首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 221 毫秒
1.
Persistence of toxicity in runoff water and soil was investigated in experimental soybean plots subjected to successive runoff events following pesticide application. Runoff events were produced by irrigation using a sprinkler system. The pesticides applied were cypermethrin and endosulfan, which are widely used in soy production in Argentina. Toxicity tests were performed on two abundant components of the regional fauna, the amphipod Hyalella curvispina and the fish Cnesterodon decemmaculatus. Runoffs from two pesticide applications were assayed at different stages of the growing season: an early application when the soil was almost bare and a late one close to harvest, when the ground was covered by vegetation and just before soy leaves fell. Toxicity to H. curvispina in runoff ceased almost one month after the early application of the two pesticides, while it persisted for over three months after the late application. Soil toxicity to H. curvispina and runoff toxicity to C. decemmaculatus followed the same pattern. Higher temperatures and solar radiation are likely to have enhanced insecticide degradation after the early application. Lower temperatures and solar radiation in combination with increased organic matter from litter probably contributed to the longer persistence of toxicity recorded after the late application, as compared with the early application. Cypermethrin caused no mortality to C. decemmaculatus after the early application, while endosulfan toxicity persisted for almost four months after the late one.  相似文献   

2.
Abstract

The acute toxicities (24, 48, 72 and 96 hr) of eight pesticides to Anguilla anguilla were determined. The organochlorine pesticide, endosulfan was the most toxic, with LC50 values in the range of 0.042 to 0.041 mg/L Endosulfan was followed in order of decreasing toxicity by diazinon, fenitrothion, chlorpyrifos, lmdane, methidathion, trichlorfon and methylparathion. When fishes were exposed to the pesticides tested they exhibited signs of restlessness, erratic swimming, convulsions and difficulty in respiration. This response was more persistent in fishes exposed to organophosphorus pesticides.  相似文献   

3.
Evidence of ecological impacts from pesticide runoff has prompted installation of vegetated treatment systems (VTS) along the central coast of California, USA. During five surveys of two on-farm VTS ponds, 88% of inlet and outlet water samples were toxic to Ceriodaphnia dubia. Toxicity identification evaluations (TIEs) indicated water toxicity was caused by diazinon at VTS-1, and chlorpyrifos at VTS-2. Diazinon levels in VTS-1 were variable, but high pulse inflow concentrations were reduced through dilution. At VTS-2, chlorpyrifos concentrations averaged 52% lower at the VTS outlet than at the inlet. Water concentrations of most other pesticides averaged 20-90% lower at VTS outlets. All VTS sediment samples were toxic to amphipods (Hyalella azteca). Sediment TIEs indicated toxicity was caused by cypermethrin and lambda-cyhalothrin at VTS-1, and chlorpyrifos and permethrin at VTS-2. As with water, sediment concentrations were lower at VTS outlets, indicating substantial reductions in farm runoff pesticide concentrations.  相似文献   

4.
A GIS based pesticide risk indicator that integrates exposure variables (i.e. pesticide application, geographic, physicochemical and crop data) and toxicity endpoints (using species sensitivity distributions) was developed to estimate the Predicted Relative Exposure (PREX) and Predicted Relative Risk (PRRI) of applied pesticides to aquatic ecosystem health in the Lourens River catchment, Western Cape, South Africa. Samples were collected weekly at five sites from the beginning of the spraying season (October) till the beginning of the rainy season (April) and were semi quantitatively analysed for relevant pesticides applied according to the local farmers spraying programme. Monitoring data indicate that physicochemical data obtained from international databases are reliable indicators of pesticide behaviour in the Western Cape of South Africa. Sensitivity analysis identified KOC as the most important parameter influencing predictions of pesticide loading derived from runoff. A comparison to monitoring data showed that the PREX successfully identified hotspot sites, gave a reasonable estimation of the relative contamination potential of different pesticides at a site and identified important routes of exposure (i.e. runoff or spray drift) of different pesticides at different sites. All pesticides detected during a monitored runoff event, were indicated as being more associated with runoff than spray drift by the PREX. The PRRI identified azinphos-methyl and chlorpyrifos as high risk pesticides towards the aquatic ecosystem. These results contribute to providing increased confidence in the use of risk indicator applications and, in particular, could lead to improved utilisation of limited resources for monitoring and management in resource constrained countries.  相似文献   

