ni(II) was described using a response surface methodology (RSM) as well as Langmuir and Freundlich isotherm models. Optimum Ni(II) uptake of 4.82 mg Ni(II) g−1 biomass (70.30%) was achieved at pH 6.25, biomass dosage of 2.98 g L−1 and initial Ni(II) concentration of 30.00 mg L−1 Ni(II). Langmuir and Freundlich were able to describe the biosorption isotherm fairly well. However, prediction of Ni(II) biosorption using Langmuir and Freundlich isotherms was relatively poor in comparison with RSM approaches. The biosorption mechanism was also investigated by using Fourier transfer infrared (FT-IR) analysis of untreated, NaOH pretreated, and Ni(II) loaded A. niger biomass.  相似文献   

13.
Protonated form (Hy) of yeast was subjected to thermal analysis (TGA and DTG) in the temperature range 60–800 °C. Chemically bound water volatilizes around 200 °C and the matrix undergoes extensive oxidative decomposition at 450 °C, the weight loss reaching 75% at 800 °C. The sorption capacity of the matrix for nickel(II) ion increases on heat treatment from 60 to 200 °C (from 16.9 to 25.0 mg/g), but was reduced on heating to higher temperatures at an initial nickel(II) ion concentration of 1200 mg/g. The FTIR spectra of Hy and nickel(II) ion saturated yeast, indicated that biosorption occurs on the sugar and nucleic acid regions, possibly involving –COOH and –NH groups.  相似文献   

14.
Dong H  Guan X  Wang D  Li C  Yang X  Dou X 《Chemosphere》2011,85(7):1115-1121
Batch experiments were carried out to investigate the influences of H2O2/Fe(II) molar ratio, pH, sequence of pH adjustment, initial As(V) concentration, and interfering ions on As(V) removal in H2O2-Fe(II) process from synthetic acid mine drainage (AMD). The optimum H2O2/Fe(II) molar ratio was one for arsenate removal over the pH range of 4-7. Arsenate removal at pH 3 was poor even at high Fe(II) dosage due to the high solubility of Fe(III) formed in situ. With the increase of Fe(II) dosage, arsenate removal increased progressively before a plateau was reached at pH 5 as arsenate concentration varied from 0.05 to 2.0 mg L−1. However, arsenate removal was negligible at Fe/As molar ratio <3 and then experienced a striking increase before a plateau was reached at pH 7 and arsenate concentration ≥1.0 mg L−1. The co-occurring ions exerted no significant effect on arsenate removal at pH 5. The experimental results with synthetic AMD revealed that this method is highly selective for arsenate removal and the co-occurring ions either improved arsenate removal or slightly depressed arsenate removal at pH 5-7. The extended X-ray absorption fine structure (EXAFS) derived As-Fe length, 3.27-3.30 Å, indicated that arsenate was removed by forming bidentate-binuclear complexes with FeO(OH) octahydra. The economic analysis revealed that the cost of the H2O2-Fe(II) process was only 17-32% of that of conventional Fe(III) coagulation process to achieve arsenate concentration below 10 μg L−1 in treated solution. The results suggested that the H2O2-Fe(II) process is an efficient, economical, selective and practical method for arsenate removal from AMD.  相似文献   

15.
采用化学沉淀螯合自制生物絮凝的处理工艺处理含镍的模拟废水.首先,考察了不同的提取方法对脱水污泥提取的生物絮凝剂的絮凝效果的影响,进而确定生物絮凝剂的提取方法.然后,考察了不同的化学沉淀剂与生物絮凝剂组合处理含镍废水的能力,并采用Plackett-Burman设计法结合响应曲面法筛选优化了化学沉淀螯合生物絮凝处理含镍废水...  相似文献   

16.
Background Recent studies indicated that arbuscular mycorrhizal fungi (AMF) play important roles in plant accumulation of uranium (U) from contaminated environments, but the impacts of fertilization practices on functioning of the symbiotic associations, which are crucial factors influencing plant nutrition and growth responses to mycorrhiza, have rarely been considered. Materials and Methods In a greenhouse experiment, a bald root barley mutant (brb) together with the wild type (wt) were used to test the role of root hairs and AMF in uranium (U) uptake by host plants from a U contaminated soil. Nil, 20 and 60 mg KH2PO4-P kg–1 soil were included to investigate the influences of phosphorus (P) fertilization on plant growth and accumulation of U. Results Dry matter yield of barley plants increased with increasing P additions and wt produced significantly higher dry weight than brb. Mycorrhiza markedly improved dry matter yield of both genotypes grown at nil P, whereas only brb responded positively to mycorrhiza at 20 mg P kg-1. At the highest P level, mycorrhiza resulted in growth depressions in both genotypes, except for the roots of wt. In general, plant P concentrations increased markedly with increasing P additions and in response to mycorrhiza. Mycorrhiza and P additions had no significant effects on shoot U concentrations. However, root U concentrations in both genotypes were significantly increased by mycorrhiza. On the other hand, shoot U contents increased with increasing P levels, while 20 mg P kg-1 stimulated, but 60 mg P kg-1 marginally affected the U accumulation in roots. Root length specific U uptake was moderately enhanced both by root hairs and strongly enhanced by mycorrhiza. Moreover, non-inoculated plants generally had higher shoot-root ratios of U content than the corresponding inoculated controls. Conclusion Our study shows that AMF and root hairs improves not only P acquisition but also the root uptake of U, and mycorrhiza generally decreases U translocation from plant root to shoot. Hence, mycorrhiza is of potential use in the phytostabilization of U contaminated environments. Perspectives The complex impacts of P on U accumulation by barley plants suggested that U behavior in mycorrhizosphere and translocation along the soil-fungi-plant continuum as affected by fertilization practices deserve extensive studies for optimizing the function of mycorrhizal associations for phytoremediation purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号