首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Under laboratory conditions, ecotoxicological effects of chlorpromazine (CPZ) on freshwater goldfish (Carassius auratus) were examined using the toxic culture experiment. The results showed that the median lethal concentration (LC(50)) of CPZ toxic to Carassius auratus in 24, 48 and 96 h was 1.11, 0.43 and 0.32 mg/L, respectively. Thus, CPZ is an extreme toxicant to goldfish. Furthermore, there were significantly positive correlations between the ecotoxicological effects of CPZ and its concentrations, and the toxicity became higher as the exposure time increased. The activity of superoxide dismutase (SOD) and catalase (CAT) in goldfish livers was significantly influenced by CPZ. At the same exposure time, the activity of SOD reduced first, and increased then, whereas the activity of CAT enhanced first and decreased then. At the same exposure levels of CPZ, the activity of SOD and CAT changed similarly, decreased first, then increased and decreased at last. Within the range of exposure concentrations, the changes in the activity of CAT can more easily reflect the oxidation stress in Carassius auratus by CPZ than those of SOD.  相似文献   

2.
Roundup® is a glyphosate-based herbicide containing a mixture of surfactants. This paper evaluates the toxic effects of Roundup® and its main constituents on the goldfish, Carassius auratus, after 7 days exposure. Fish were exposed to 0.16, 0.032 and 0.0064 mg/L of Roundup® [containing 41% isopropylamine salt of glyphosate (G.I.S) and 18% polyoxyethylene amine (POEA)], G.I.S, and POEA. Their livers were taken for determining reactive oxygen species (ROS), superoxide dismutase (SOD) activity, malondialdehye (MDA) content and acetylcholinesterase (AChE) activity. Hydroxyl radical (·OH) could be induced by exposing Roundup® at a rate of 43%–111%, G.I.S at 90%–124% and POEA at142%–157%. A decreased SOD activity was observed in fish exposed to G.I.S and POEA. The contents of MDA significantly increased when exposed to Roundup® at all concentrations, 0.16 mg/L G.I.S and 0.032 mg/L POEA. The exposure led to an inhibition of AChE in livers overall during the experimental periods. POEA was more toxic than Roundup® or G.I.S during this experiment. AChE and ·OH are supposed to be sensitive biomarkers of the exposure of Roundup® and its main constituents to C. auratus.  相似文献   

3.

In this study, crucian carp (Carassius auratus) was exposed to the increasing concentrations of municipal sewage treatment plant effluent (MSTPE) for 15 days, and the activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and acetylcholinesterase (AChE), together with the contents of malondialdehyde (MDA) and glutathione (GSH) in the liver of C. auratus were investigated. Moreover, the integrated biomarker response (IBR) approach was applied to assess the adverse effects of MSTPE in freshwater. The aim of the study was to provide an effective biological indicator for evaluating the toxicity effects and ecological risks of MSTPE in the freshwater environment quantitatively. Results showed that MSTPE could cause oxidative damage to the liver of C. auratus, which reflected through the increasing MDA content over the exposure period. MSTPE also led to the biochemical responses of antioxidant defense in C. auratus liver, such as the enhancement of SOD, CAT, and GPx activities, as well as the inhibition of AChE activity and GSH content. It was found that MDA, SOD, GPx, and GSH could be used as the biomarkers for reflecting the adverse effects of MSTPE in the receiving freshwater on the 12th day of exposure. A significant increase of IBR values was observed as the increasing concentration of MSTPE, and the IBR values presented a significant positive correlation (r?=?0.891, P?<?0.05) with the increasing concentrations of MSTPE, indicating that IBR approach is a promising tool for assessing the toxicity effects of MSTPE in environmental freshwater.

