首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
This study evaluated the toxicity of herbicide atrazine, along with its bioaccumulation and biodegradation in the green microalga Chlamydomonas mexicana. At low concentration (10 μg L?1), atrazine had no profound effect on the microalga, while higher concentrations (25, 50, and 100 μg L?1) imposed toxicity, leading to inhibition of cell growth and chlorophyll a accumulation by 22 %, 33 %, and 36 %, and 13 %, 24 %, and 27 %, respectively. Atrazine 96-h EC50 for C. mexicana was estimated to be 33 μg L?1. Microalga showed a capability to accumulate atrazine in the cell and to biodegrade the cell-accumulated atrazine resulting in 14–36 % atrazine degradation at 10–100 μg L?1. Increasing atrazine concentration decreased the total fatty acids (from 102 to 75 mg g?1) and increased the unsaturated fatty acid content in the microalga. Carbohydrate content increased gradually with the increase in atrazine concentration up to 15 %. This study shows that C. mexicana has the capability to degrade atrazine and can be employed for the remediation of atrazine-contaminated streams.  相似文献   

2.
Photochemical advanced oxidation processes have been considered for the treatment of water and wastewater containing the herbicide atrazine (ATZ), a possible human carcinogen and endocrine disruptor. In this study, we investigated the effects of the photon emission rate and initial concentration on ATZ photolysis at 254 nm, an issue not usually detailed in literature. Moreover, the role of reactive oxygen species (ROS) is discussed. Photon emission rates in the range 0.87?×?1018–3.6?×?1018 photons L?1 s?1 and [ATZ]0?=?5 and 20 mg L?1 were used. The results showed more than 65 % of ATZ removal after 30 min. ATZ photolysis followed apparent first-order kinetics with k values and percent removals decreasing with increasing herbicide initial concentration. A fivefold linear increase in specific degradation rate constants with photon emission rate was observed. Also, regardless the presence of persistent degradation products, toxicity was efficiently removed after 60-min exposure to UV radiation. Experiments confirmed a noticeable contribution of singlet oxygen and radical species to atrazine degradation during photolysis. These results may help understand the behavior of atrazine in different UV-driven photochemical degradation treatment processes.  相似文献   

3.
This investigation was undertaken to determine the atrazine degradation by fungal enzyme extracts (FEEs) in a clay-loam soil microcosm contaminated at field application rate (5 μg g?1) and to study the influence of different soil microcosm conditions, including the effect of soil sterilization, water holding capacity, soil pH and type of FEEs used in atrazine degradation through a 24 factorial experimental design. The Trametes maximaPaecilomyces carneus co-culture extract contained more laccase activity and hydrogen peroxide (H2O2) content (laccase = 18956.0 U mg protein?1, H2O2 = 6.2 mg L?1) than the T. maxima monoculture extract (laccase = 12866.7 U mg protein?1, H2O2 = 4.0 mg L?1). Both extracts were able to degrade atrazine at 100%; however, the T. maxima monoculture extract (0.32 h) achieved a lower half-degradation time than its co-culture with P. carneus (1.2 h). The FEE type (p = 0.03) and soil pH (p = 0.01) significantly affected atrazine degradation. The best degradation rate was achieved by the T. maxima monoculture extract in an acid soil (pH = 4.86). This study demonstrated that both the monoculture extracts of the native strain T. maxima and its co-culture with P. carneus can efficiently and quickly degrade atrazine in clay-loam soils.  相似文献   

4.
The bioaccumulation of atrazine and its toxicity were evaluated for the cyanobacterium Microcystis novacekii. Cyanobacterial cultures were grown in WC culture medium with atrazine at 50, 250 and 500 μg L?1. After 96 hours of exposure, 27.2% of the atrazine had been removed from the culture supernatant. Spontaneous degradation was found to be insignificant (< 9% at 500 μg L?1), indicating a high efficiency for the bioaccumulation of atrazine by M. novacekii. There were no atrazine metabolites detected in the culture medium at any of the doses studied. The acute toxicity (EC50) of atrazine to the cyanobacterium was 4.2 mg L?1 at 96 hours demonstrating the potential for M. novacekii to tolerate high concentrations of this herbicide in fresh water environments. The ability of M. novacekii to remove atrazine combined with its tolerance of the pesticide toxicity showed in this study makes it a potential biological resource for the restoration of contaminated surface waters. These findings support continued studies of the role of M. novacekii in the bioremediation of fresh water environments polluted by atrazine.  相似文献   

