首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Disappearance rates of 10 ppm technical diflubenzuron (N(((4‐chloro‐phenyl)amino)carbonyl)‐2,6‐diflurobenzamide, Dimilin®) and BAY SIR 8514 (2‐chloro‐N(((4‐trifluoromethoxyphenyl)amino)carbonyl)benzamide) applied on quartz sand to natural sandy loam and muck soils were significantly greater than for the corresponding sterilized soils, e.g. 47–51% vs. 68–87% BAY SIR 8514 and 2–12% vs. 80–87% diflubenzuron remaining at 12 wk, indicating that soil microorganisms play a major role in their degradation. Kinetic analysis of the data based on a first order dependence on the insecticide concentration showed that the rate constants for these disappearance reactions decreased with time.  相似文献   

2.
Abstract

A three‐year field lysimeter study was conducted to investigate the role of subirrigation systems in reducing the risk of water pollution from metolachlor (2‐chloro‐N‐(2‐ethyl‐6‐methlphenyl)‐N‐(2‐methoxy‐l‐methylethyl)acetamide). Nine large PVC lysimeters, 1 m long x 0.45 m diameter, were packed with a sandy soil. Three water table management treatments, i.e. two subirrigation treatments with constant water table depths of 0.4 and 0.8 m, respectively, and a free drainage treatment in a completely randomized design with three replicates were used. Corn (Zea mays L.) was grown in each lysimeter, and at the beginning of summer of each year metolachlor was applied, at the locally recommended rate of 2.75 kg a.i./ha. Soil and water samples were collected at different time intervals after each natural or simulated rainfall event. Metolachlor was extracted from these samples and analyzed using Gas Chromatography.

Results obtained in this three year study, (1993–1995), lead to the conclusion that metolachlor is quite mobile since it leached to a depth of 0.85 m below the soil surface quite early in the growing season. Metolachlor concentrations decreased with depth as well as with time. The shallower water table in the 0.4 m subirrigation treatment showed less residues in the soil solution than that of other treatments. However, a mass balance study, supported by an independent laboratory investigation, shows that water table management, statistically, has no significant effect on the reduction of metolachlor residues in sandy soils.  相似文献   

3.
In May 1983, granular formulations of carbofuran, chlorpyrifos, disulfoton, fonofos, isofenphos, phorate, and terbufos were applied in incorporated bands to duplicate 2 m2 field plots of clay loam. Insecticide concentrations were determined in the bands at 0,1,2,3,4,6,8,10,12,16, and 20 wk. Following spring cultivation, the insecticides were applied to the same plots in 1984 and 1985. In addition, carbofuran was applied to previously untreated plots in 1984 and all 7 materials were applied to previously untreated plots in 1985. Sampling and analysis were carried out as in 1983. Persistence was assessed on the basis of the disappearance rates measured for the 1st 8 wk and of a calculated Effectiveness Potential (the ratio of the average residue in the upper 5 cm of the band at 8, 10 and 12 wk and the published LC95 for western corn rootworm in clay loam soil). Soils treated with carbofuran and isofenphos in 1984 and all soils treated in 1985 were tested for anti-insecticide activity. Soil cores from some carbofuran, chlorpyrifos and terbufos treated plots were sectioned vertically to establish the distribution of the insecticides during 1985. In addition, granular and pure chemical forms of isofenphos and carbofuran were applied at 10 ppm to anti-isofenphos and anti-carbofuran active and control soils (from field plots) maintained at 10 and 20% moisture in the laboratory to assess the effect of formulation and moisture on persistence in active soils. Insecticide concentrations were determined at 0,1,3,7, 10,14,21,28, and 35 days. The persistence of chlorpyrifos, terbufos and phorate was relatively constant over the 3 years and between plots receiving single and multiple treatments. Disulfoton and fonofos behavior was more variable and that of carbofuran and isofenphos was extremely variable. Anti-insecticide activity against carbofuran and isofenphos was detectable 2 wk after an initial application and was still present the following spring. Anti-insecticide activity against fonofos, terbufos sulfoxide, phorate sulfone and disulfoton sulfone was also generated in this soil. Anti-insecticide activity against chlorpyrifos, disulfoton, terbufos and phorate was not present. Carbofuran, chlorpyrifos and terbufos (+ metabolites) present in the upper 5 cm of soil averaged 93, 94 and 94%, respectively, of the total core contents over 12 wk. Significant moisture dependent differences were observed between the behavior of granular carbofuran and granular isofenphos in anti-insecticide active soils.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Abstract