  相似文献   

4.
Cobalt is an essential element, but at high concentrations it is toxic. In addition to its well-known function as an integral part of cobalamin (vitamin B12), cobalt has recently been shown to be a mimetic of hypoxia and a stimulator of the production of reactive oxygen species. The present study investigated the responses of goldfish, Carassius auratus, to 96 h exposure to 50, 100 or 150 mg L−1 Co2+ in aquarium water (administered as CoCl2). The concentrations of cobalt in aquaria did not change during fish exposure. Exposure to cobalt resulted in increased levels of lipid peroxides in brain (a 111% increase after exposure to 150 mg L−1 Co2+) and liver (30-66% increases after exposure to 50-150 mg L−1 Co2+), whereas the content of protein carbonyls rose only in kidney (by 112%) after exposure to 150 mg L−1 cobalt. Low molecular mass thiols were depleted by 24-41% in brain in response to cobalt treatment. The activities of primary antioxidant enzymes, superoxide dismutase (SOD) and catalase, were substantially suppressed in brain and liver as a result of Co2+ exposure, whereas in kidney catalase activity was unchanged and SOD activity increased. The activities of glutathione-related enzymes, glutathione peroxidase and glutathione-S-transferase, did not change as a result of cobalt exposure, but glutathione reductase activity increased by ∼40% and ∼70% in brain and kidney, respectively. Taken together, these data show that exposure of fish to Co2+ ions results in the development of oxidative stress and the activation of defense systems in different goldfish tissues.  相似文献   

5.
This study aimed to evaluate the aquatic toxicity of three typical tetracycline antibiotics, including tetracycline, oxytetracycline, and chlortetracycline, on the cyanobacterium Microcystis aeruginosa. The cell density, chlorophyll a content, protein content, and enzymatic antioxidant activities were determined. The results showed that the cell growth was significantly inhibited by the three compounds at a low concentration. The chlorophyll a and protein content decreased significantly after exposure to 0.05 mg L?1 of each compound for 9 d. When exposed to 0.2–1 mg L?1 of tetracycline, the superoxide dismutase (SOD) activity increased, but peroxidase (POD) and catalase (CAT) activities decreased. In contrast, when exposed to oxytetracycline and chlortetracycline at different concentrations ranging from 0.2 to 1 mg L?1 and from 0.01 to 0.05 mg L?1, the SOD activity decreased, but the POD and CAT activities increased. These findings indicate that tetracycline antibiotics influence cell growth and protein synthesis, and they also induce oxidative stress in M. aeruginosa at environmentally similar concentrations. Thus, this study may provide further insights into the toxic effects of tetracycline antibiotics and the controlled use of antibiotics.  相似文献   

6.
Polychlorinated biphenyls (PCBs) are a class of man-made organic compounds ubiquitously present in the biosphere. In this study, we evaluated the toxic effects of different concentrations of PCBs in two natural soils (i.e. red soil and fluvo-aquic soil) on the earthworm Eisenia fetida. The parameters investigated included anti-oxidative response, genotoxic potential, weight variation and biochemical responses of the earthworm exposed to two different types of soils spiked with PCBs after 7 or 14 days of exposure. Earthworms had significantly lower weights in both soils after PCB exposure. PCBs significantly increased catalase (CAT), superoxide dismutase (SOD), and guaiacol peroxidase (POD) activity in earthworms exposed to either soil type for 7 or 14 days and decreased the malondialdehyde (MDA) content in earthworms exposed to red soil for 14 days. Of the enzymes examined, SOD activity was the most sensitive to PCB stress. In addition, PCB exposure triggered dose-dependent coelomocyte DNA damage, even at the lowest concentration tested. This response was relatively stable between different soils. Three-way analysis of variance (ANOVA) showed that the weight variation, anti-oxidant enzyme activities, and MDA contents were significantly correlated with exposure concentration or exposure duration (P < 0.01). Furthermore, weight variation, CAT activity, and SOD activity were significantly affected by soil type (P < 0.01). Therefore, the soil type and exposure time influence the toxic effects of PCBs, and these factors should be considered when selecting responsive biomarkers.  相似文献   