5.
This study elucidated the acute toxicity of chlorpyrifos on the early life stages of banded gourami (Trichogaster fasciata). To determine the acute effects of chlorpyrifos on their survival and development, we exposedthe embryos and two-day-old larvae to six concentrations (0, 0.01, 0.10, 1.0, 10 and 100 µg L?1) of chlorpyrifos in plastic bowls. Log-logistic regression was used to calculate LC10 and LC50 values. Results showed that embryo mortality significantly increased with increasing chlorpyrifos concentrations. The 24-h LC10 and LC50 values (with 95% confidence limits) of chlorpyrifos for embryos were 0.89 (0.50–1.58) and 11.8 (9.12–15.4) µg L?1, respectively. Hatching success decreased and mortality of larvae significantly increased with increasing concentrations of chlorpyrifos. The 24-h LC10 and LC50 values (with 95% confidence limits) of chlorpyrifos for larvae were 0.53 (0.27–1.06) and 21.7 (15.9–29.4) µg L?1, respectively; the 48-h LC10 and LC50 for larvae were 0.04 (0.02–0.09) and 5.47 (3.77–7.94) µg L?1, respectively. The results of this study suggest that 1 µg L?1 of chlorpyrifos in the aquatic environment may adversely affect the development and the reproduction of banded gourami. Our study also suggests that banded gourami fish can serve as an ideal model species for evaluating developmental toxicity of environmental contaminants.  相似文献   

6.
The present study was designed to investigate the effect of carbaryl (carbamate insecticide) on the acetylcholinesterase activity in two strains (same clone A) of the crustacean cladoceran Daphnia magna. Four carbaryl concentrations (0.4, 0.9, 1.8 and 3.7 µg L?1) were compared against control AChE activity. Our results showed that after 48 h of carbaryl exposure, all treatments induced a significant decrease of AChE activities whatever the two considered strains. However, different responses were registered in terms of lowest observed effect concentrations (LOEC: 0.4 µg L?1 for strain 1 and 0.9 µg L?1 for strains 2) revealing differences in sensitivity among the two tested strains of D. magna. These results suggest that after carbaryl exposure, the AChE activity responses can be also used as a biomarker of susceptibility. Moreover, our results show that strain1 is less sensitive than strain 2 in terms of IC50-48 h of AChE activity. Comparing the EC50-48 h of standard ecotoxicity test and IC50-48 h of AChE inhibition, there is the same order of sensitivity with both strains.  相似文献   

7.
This study assessed the in vitro and in vivo effects of an acetylcholinesterase enzyme inhibitor (chlorpyrifos) in two estuarine crustaceans: grass shrimp (Palaemonetes pugio) and mysid (Americamysis bahia). The differences in response were quantified after lethal and sublethal exposures to chlorpyrifos and in vitro assays with chlorpyrifos-oxon. Results from the in vitro experiments indicated that the target enzyme, acetylcholinesterase (AChE), in the two species was similar in sensitivity to chlorpyrifos inhibition with IC50s of 0.98 nM and 0.89 nM for grass shrimp and mysids, respectively. In vivo experiments showed that mysids were significantly more sensitive to chlorpyrifos-induced AChE inhibition after 24 h of exposure. The in vivo EC50s for AChE inhibition were 1.23 μg L?1 for grass shrimp and 0.027 μg L?1 for mysids.