A fluorometric method was developed to quantify glyphosate loss from glass surfaces after exposure to the natural forest environment. The method was based on the principle of converting glyphosate into glycine, followed by the fluorogenic labeling with o‐phthalaldehyde. A fluorometer (with λ Ex = 360 nm / λEm =430 nm) was used to quantify the derivatized fluorogenic compound. Response was linear over the concentration range of 143, 286, 572, 858 and 1144 μg of glyphosate (acid equivalent, AE) per mL of the diluted Vision® formulation. Three end‐use mixtures of Vision® were prepared, each at a concentration of 28.6 g AE/L, without and with two adjuvants, Ethomeen® T/25 at 4.5 mL/L and Silwet® L‐77 at 1.5 mL/L. Several dilutions of the end‐use mixtures were applied on glass slides without and with the coating of cuticular wax extracted from trembling aspen foliage. The slides were left for 5 days in a forest opening to determine rainfastness, volatilization and photostability of glyphosate. The residues were quantified using the method developed. Three calibration curves were required because Silwet decreased the fluorometric response of glyphosate, whereas Ethomeen increased it. The minimum detection limit was 143 μg of glyphosate/mL. Glyphosate was resistant to volatilization and sunlight‐mediated degradation, regardless of the presence of wax coating or the adjuvants. About 64% of the applied glyphosate was washed off after a 9.6 mm rainfall when no adjuvant was present. Both adjuvants provided some amount of rain‐protection to glyphosate, but Silwet reduced the washoff to a greater extent (46%) than Ethomeen (55%).  相似文献   

5.
Abstract

Metolachlor [2‐chloro‐N‐(2‐methoxy‐1‐methylethyl)‐2'‐ethyl‐6'‐methyl acetanilide] dissipation under both field and laboratory conditions were studied during summer season in an Indian soil. Metolachlor was found to have moderate persistence with a half‐life of 27 days in field. The herbicide got leached down to 15–30 cm soil layer and residues were found up to harvest day of the sunflower crop in both 0–15 cm and 15–30 cm soil layers. Metolachlor was found to be more persistent in laboratory studies conducted for 190 days. The rate of degradation was faster in soil under flooded partial anaerobic conditions as compared to aerobic soil with a half‐life of 44.3 days. In aerobic soil, metolachlor was very stable with only 49% dissipation in 130 days. Residues remained in both the soils up to the end of the experimental period of 190 days.  相似文献   

6.
Abstract

A technique for comparing pesticide penetration through fabric was devised. It involved passing fabric swatches through a controlled spray system and measuring the pesticide residue transferring on and through the tested fabric. Six variations in fabric were selected for testing: 100% cotton woven chambray,

Scotch‐guard® treated chambray, Tyvek® , Crowntex® , and two variations of Gore Tex®. Guthion® (azinphos‐methyl) was chosen as the insecticide for controlled use in this experiment because of its widespread use and relatively high toxicity.

Gas Chromatographie analysis of the amount of Guthion® transferred through the outer fabric was made by the use of analysis of variance (ANOVA) and Duncan's multiple range test. The ANOVA for experiment replication showed no significant difference among the replications of each fabric. The treatment ANOVA was highly significant at the 0.01 level.

Duncan's multiple range test further analyzed the differences in the treatment, and three groups were found to be significantly different from each other. The two types of Gore Tex®, Tyvek® and Crowntex® comprised the group permitting the least penetration. Scotch‐guard® treated chambray followed, and untreated chambray allowed the greatest penetration.  相似文献   

7.
Abstract

Fluazinam, a widely used pesticide in conventional potato cultivation, is effective against epidemics of the fungal disease late blight. To assess fluazinam persistence in soil, laboratory experiments were conducted with fluazinam added to soil as a pure chemical or contained in the commercial product Shirlan®. In a follow-up experiment, the persistence was monitored under constant temperature and water content conditions during a maximum period of 1?year. In an annual climatic rotation experiment, fluazinam added to soil was exposed to the year-round temperature and water content conditions occurring in the boreal zone. A third experiment was undertaken to clarify the effect of soil organic matter (SOM) on the recovery of fluazinam. In the follow-up and annual climatic rotation experiments, more than half of the added fluazinam was recovered after 1?year of incubation. The estimated half-life of fluazinam ranged between 355 and 833?days. The degradation of fluazinam was enhanced by an abundance of SOM, a warm temperature, and wetness. Additionally, in over half of soil samples collected from fields where potato had been intensively cultivated for many years, varying concentrations of fluazinam were detected. Fluazinam can carry over to the next growing season in professional potato production.  相似文献   