7.
The current study investigated oxidative stress parameters (enzymes activities, metallothionein content and lipid peroxidation) in freshwater fish, Oreochromis niloticus, tilapia exposure to Monjolinho River (in 4 months of year: January, April, July and November). One critical site in Monjolinho River (site B) was assessed in comparison to a reference site (site A). Water pH and oxygen concentration was lower than that recommended by CONAMA (Brazilian National Environmental Committee), resolution 357/2005 for protection of aquatic communities, and ammonium and the metals Cu, Zn, Mn and Fe (on all months) concentrations were higher than the maximum concentration recommended. Glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were significantly decreased in liver and muscle in tilapia from Monjolinho River, throughout the year, in relation to reference except in gills that SOD activity increased. Glutathione S-transferase (GST) activity was significantly increased in liver of the tilapia from Monjolinho River in all sites, in relation to reference except in gills that GST activity increased in July and decreased in November, suggesting that GST activity could be induced to neutralize the pollutants toxicity. On the other hand, GST activity was significantly decreased in white muscle indicating a toxic effect of pollutants, resulting in a decreased ability of tilapia to perform defense reactions associated to GSTs. The decrease of catalase (CAT) activity in gills of the O. niloticus together with the increase of SOD activity, could explain the increased lipid peroxidation (LPO) level in this organ. Metallothionein levels in liver and gills were significantly high in all sites. Results indicate that the exposure to metals caused severe damage to tissues; despite the consensually assumed antioxidant induction as a sign of exposure to contaminants the effects seem in part to be mediated by suppression of antioxidant system with SOD, CAT and GPx as potential candidates for tissues toxicity biomarkers of pollutants.  相似文献   

8.
The increasing use of nanoparticles (NPs) worldwide has raised some concerns about their impact on the environment. The aim of the study was to assess the toxicity of metal oxide nanoparticles, singly or combined, in a freshwater fish (Carassius auratus). The fish were exposed for 7, 14, and 21 days to different concentrations of NPs (10 μg Al2O3.L?1, 10 μg ZnO.L?1, 10 μg Al2O3.L?1 plus 10 μg ZnO.L?1, 100 μg Al2O3.L?1, 100 μg ZnO.L?1, and 100 μg Al2O3.L?1 plus 100 μg ZnO.L?1). At the end of each exposure period, antioxidant enzyme activity (catalase, glutathione-S-transferase, and superoxide dismutase), lipid peroxidation, and histopathology were assessed in the gills and livers of C. auratus. The results show an increase in catalase (CAT) and superoxide dismutase (SOD) activity in the gills and livers of fish, especially after 14 days of exposure to single and combined NPs, followed by a reduction at 21 days. An increase in glutathione S-transferase (GST) was observed in gills after 7 days for all tested NP concentrations (single and combined); while in livers, a significant increase was determined after 14 days of exposure to 100 μg.L?1 of both single ZnO and Al2O3 NPs. Lipid peroxidation (LPO) significantly increased in gills after 7 days of exposure to 100 μg.L?1 Al2O3 NPs (single or combined). In livers, LPO increased significantly after 7 days of exposure to all tested concentrations of both single ZnO and Al2O3 (except for 10 μg Al2O3.L?1), and after 14 days of exposure to ZnO (10 and 100 μg.L?1) and Al2O3 (100 μg.L?1). The results from histological observations suggest that exposure to metal oxide NPs affected both livers and gills, presenting alterations such as gill hyperplasia and liver degeneration. However, the most pronounced effects were found in gills. In general, this study shows that the tested NPs, single or combined, are capable of causing sub-lethal effects on C. auratus, but when combined, NPs seem to be slightly more toxic than when added alone.  相似文献   