Median lethal concentrations (24h LC50 values) were 1.06 μg L?1 for grass shrimp and 0.068 μg L?1 for mysids. The results suggest that differences in the response of these two crustaceans are likely related to differences in uptake and metabolism rather than target site sensitivity.  相似文献   

8.
The degradation of chlorpyrifos (CP) by an endophytic bacterial strain (HJY) isolated from Chinese chives (Allium tuberosum Rottl. ex Spreng) was investigated. Strain HJY was identified as Sphingomonas sp. based on morphological, physiological, and biochemical tests and a 16S rDNA sequence analysis. Approximately 96% of 20 mg L?1 CP was degraded by strain HJY over 15 days in liquid minimal salts medium (MSM). The CP degradation rate could also be increased by glucose supplementation. The optimal conditions for the removal of 20 mg L?1 CP by strain HJY in MSM were 2% inoculum density, pH 6.0, and 30–35°C. The CP degradation rate constant and half-life were 0.2136 ± 0.0063 d?1 and 3.2451 ± 0.0975 d, respectively, under these conditions, but were raised to 0.7961 ± 0.1925 d?1 and 0.8707 ± 0.3079 d with 1% glucose supplementation. The detection of metabolic products and screening for degrading genes indicated that O,O-diethyl O-3,5,6-trichloropyridinol was the major degradation product from CP, while it was likely that some functional genes were undetected and the mechanism responsible for CP degradation by strain HJY remained unknown. Strain HJY is potentially useful for the reduction of CP residues in Chinese chives and may be used for the in situ phytoremediation of CP.  相似文献   

9.
Glyphosate-based herbicides are extensively used in Argentina's agricultural system to control undesirable weeds. This study was conducted to evaluate the culturable mycobiota [colony forming units (CFU) g?1 and frequency of fungal genera or species] from an agricultural field exposed to pesticides. In addition, we evaluated the tolerance of A. oryzae and nontoxigenic A. flavus strains to high concentrations (100 to 500 mM – 17,000 to 84,500 ppm) of a glyphosate commercial formulation. The analysis of the mycobiota showed that the frequency of the main fungal genera varied according to the analyzed sampling period. Aspergillus spp. or Aspergillus section Flavi strains were isolated from 20 to 100% of the soil samples. Sterilia spp. were also observed throughout the sampling (50 to 100%). Aspergillus section Flavi tolerance assays showed that all of the tested strains were able to develop at the highest glyphosate concentration tested regardless of the water availability conditions. In general, significant reductions in growth rates were observed with increasing concentrations of the herbicide. However, a complete inhibition of fungal growth was not observed with the concentrations assayed. This study contributes to the knowledge of culturable mycobiota from agricultural soils exposed to pesticides and provides evidence on the effective growth ability of A. oryzae and nontoxigenic A. flavus strains exposed to high glyphosate concentrations in vitro.  相似文献   

10.
The present study was undertaken with the objective of studying repeated batch and continuous degradation of chlorpyrifos (O,O-diethyl O-3,5,6-trichloropyridin-2-yl phosphorothioate) using Ca-alginate immobilized cells of Pseudomonas putida isolated from an agricultural soil, and to study the genes and enzymes involved in degradation. The study was carried out to reduce the toxicity of chlorpyrifos by degrading it to less toxic metabolites. Long-term stability of pesticide degradation was studied during repeated batch degradation of chlorpyrifos, which was carried out over a period of 50 days. Immobilized cells were able to show 65% degradation of chlorpyrifos at the end of the 50th cycle with a cell leakage of 112 × 103 cfu mL?1. During continuous treatment, 100% degradation was observed at 100 mL h?1 flow rate with 2% chlorpyrifos, and with 10% concentration of chlorpyrifos 98% and 80% degradation was recorded at 20 mL h?1 and 100 mL h?1 flow rate respectively. The products of degradation detected by liquid chromatography–mass spectrometry analysis were 3,5,6-trichloro-2-pyridinol and chlorpyrifos oxon. Plasmid curing experiments with ethidium bromide indicated that genes responsible for the degradation of chlorpyrifos are present on the chromosome and not on the plasmid. The results of Polymerase chain reaction indicate that a ~890-bp product expected for mpd gene was present in Ps. putida. Enzymatic degradation studies indicated that the enzymes involved in the degradation of chlorpyrifos are membrane-bound. The study indicates that immobilized cells of Ps. putida have the potential to be used in bioremediation of water contaminated with chlorpyrifos.  相似文献   