8.
The effects of three soil pH's, three soil temperatures, and three soil moistures on [14C]isofenphos degradation were investigated. All three factors interacted strongly and significantly affected the persistence of isofenphos as well as the formation of the degradation products (p less than 1%). Isofenphos degradation was greatest at the higher temperatures 35 degrees C greater than 25 degrees C greater than 15 degrees C (except under alkaline pH's), medium moisture 25% greater than 30% greater than 15%, and in both alkaline (pH = 8) and acidic soils (pH = 6) compared with neutral soil (pH = 7). Isofenphos oxon formation was greatest at higher temperatures 35 degrees C compared with 25 degrees C and 15 degrees C, in acidic soil greater than neutral soil greater than alkaline soil, and under high moisture (30%) compared with the 15% and 22.5% moistures. The formation of soil-bound residues was greatest at higher temperatures 35 degrees C greater than 25 degrees C greater than 15 degrees C, higher moisture 30% compared with 15% and 22.5%, and in alkaline soil compared with neutral and acidic soils.  相似文献   

9.
Atrazine and metolachlor are extensively used in Ontario, Canada for control of broadleaf weeds and annual grasses in corn. Conservation tillage may alter the physical and biological environment of soil affecting herbicide dissipation. The rate of dissipation of these two herbicides in soil from conventional, ridge and no-tillage culture was followed. Herbicide dissipation was best described by first order reaction kinetics. Half life, the time for herbicide residues to dissipate to half their initial concentration, was unaffected by tillage. Half life for atrazine and metolachlor was similar and ranged from 31 to 66 d. The rate of dissipation decreased in dry years when soil moisture content was low. In a dry year, herbicide residues during the growing season were significantly greater on ridge tops than in the other tillage treatments. However, after harvest no differences in herbicide residues were detected among tillage treatments. Residues of atrazine (6 to 9% of applied) and metolachlor (4 to 6%) were detected in soil before planting a year after application. De-ethyl atrazine, the primary degradation product of atrazine, increased in concentration during the growing season with the greatest concentrations measured at harvest and in years when atrazine dissipated fastest. De-ethyl atrazine one year after application accounted for about 12% of the remaining triazine residue. These herbicide residues would not be phytotoxic to subsequent crops but are a potential source for leaching to ground and surface waters.  相似文献   

10.
Abstract

The degradation of profluralin [N‐(cyclopropylmethyl)‐α,α,α‐trifluoro‐2,6‐dinitro‐N‐propyl‐]p‐toluidine] and trifluralin (α,α,α‐trifluoro‐2,6‐dinitro‐N,N‐dipropyl‐p‐toluidine) was studied under aerobic and anaerobic soil conditions. Three soils (Goldsboro loamy sand, Cecil loamy sand, Drummer clay loam) were each treated with 1 ppmw herbicide; anaerobic conditions were maintained by flooding. Soil samples were extracted monthly and subjected to TLC analysis. No degradation was detected in sterile controls. Aerobic degradation of both herbicides was greatest in the Cecil loamy sand soil over the entire incubation period. Degradation of profluralin in Cecil soil under aerobic conditions was 86 percent after 4 months with three products detected; 83 percent of the trifluralin was degraded with two products detected. Anaerobic degradation accounted for 72 percent of the profluralin and 78 percent of the trifluralin after 4 months. Degradation of both herbicides increased with incubation time for the first 3 months and decreased slightly thereafter. Generally there was more extensive degradation (percent and in number of products formed) of profluralin than trifluralin under the conditions tested. More degradation products were detected for both herbicides under aerobic conditions than under anaerobic conditions.  相似文献   

11.
Abstract

Samples of a mineral soil (Plainfield sand) and an organic soil (muck) were treated with granular and EC formulations of chlorpyrifos and incubated at 27±1°C and 65±5% RH in open and closed containers. Duplicate samples of each soil‐formulation‐container combination were analyzed for residual chlorpyrifos during a 23 wk period. The disappearance rates observed demonstrate that the relative importance of formulation and containment on overall persistence depends on soil type. For the mineral soil, disappearance was slower from closed containers and formulation had only a slight effect while, in the organic soil the granular formulation disappeared slower than the EC and there was little difference between open and closed containers. The relative importance of degradation and volatilization in the disappearance of chlorpyrifos from soil is discussed.  相似文献   