9.
Three common polyphenol compounds Gallic Acid (GA), Pyrogallic Acid (PA) and Catechol (CA) are known to have allelochemical-exhibiting inhibitory effects on the growth of the cyanobacterium Microcystis aeruginosa (M. aeruginosa). Metabolism and antioxidant responses in M. aeruginosa were investigated to elucidate the mechanism by which the three polyphenols inhibit algal growth. The inhibition effects of polyphenols were in the order of CA > PA > GA. The GA and CA exposures increased protein contents, superoxide dismutase (SOD) activity, catalase (CAT) activity and soluble sugar, especially for exposure to GA of 25 mg L?1. Soluble sugar content increased significantly especially when exposed to CA for 72 h. When exposed to PA, protein content, and SOD and CAT activities initially increased but over longer treatment time the activities decreased, in contrast to sugar content. Our results suggest that PA exposure for longer periods of time may inhibit catabolism action, while CA exposure could induce more oxide stress than GA or PA. The overall study showed that polyphenol-induced oxidative damage might be responsible for polyphenol inhibition on M. aeruginosa growth. The increases in cellular antioxidant enzymes and soluble sugar may have been to counteract the oxidative stress.  相似文献   

10.
Abstract

Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) activities were determined in rat tissues after dermal exposure to pesticides. Two experiments were conducted in male SD rats, 190–210 g body weight. Acephate (ACP), methamidophos (MAP) and nicotine (NIC) were dissolved either individually or together in 0.25 mL of 50% ethanol, which contained: AP=12.6 or MAP 1.3 or NIC= 9.6 mg; EXP 1 ‐ individual pesticide exposure; 64 rats, 16/group; EXP 2 ‐ mixture of AP+MAP+NIC at levels of IX, 2X, 3X; 48 rats, 12/group; 0.25 mL of solution or ethanol (Controls) was applied to 25 mm2 area of shaved skin 3 times a week. Half the rats were terminated after 4 weeks and the rest after 4 weeks of stopping exposure. Single pesticides decreased erythrocyte (RBC) SOD by 17 % after exposure and in the NIC group after post exposure (P#0.05). Increasing concentrations of AP+MAP+NIC mixture elevated RBC SOD by 22 % in the 2X and 3X groups and CAT by 13 % in the 3X group (P#0.05); post exposure increased RBC SOD by 2–3 fold and CAT activity by 13 % in all 3 groups. Liver GPX increased by 30–40 % and CAT decreased by 12 % in all exposed and post exposed groups (P#0.05). The results suggest that dermal exposure to mixtures of pesticides can selectively induce SOD, CAT and GPX activities in RBC and liver.  相似文献   

11.
Zhang J  Shen H  Wang X  Wu J  Xue Y 《Chemosphere》2004,55(2):167-174
There were few reports on the antioxidant response of aquatic organisms exposed to 2,4-dichlorophenol (2,4-DCP). This research explored the hepatic antioxidant responses of fish to long-term exposure of 2,4-DCP for the first time. Freshwater fish Carassius auratus were chosen as experimental animals. The fish were exposed to six different concentrations of 2,4-DCP (0.005-1.0 mg/l) for 40 days and then liver tissues were separated for determination. As shown from the results, 40 days afterwards, the activities of catalase (CAT) and selenium-dependent glutathione peroxidase (Se-GPx) and the content of oxidized glutathione (GSSG) were induced significantly on the whole compared to control group; superoxide dismutase (SOD) responded to 2,4-DCP exposure at only 0.005 mg/l; the content of reduced glutathione (GSH) was suppressed continuously except Group 7; the activity of glutathione reductase was inhibited initially and then restored to control level from Group 4 on; glutathione S-transferase had only slight responses in Groups 3 and 4. Total glutathione (tGSH) and GSH/GSSG ratio were also calculated to analyze the occurrence of oxidative stress. Besides, good dose-effect relations, which cover most of the exposure concentration range, were found between 2,4-DCP level and CAT activity, GSSG content, Se-GPx activity, respectively. In conclusion, SOD and Se-GPx may be potential early biomarkers of 2,4-DCP contamination in aquatic ecosystems, and further studies will be necessary.  相似文献   