5.
This study investigated the effects of increased temperature and salinity, two potential impacts of global climate change, on the toxicity of two common pesticides to the estuarine grass shrimp, Palaemonetes pugio. Larval and adult grass shrimp were exposed to the fungicide chlorothalonil and the insecticide Scourge® under standard toxicity test conditions, a 10°C increase in temperature, a 10 ppt increase in salinity, and a combined increased temperature and salinity exposure. Toxicity of the fungicide chlorothalonil increased with temperature and salinity. Toxicity of the insecticide Scourge® also increased with temperature; while increased salinity reduced Scourge® toxicity, but only in adult shrimp. These findings suggest that changes in temperature and salinity may alter the toxicity of certain pesticides, and that the nature of the effect will depend on both the organism's life stage and the chemical contaminant. Standard toxicity bioassays may not be predictive of actual pesticide toxicity under variable environmental conditions, and testing under a wider range of exposure conditions could improve the accuracy of chemical risk assessments.  相似文献   

6.
Pesticides applied on agricultural lands reach groundwater by leaching, and move to offsite water bodies by direct runoff, erosion and spray drift. Therefore, an assessment of the mobility of pesticides in water resources is important to safeguard such resources. Mobility of pesticides on agricultural lands of Mahaweli river basin in Sri Lanka has not been reported to date. In this context, the mobility potential of 32 pesticides on surface water and groundwater was assessed by widely used pesticide risk indicators, such as Attenuation Factor (AF) index and the Pesticide Impact Rating Index (PIRI) with some modifications. Four surface water bodies having greater than 20% land use of the catchment under agriculture, and shallow groundwater table at 3.0 m depth were selected for the risk assessment. According to AF, carbofuran, quinclorac and thiamethoxam are three most leachable pesticides having AF values 1.44 × 10?2, 1.87 × 10?3 and 5.70 × 10?4, respectively. Using PIRI, offsite movement of pesticides by direct runoff was found to be greater than with the erosion of soil particles for the study area. Carbofuran and quinclorac are most mobile pesticides by direct runoff with runoff fractions of 0.01 and 0.08, respectively, at the studied area. Thiamethoxam and novaluron are the most mobile pesticides by erosion with erosion factions of 1.02 × 10?4 and 1.05 × 10?4, respectively. Expected pesticide residue levels in both surface and groundwater were predicted to remain below the USEPA health advisory levels, except for carbofuran, indicating that pesticide pollution is unlikely to exceed the available health guidelines in the Mahaweli river basin in Sri Lanka.  相似文献   

7.
The objective of this study was to evaluate the capacity of two bacterial strains isolated, cultivated, and purified from agricultural soils of Veracruz, Mexico, for biodegradation and mineralisation of malathion (diethyl 2-(dimethoxyphosphorothioyl) succinate) and α- and β-endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6-9-methano-2,4,3-benzodioxathiepine-3-oxide). The isolated bacterial strains were identified using biochemical and morphological characterization and the analysis of their 16S rDNA gene, as Enterobacter cloacae strain PMM16 (E1) and E. amnigenus strain XGL214 (M1). The E1 strain was able to degrade endosulfan, whereas the M1 strain was capable of degrading both pesticides. The E1 strain degraded 71.32% of α-endosulfan and 100% of β-endosulfan within 24 days. The absence of metabolites, such as endosulfan sulfate, endosulfan lactone, or endosulfan diol, would suggest degradation of endosulfan isomers through non-oxidative pathways. Malathion was completely eliminated by the M1 strain. The major metabolite was butanedioic acid. There was a time-dependent increase in bacterial biomass, typical of bacterial growth, correlated with the decrease in pesticide concentration. The CO2 production also increased significantly with the addition of pesticides to the bacterial growth media, demonstrating that, under aerobic conditions, the bacteria utilized endosulfan and malathion as a carbon source. Here, two bacterial strains are shown to metabolize two toxic pesticides into non-toxic intermediates.  相似文献   