11.
The objective of the present study was to examine a biological model under greenhouse conditions for the bioremediation of atrazine contaminated soils. The model consisted in a combination of phytoremediation (using Phaseolus vulgaris L.) and rhizopheric bio-augmentation using native Trichoderma sp., and Rhizobium sp. microorganisms that showed no inhibitory growth at 10,000 mg L?1 of herbicide concentration. 33.3 mg of atrazine 50 g?1 of soil of initial concentration was used and an initial inoculation of 1 × 109 UFC mL?1 of Rhizobium sp. and 1 × 105 conidia mL?1 of Trichoderma sp. were set. Four treatments were arranged: Bean + Trichoderma sp. (B+T); Bean + Rhizobium sp. (BR); Bean + Rhizobium sp. + Trichoderma sp. (B+R+T) and Bean (B). 25.51 mg of atrazine 50 g?1 of soil (76.63%) was removed by the B+T treatment in 40 days (a = 0.050, Tukey). This last indicate that the proposed biological model and methodology developed is useful for atrazine contaminated bioremediation agricultural soils, which can contribute to reduce the effects of agrochemical abuse.  相似文献   

12.
This study aimed to determine the toxicity of three organophosphorous pesticides, chlorpyrifos, terbufos and methamidophos, to three indigenous algal species isolated from local rivers and algal mixtures. The diatom Nitzschia sp. (0.30–1.68 mg L?1 of EC50 -the estimated concentration related to a 50% growth reduction) and the cyanobacteria Oscillatoria sp. (EC50 of 0.33–7.99 mg L?1) were sensitive to single pesticide treatment and the chlorophyta Chlorella sp. was the most tolerant (EC50 of 1.29–41.16 mg L?1). In treatment with the mixture of three pesticides, Chlorella sp. became the most sensitive alga. The antagonistic joint toxic effects on three indigenous algae and algal mixtures were found for most of the two pesticide mixtures. The results suggested that mixture of pesticides might induce the detoxification mechanisms more easily than the single pesticide. The synergistic interactions between terbufos and methamidophos to algal mixtures and between methamidophos and chlorpyrifos to Nitzschia sp. indicated methamidophos might act as a potential synergist. Differential sensitivity of three families of algae to these pesticides might result in changes in the algal community structures after river water has been contaminated with different pesticides, posing great ecological risk on the structure and functioning of the aquatic ecosystem.  相似文献   

13.
Chlorpyrifos is an anticholinesterase organophosphate insecticide widely used in Argentina in the production of food derived from animal, fruit and horticultural origin and is reported as a residue within these products. Local reference values for acetyl and butyrylcholinesterase were determined in Aberdeen Angus bovine and cross bred cattle (n = 25), a requirement to be able to evaluate toxicity of commercial organophosphate and carbamate formulations. The activity of cholinesterase enzymes presented an overall mean of 2,183.00 ± 485.6 IU L?1 for erythrocyte acetylcholinesterase and 203.1 ± 42.06 IU L?1 for plasma butyrylcholinesterase, which are used as reference values for meat steers within a system of intensive production in a semi-arid region. The toxic potential of chlorpyrifos in steers of the same breeds (n = 12) was assessed applying chlorpyrifos 15.00% Tipertox® in a single therapeutic dose of 7.50 mg kg?1 by topical route. Prior to application and then on day 1 and day 21 post-application, both blood cholinesterases, serum chlorpyrifos concentration by ultra-high resolution liquid chromatography with mass detector, analysis of blood counts, total proteins, liver enzymes, urea and creatinine were evaluated. The mean plasma concentration of chlorpyrifos was 27.90 ug L?1 at 24 h. The findings indicate that the therapeutic treatment of castrated male bovines treated with chlorpyrifos, applied by pour-on according to the manufacturer's instructions, does not cause changes in the variables evaluated.  相似文献   