12.
Trichlorfon is an organophosphate insecticide that is widely used in aquaculture and agriculture against parasitic infestations and has caused aquatic toxicity to non-target organisms. To evaluate the effects of low doses of trichlorfon on the oxidative stress and hepatotoxicity in amphibians, Chinese brown frogs (Rana chensinensis) were exposed to trichlorfon at concentrations of 0, 0.01, 0.1, and 1.0 mg/L for 2 and 4 weeks. Then, the activities of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), and the content of malondialdehyde (MDA) in hepatic tissue were examined to evaluate the effects of oxidative stress and lipid peroxidation. The histopathological alternations to the liver were observed through light and transmission electron microscopy (TEM). The results showed that SOD and CAT activities were increased in the livers of frogs exposed to various concentrations of trichlorfon. The GST activity showed no significant changes at any concentration after 2 weeks of exposure, whereas there was an initial increase after exposure to 0.1 mg/L of trichlorfon at 4 weeks. The content of MDA revealed a significant decrease after exposure. Histopathological and ultrastructural studies showed that trichlorfon induced hyalinization, vacuolation, nucleus necrosis, and cellular swelling in hepatocytes. These results suggest that low doses of trichlorfon could induce oxidative stress, lipid peroxidation, and hepatic lesions in frogs, which shows that even lower, non-lethal doses of trichlorfon are potentially toxic to amphibians.  相似文献   

13.
In this study, the effects of cadmium (Cd) stress on the activities of disaccharidases (sucrase, lactase, and maltase), amylase, trypsin, pepsase, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) content in the alimentary system of freshwater crabs Sinopotamon henanense were studied. Results showed that the enzyme activities in the stomach, intestine, and hepatopancreas changed with Cd concentration. In terms of digestive enzymes, Cd exposure had an inhibitory effect on the activities of the disaccharidases, amylase, and pepsase (only in the stomach). Significant induction of trypsin activity by Cd at a lower concentration was observed, but as Cd concentration increased, trypsin activity decreased. Maltase activity showed a slight recovery after inhibition by Cd. The activities of SOD and CAT increased initially and decreased subsequently. Cd significantly inhibited the activity of GPx. MDA content increased with increasing concentration of Cd. These results showed that acute Cd exposure led to harmful effects on the alimentary system of crabs, which are likely linked to Cd induced oxidative stress.  相似文献   

14.
Lei W  Wang L  Liu D  Xu T  Luo J 《Chemosphere》2011,84(5):689-694
Cadmium (Cd) is a highly toxic element in water. Its toxicity has been attributed to oxidative stress mediated by free radicals. Here we investigated the effects of Cd on the histopathology, antioxidant enzymes and lipid peroxidation of crustacean heart. The freshwater crabs Sinopotamon yangtsekiense were exposed to different concentrations of Cd for 1, 3, 5 and 7 d. After exposure, histological abnormalities were discovered, including myocardial edema, vacuolar and vitreous degeneration, and infiltration of inflammatory cells. Additionally, alterations in nuclei, mitochondria, rough endoplasmic reticulum as well as myofibrils were observed. Meanwhile, superoxide dismutase (SOD) activity was significantly increased after Cd exposure. Catalase (CAT) activity was only increased in the group exposed to 14.50 mg L−1 Cd on day 5 and decreased with increasing Cd concentration and exposure time. Glutathione peroxidase (GPx) activity was increased in groups treated with 29.00, 58.00 and 116.00 mg L−1 on days 1 and 3, and decreased thereafter. Besides, malondialdehyde (MDA) levels were significantly increased after 3 d of Cd exposure at all the indicated concentrations. These results showed that acute Cd exposure led to harmful effects on the histology of crab heart, which are most likely linked to Cd-induced oxidative stress.  相似文献   