12.
Abstract

Persistence of hexaconazole (2‐(2,4‐dichlorophenyl)‐l‐(lH‐l,2,5‐triazol‐l‐yl) hexan‐2‐ol) was studied in alluvial, red and black soils under flooded and nonflooded conditions. This fungicide was more persistent in all soils under flooded conditions than under nonflooded conditions and at 27°C than at 35°C. Degradation of hexaconazole in sterilized and nonsterilized soils proceeded at identical rates indicating a minor role of micro‐organisms in its degradation. The soil persistence of hexaconazole was not affected by the addition of wheat straw both under flooded and nonflooded conditions.  相似文献   

13.
Abstract

The persistence of metsulfuron‐methyl in sandy loam and clay soil incubated at different temperatures and moistures contents was investigated under laboratory conditions using longbean (Vigna sesquipedalis L.) as bioassay species. A significant degradation of metsulfuron‐methyl was observed in non‐autoclaved soil rather than the autoclaved soil sample. At higher temperature, the degradation rate in non‐autoclaved soil improved with increasing soil moisture content. In non‐autoclaved sandy loam and clay soil, the half‐life was reduced from 9.0 to 5.7 and from 11.2 to 4.6 days, respectively when moisture level of sandy loam increased from 20 to 80% field capacity at 35°C. In the autoclaved soil, herbicide residue seems to have been broken down by non‐biological process. The rate of dissipation was slightly increased after the second application of the herbicide to non‐autoclaved soils but not in autoclaved soil, indicating the importance of microorganisms in the breakdown process.  相似文献   

14.
Abstract

Gypchek®, the gypsy moth (Lymantria dispar L.) nucleopolyhedrosis virus product, is manufactured by the United States Department of Agriculture (USDA) Forest Service, and Animal and Plant Health Inspection Service under controlled conditions in a laboratory strain of gypsy moth larvae. Gypchek was registered with the U.S. Environmental Protection Agency in 1978 as a general use pesticide to control gypsy moth. This product has been the subject of intense research and development targeted toward maximizing efficacy while minimizing the cost of production and application. The current Gypchek tank mix is applied at 1.25 × 1012occlusion bodies (OB's) per hectare for each of two applications (3‐days apart) at 18.7 litres/ha per application.  相似文献   

15.
ABSTRACT

This study evaluates the dissipation of terbuthylazine, metolachlor, and mesotrione at different depths in soils with contrasting texture. The field trial was conducted at the Padua University Experimental Farm, north-east Italy. The persistence of three herbicides was studied in three different soil textures (clay soil, sandy soil, and loamy soil) at two depths (0–5 and 5–15 cm). Soil organic carbon content was highest in the clay (1.10%) followed by loam (0.67%) and sandy soil (0.24%); the pH of soils was sub-alkaline. Terbuthylazine, metolachlor, and mesotrione were applied on maize as a formulated product (Lumax®) at a dose of 3.5 L ha?1. Their dissipation in the treated plots was followed for 2 months after application. The concentrations of herbicides were analyzed by liquid chromatography-mass spectrometry. The dissipation of terbuthylazine, metolachlor, and mesotrione could be described by a pseudo first-order kinetics. Terbuthylazine showed the highest DT50, followed by metolachlor and mesotrione. Considering the tested soil, the highest DT50 value was found in clay soil for terbuthylazine and metolachlor, whereas for mesotrione there was no difference among soils. Significant differences were found between the two soil depths for terbuthylazine and metolachlor, whereas none were found for mesotrione. These results suggest that soil texture and depth have a strong influence on the dissipation of terbuthylazine and metolachlor, whereas no influence was observed on mesotrione because of its chemical and physical properties.  相似文献   

16.
Field experiments were conducted during two years at Srem region to investigate the influence of meteorological conditions, time and rate of application on soil persistence of imazethapyr in sandy loam type of soil. Imazethapyr was applied PRE- and POST-EM and in both cases in three application rates: 80, 120 and 160 g a.i./ha. Soil samples were collected from the day of herbicide application in predetermined intervals up to one year after application and residual concentrations were determined with a white mustard root bioassay. Imazetapyr persistence was significantly influenced by meteorological conditions with average half-life being 6 days longer in season with lower precipitation level. Time of application induced slower imazethapyr dissipation resulting in higher average t1/2 (seven and nine days in first and second year of examination, respectively). Application rates had no consistent effect on imazethapyr persistence. Imazethapyr residue level one year after application caused no visible injuries on white mustard shoots, while root growth reduction ranged from 4.6 to 27.7%. Obtained residue levels were further compared with known data on crop sensitivity in order to assess possibility of crop injuries one year after imazethapyr application.  相似文献   