14.
The implementation of the Water Framework Directive (2000/60/EC) requires the establishment of monitoring programs. However, conventional procedures for sample preparation prior to chromatographic analysis are rather expensive and time consuming, being the development of cost-effective and easy tool a necessity. The aim of this work was to develop an enzyme-linked immunosorbent assay (ELISA) able to determine atrazine in water samples. Matrix effects evaluation showed that the increase of humic acid (HA) concentration leads to flattened calibration curves and to the loss of the sigmoidal shape. However, such interference was overcome, by the presence of an environmental sample buffer, incubated together with the samples. Recoveries from 88.5 to 119.2 % were obtained in the presence of HA concentrations up to 20 mg?L?1. An analytical range from 0.003 to 1 μg?L?1 was obtained, and atrazine was detected in a sewage treatment plant with concentrations ranging from 14 to 52 ng?L?1.  相似文献   

15.
By enrichment culturing of soil contaminated with metribuzin, a highly efficient metribuzin degrading bacterium, Bacillus sp. N1, was isolated. This strain grows using metribuzin at 5.0% (v/v) as the sole nitrogen source in a liquid medium. Optimal metribuzin degradation occurred at a temperature of 30ºC and at pH 7.0. With an initial concentration of 20 mg L?1, the degradation rate was 73.5% in 120 h. If the initial concentrations were higher than 50 mg L?1, the biodegradation rates decreased as the metribuzin concentrations increased. When the concentration was 100 mg L?1, the degradation rate was only 45%. Degradation followed the pesticide degradation kinetic equation at initial concentrations between 5 mg L?1 and 50 mg L?1. When the metribuzin contaminated soil was mixed with strain N1 (with the concentration of metribuzin being 20 mg L?1 and the inoculation rate of 1011 g?1 dry soil), the degradation rate of the metribuzin was 66.4% in 30 days, while the degradation rate of metribuzin was only 19.4% in the control soil without the strain N1. These results indicate that the strain N1 can significantly increase the degradation rate of metribuzin in contaminated soil.  相似文献   

16.
This study used the enzymes extracted from an atrazine-degrading strain, Arthrobacter sp. DNS10, which had been immobilized by sodium alginate to rehabilitate atrazine-polluted soil. Meanwhile, a range of biological indices were selected to assess the ecological health of contaminated soils and the ecological security of this bioremediation method. The results showed that there was no atrazine detected in soil samples after 28 days in EN?+?AT (the soil containing atrazine and immobilized enzyme) treatment. However, the residual atrazine concentration of the sample in AT (the soil containing atrazine only) treatment was about 5.02?±?0.93 mg?kg?1. These results suggest that the immobilized enzyme exhibits an excellent ability in atrazine degradation. Furthermore, the immobilized enzyme could relieve soil microbial biomass carbon and soil microbial respiration intensity to 772.33?±?34.93 mg?C?kg?1 and 5.01?±?0.17 mg?CO2?g?1?soil?h?1, respectively. The results of the polymerase chain reaction–degeneration gradient gel electrophoresis experiment indicated that the immobilized enzyme also could make the Shannon–Wiener index and evenness index of the soil sample increase from 1.02 and 0.74 to 1.51 and 0.84, respectively. These results indicated that the immobilized enzymes not only could relieve the impact from atrazine on the soil, but also revealed that the immobilized enzymes did no significant harm on the soil ecological health.  相似文献   