15.
Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) activities were determined in rat tissues after dermal exposure to pesticides. Two experiments were conducted in male SD rats, 190-210 g body weight. Acephate (ACP), methamidophos (MAP) and nicotine (NIC) were dissolved either individually or together in 0.25 mL of 50% ethanol, which contained: AP = 12.6 or MAP 1.3 or NIC = 9.6 mg; EXP 1--individual pesticide exposure; 64 rats, 16/group; EXP 2--mixture of AP + MAP + NIC at levels of 1X, 2X, 3X; 48 rats, 12/group; 0.25 mL of solution or ethanol (Controls) was applied to 25 mm2 area of shaved skin 3 times a week. Half the rats were terminated after 4 weeks and the rest after 4 weeks of stopping exposure. Single pesticides decreased erythrocyte (RBC) SOD by 17% after exposure and in the NIC group after post exposure (P#0.05). Increasing concentrations of AP + MAP + NIC mixture elevated RBC SOD by 22% in the 2X and 3X groups and CAT by 13% in the 3X group (P#0.05); post exposure increased RBC SOD by 2-3 fold and CAT activity by 13% in all 3 groups. Liver GPX increased by 30-40% and CAT decreased by 12% in all exposed and post exposed groups (P#0.05). The results suggest that dermal exposure to mixtures of pesticides can selectively induce SOD, CAT and GPX activities in RBC and liver.  相似文献   

16.
Dong L  Gao J  Xie X  Zhou Q 《Chemosphere》2012,89(1):44-51
DNA damage and changes in enzyme activities were used as biomarkers to evaluate the genotoxicity and oxidative stress of tetracycline and chlortetracycline on the earthworm Eisenia fetida. The results showed that both antibiotics induced significant genotoxicity on earthworms in a dose-dependent manner (< 0.01) with chlortetracycline having a stronger effect than tetracycline in the short term. The tests on the activities of superoxide dismutase (SOD) and catalase (CAT) enzymes further indicated biochemical stresses induced by the antibiotics. An N-shaped activity pattern was noted with the enzyme activities being stimulated first, then inhibited, and stimulated again with increasing concentration. The induced activity of SOD or CAT could scavenge oxygen free radicals and protect the organisms against oxidative stress by alleviating the corresponding DNA damage. Compared to enzyme activities, DNA damage as a biomarker was more sensitive and is thus more suitable for detecting low concentration exposure and diagnosing the genotoxicity of contaminants in terrestrial environment.  相似文献   

17.
The purpose of this study was to investigate the apoptosis-related cytotoxic effects and molecular mechanisms of individual isomers of profenofos (PFF) on primary hippocampal neurons at 1.0 to 20 mg L?1. The cell viability and lactate dehydrogenase (LDH) efflux indicated that (?)­PFF exposure was associated with more toxic effects than (+)­PFF above the concentration of 5 mg L?1 (P < 0.5). Flow cytometric results showed that the percentages of apoptotic cells incubated with 20 mg L?1 (?)­PFF, (+)­PFF and rac-PFF for 24 h reached 23.4%, 9.2% and 14.2% (P < 0.01), respectively. Hippocampal neurons incubated with (?)­PFF, (+)­PFF and rac-PFF exhibited a dose-dependent accumulation of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) and a dose-dependent inhibition of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activity, implying that the defense system of the tests induces oxidative damage. A statistically significant difference was observed between the two enantiomers at 5 mg L?1 and above. Moreover, the results showed that (?)­PFF exposure caused a significant loss in mitochondrial transmembrane potential (MMP), an upregulation of Ca2+ and Bax protein expression, a downregulation of Bcl-2 protein expression, and the activation of caspase-3 and caspase-9 in a dose-dependent manner; (+)­PFF and rac-PFF exhibited these effects to a lesser degree. All results suggest that PFF induced apoptosis in rat hippocampal neurons via the mitochondria-mediated pathway, and oxidative stress is one of the factors of PFF-induced apoptosis. In addition, (?)­PFF appears to play an important role in oxidative stress and apoptosis, indicating that enantioselectivity should be considered when assessing ecotoxicological effects and health risks of chiral pesticides.  相似文献   