17.
Abstract

The persistence of two insecticidally active compounds from the neem tree, azadirachtin A and B, was determined at two different temperatures (15 and 25°C) in the laboratory after application of the commercial neem insecticide, Margosan‐O, to a sandy loam soil. The influence of microbial activity on degradation was also examined by comparing autoclaved and non‐autoclaved soils also at 15 and 25°C. Temperature influenced degradation rates. The DT 50 (time required for 50% disappearance of the initial concentration) for azadirachtin A was 43.9 and 19.8 d for non‐autoclaved soil kept at 15 and 25°C, respectively. The DT 50 for azadirachtin B was 59.2 and 20.8 d for non‐autoclaved soil kept at 15 and 25°C, respectively. Microbial activity was also responsible for faster degradation because DT 50 ’s for autoclaved soil were much longer than for non‐autoclaved soils. DT 50 s for azadirachtin A in autoclaved soil were 91.2 (15°C) and 31.5 d (25°C). DT50’s for azadirachtin B in autoclaved soil were 115.5 (15°C) and 42.3 d (25°C). Two degradation products of azadirachtin were detected, but were not identified. Higher levels of the two degradation products were detected in non‐autoclaved soil.  相似文献   

18.
Soil was spiked with [9-14C]phenanthrene and [1-14C]hexadecane at 50 mg kg−1 and aged for 1, 25, 50, 100 and 250 d. At each time point, the microcosms were amended with aqueous solutions of cyclodextrin (HP-β-CD) at a range of concentrations (0-40 mM). Mineralisation assays and aqueous HP-β-CD extractions were performed to assess the effect of the amendments on microbial degradation. The results showed that amendments had no significant impact on the microbial degradation of either of the 14C-contaminants. Further, HP-β-CD extractions were correlated with the mineralisation of the target chemicals in each of the soil conditions. It was found that the HP-β-CD extraction was able to predict mineralisation in soils which had not been amended with cyclodextrin; however, in the soils containing the HP-β-CD, there was no predictive relationship. Under the conditions of this study, the introduction of HP-β-CD into soils did not enhance the biodegradation of the organic contaminants.  相似文献   

19.
Organochlorine pesticides in soil profiles from Tianjin, China   总被引:17,自引:0,他引:17  
Wang X  Piao X  Chen J  Hu J  Xu F  Tao S 《Chemosphere》2006,64(9):1514-1520
Soil cores were collected from soils at five sites in Tianjin area for the determination of hexachlorocyclohexane isomers (HCHs, including alpha-HCH, beta-HCH, gamma-HCH and delta-HCH), dichlorodiphenyltrichloroethane and metabolites (DDXs, including p,p'-DDT, p,p'-DDE and p,p'-DDD) and total organic carbon (TOC). The levels and vertical distributions of HCHs and DDXs are studied. Results show that the application of pesticides in the past years was the major contributor of HCHs and DDXs accumulation in the sampling areas. Significant positive correlations were seen between the residual and application amounts of HCHs and DDXs. Wastewater irrigation did not bring a significant contribution of HCHs or DDXs into the soils. HCHs and DDXs concentrations peak at the surface and decline in soil profile with depth, while fluctuations were observed in the plow layers of some cultivated soils caused by frequent cultivation activities and batch irrigation. Positive correlations were observed between the contents of TOC and HCHs and DDTs. Although the amounts of HCHs application in all sampling sites are larger than DDXs, at surface and near surface layers of most sampling sites, the concentrations of summation operatorHCHs are lower than summation operatorDDXs. The composition of DDXs in the applied pesticides and sampled soils indicates that there is no recent DDT input at the sample areas.  相似文献   

20.
Abstract

Spinosad is a natural product with biological activity against a range of insects including lepidoptera. It is comprised of two major components namely spinosyns A and D. The degradation of spinosad in soil under aerobic conditions was investigated using two U.S. soils (a silt loam and a sandy loam) which were treated with either 14C‐spinosyn A or ‐spinosyn D at a 2X use rate of 0.4mg/kg soil for spinosyn A and 0.1mg/kg for spinosyn D. Further samples of soil were pre‐sterilised prior to treatment in order to establish whether spinosyns A and D degrade abiotically. Flasks of treated soil were incubated in the dark at 25°C for up to one year after treatment.

HPLC and LC‐MS of soil extracts confirmed that the major degradation product of spinosyn A was spinosyn B, resulting from demethylation on the forosamine sugar. Other dégradâtes were hydroxylation products of spinosyns A and B, with hydroxylation probably taking place on the aglycone portion of the molecule. Half lives were similar for both spinosyns and were in the range 9–17 days, with longer half lives in the pre‐sterilised soils (128–240 days) suggesting that degradation was largely microbial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号