17.
The degradation of bifenthrin (BF) and chlorpyrifos (CP), either together or individually, by a bacterial strain (CB2) isolated from activated sludge was investigated. Strain CB2 was identified as belonging to genus Pseudomonas based on the morphological, physiological, and biochemical characteristics and a homological analysis of the 16S rDNA sequence. Strain CB2 has the potential to degrade BF and CP, either individually or in a mixture. The optimum conditions for mixture degradation were as follows: OD600nm = 0.5; incubation temperature = 30°C; pH = 7.0; BF-CP mixture (10 mg L?1 of each). Under these optimal conditions, the degradation rate constants (and half-lives) were 0.4308 d?1 (1.61 d) and 0.3377 d?1 (2.05 d) for individual BF and CP samples, respectively, and 0.3463 d?1 (2.00 d) and 0.2931 d?1 (2.36 d) for the BF-CP mixture. Major metabolites of BF and CP were 2-methyl-3-biphenylyl methanol and 3,5,6-trichloro-2-pyridinol, respectively. No metabolite bioaccumulation was observed. The ability of CB2 to efficiently degrade BF and CP, particularly in a mixture, may be useful in bioremediation efforts.  相似文献   

18.
The ecotoxic effects of carbaryl (carbamate insecticide) were investigated with a battery of four aquatic bioassays. The nominal effective concentrations immobilizing 50% of Daphnia magna (EC50) after 24 and 48 h were 12.76 and 7.47 µg L?1, respectively. After 21 days of exposure of D. magna, LOECs (lowest observed effect concentrations) for cumulative molts and the number of neonates per surviving adult were observed at carbaryl concentration of 0.4 µg L?1. An increase of embryo deformities (curved or unextended shell spines) was observed at 1.8 and 3.7 µg L?1, revealing that carbaryl could act as an endocrine disruptor in D. magna. Other bioassays of the tested battery were less sensitive: the IC50-72h and IC10-72h of the algae Pseudokirchneriella subcapitata were 5.96 and 2.87 mg L?1, respectively. The LC50-6d of the ostracod Heterocypris incongruens was 4.84 mg L?1. A growth inhibition of H. incongruens was registered after carbaryl exposure and the IC20-6d was 1.29 mg L?1. Our results suggest that the daphnid test sensitivity was better than other used tests. Moreover, carbaryl has harmful and toxic effects on tested species because it acts at low concentrations on diverse life history traits of species and induce embryo deformities in crustaceans.  相似文献   

19.
A method for determining atrazine in soil extracts was evaluated by flow injection analysis with spectrophotometric detection. The method is based on the reaction of atrazine with pyridine in an acid medium followed by the reaction with NaOH and sulfanilic acid. Several analytical conditions were previously studied and optimized. Under the best conditions of analysis, the limits of detection and quantification were 0.15 and 0.45 mg L?1, respectively, for a linear response between 0.50 and 2.50 mg L?1, and a sampling throughput of 21 determinations per hour. Using the standard addition method, the maximum relative standard deviation of 17% and recovery values between 80 and 100% were observed for three extracts from soil samples with different composition. The proposed method is simple, low-cost and easy to use, and can be employed for studies involving atrazine in soil samples or for screening of atrazine in soils.  相似文献   

20.
Abstract

Urochloa decumbens plants may be reached by herbicide drift from applications of glyphosate from neighboring areas or by variations during applications. Considering the different phenological stages and size of plants in these areas, the amount of active ingredient that reaches the plants probably varies. The objective of this study was to evaluate the effects of the application of different doses of glyphosate on U. decumbens plants. Two greenhouse experiments were conducted with two replications at different times. The first experiment evaluated the biological response of U. decumbens plants to glyphosate doses (0, 2.81, 5.63, 11.25, 22.5, 45, 90, 180, 360, 720, and 1,440?g a.e. ha?1), with six replications. The second experiment evaluated the response of U. decumbens plants to the application of a selected low dose of 11.25?g a.e. ha?1. Evaluations of injury were performed at 0, 7, 14, and 21?days after application, and dry weight of plants was determined for each evaluation period. U. decumbens plants increased in dry weight when using the glyphosate dose of 11.25?g a.e. ha?1. However, plants had different responses to the application of this low dose. It can promote both stimulation and inhibition of plant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号