18.
This study hypothesized that the positive or negative effects of exogenous abscisic acid (ABA) on oxidative stress caused by lead were dose dependent. The effects of different levels of ABA (2.5, 5, and 10 mg L?1) on lead toxicity in the leaves of Atractylodes macrocephala were studied by investigating plant growth, soluble sugars, proteins, lipid peroxidation, and antioxidative enzymes. Excess Pb inhibited root dry weight, root length, and the number of lateral roots, but increased shoot growth. In addition, lead stress significantly decreased the levels of chlorophyll pigments, protein, and activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and peroxidase (POD). Different levels of ABA significantly increased SOD, CAT, POD, and APX activities, but decreased the level of hydrogen peroxide and malondialdehyde in nonstressed plants. Exogenous application of 2.5 mg L?1 ABA detoxified the stress-generated damages caused by Pb and also enhanced plant growth, soluble sugars, proteins, and all four antioxidant enzyme activities but reduced Pb uptake of lead-stressed plant compared to lead treatment alone. However, the toxic effects of Pb were further increased by the applications of 5 and 10 mg L?1 ABA. The levels of antioxidants caused by a low concentration of exogenous ABA might be responsible for minimizing the Pb-induced toxicity in A. macrocephala.  相似文献   

19.
Formesafen is a diphenyl ether herbicide that has adverse effects on non-target animals. However, knowledge about the effect of fomesafen on the antioxidant defense system in earthworms is vague. Thus, it is essential to investigate the effects of fomesafen on the antioxidant defense system in earthworms as a precautionary method. In the present study, earthworms (Eisenia fetida) were exposed to artificial soil treated with a range of concentrations of fomesafen (0, 10, 100, and 500 μg kg?1) and were collected on the 3rd, 7th, 14th, 21st, and 28th days of exposure. Subsequently, the antioxidant enzyme activities (superoxide dismutase (SOD); catalase (CAT); and guaiacol peroxidase (POD)), reactive oxygen species (ROS) level, and malondialdehyde (MDA) content due to fomesafen treatment were examined in earthworms. Compared with the control, the SOD activity increased on the third and seventh days but decreased on the 14th day due to treatment with 100 and 500 μg kg?1 of fomesafen. The activities of CAT and POD increased significantly on the third, seventh, and 14th days of exposure. In addition, the ROS level was significantly enhanced throughout the entire experimental period and showed a statistically dose-dependent relationship on the seventh and 14th days. The MDA content markedly increased on the seventh day of exposure; however, obvious changes were not detected at other exposure period. Low doses of fomesafen (≤500 μg kg?1) may result in oxidative damage and lipid peroxidation in E. fetida by inducing the generation of ROS at short exposure periods (14 days). However, the adverse effects of fomesafen gradually disappear as the cooperation of antioxidant enzymes and exposure time are prolonged. This result may be helpful for further studies on the toxicological mechanisms of fomesafen to earthworms.  相似文献   

20.
As important members of the zooplankton community and sources of food for fish, rotifers are used extensively in ecotoxicological research to assess the health of the environment and safety of compounds. However, most rotifer toxicity tests are only conducted using rotifer neonates derived from unexposed mothers, thus ignoring the potential transfer of contaminants from mother to offspring. To understand better the mother to offspring exposure, a multigenerational study was conducted using three successive generations (F0, F1 and F2) of the common freshwater rotifer Brachionus calyciflorus to investigate the toxic effects of the widely used organophosphate pesticide, dimethoate (O, O-dimethyl S-methylcarbamoylmethyl phosphorodithioate). When the F0 generation was exposed to five pesticide concentrations, the population growth rate (r) displayed symptoms of hormesis, characterized by the conversion of low-concentration stimulation to high-concentration inhibition. Despite this observation, the exposure to any given concentration of dimethoate reduced the population growth rates of the F1 and F2 generation rotifers. Significant differences existed between the F0, F1 and F2 rotifers for the population growth rate under dimethoate stress: F2 individuals were more sensitive than F1, whereas the F1 individuals were more sensitive than F0. The results indicated that the parental exposure to a given toxic stress could result in increased sensitivity and decreased fitness in the offspring. This study illustrates the utility of multigenerational toxicity tests, which may better reflect and more accurately predict the effects of long-term pesticide exposure to aquatic organisms at the population level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号