8.
This study aimed to assess the glyphosate application effects on the Cerotoma arcuata Oliver (Coleoptera: Chrysomelidae) population in glyphosate-resistant soybean crops. Field studies were conducted with glyphosate and the insecticide endosulfan to observe the effects of these pesticides on C. arcuata, on its damages in the crop and on the populations of natural enemies in glyphosate-resistant soybean crops. Moreover, the lethal and behavioral sublethal response of C. arcuata to glyphosate and endosulfan was conducted in the laboratory. The results of the field and laboratory experiments showed that glyphosate caused moderate toxicity and high irritability in C. arcuata and that endosulfan caused high toxicity and irritability. Therefore, the direct effect of glyphosate on C. arcuata was negative and does not explain the population increases of this pest in glyphosate-resistant soybean. However, the glyphosate also decreased the density of predators. Thus, the negative effect of glyphosate on the predators may be related to population increases of C. arcuata in glyphosate-resistant soybean crops, however, more studies are needed to better evidence this relationship. This study suggests that glyphosate can impact other non-target organisms, such as herbivorous insects and natural enemies and that the use of this herbicide will need to be carefully stewarded to prevent potential disturbances in beneficial insect communities in agricultural systems.  相似文献   

9.
A contamination of off-site aquatic environments with pesticides has been observed in the tropics, yet only sparse information exists about pesticide fate in such ecosystems. The objective of our semi-field study was to elucidate the fate of alachlor, atrazine, chlorpyrifos, endosulfan, metolachlor, profenofos, simazine, and trifluralin in the aqueous environment of the Pantanal wetland (MT, Brazil). To this aim, water and water/sediment microcosms of two sizes (0.78 and 202 l) were installed in the outskirts of this freshwater lagoon environment and pesticide dissipation was monitored for up to 50 d after application. The physical-chemical water conditions that developed in the microcosms were reproducible among field replicates for both system sizes. Pesticide dissipation was substantially enhanced for most pesticides in small microcosms relative to the large ones (reduced DT(50) by a factor of up to 5.3). The presence of sediment in microcosms led to increased persistence of chlorpyrifos, endosulfan, and trifluralin in the test systems, while for polar pesticides (alachlor, atrazine, metolachlor, profenofos, and simazine) a lesser persistence was observed. Atrazine, simazine, metolachlor, and alachlor were identified as the most persistent pesticides in large water microcosms (DT(50) > or = 47 d); in large water/sediment systems endosulfan beta, atrazine, metolachlor, and simazine showed the slowest dissipation (DT(50) > or = 44 d). A medium-term accumulation in the sediment of tropical ecosystems can be expected for chlorpyrifos and endosulfan isomers (11-35% of applied amount still extractable at 50 d after application). We conclude that the persistence of the studied pesticides in aquatic ecosystems of the tropics is not substantially lower than during summer in temperate regions.  相似文献   

10.

This study is based on self-reported information collected from selected farmers of Vehari District, Punjab, Pakistan, to determine their technical knowledge and awareness about pesticide use and associated environmental and health risks. Moreover, soil contamination by routinely used persistent organochlorine pesticide, endosulfan, was also evaluated. Survey data revealed very low literacy rate (on an average 9th grade education) and technical knowledge (almost missing) of the farmers in Vehari District. The farmers are unable to fully read and understand the instructions about the use of pesticide marked on the containers. They are not fully aware of pesticide persistence and toxicity (73%), unable to identify cotton pests and diseases (86%), and do not know which crop to grow in cotton adjacent fields (100%). Data also revealed that the farmers (100%) do not follow safety measure during pesticide application and are unaware of pesticide toxicity symptoms in human as well as the basic first-aid practices (89%).

Poor literacy rate and lack of technical knowledge of farmers in Vehari regarding pesticide use and handling are posing serious environmental and health risks among the local inhabitants, particularly among farmers. Soil analysis results showed that concentration of α- and β-endosulfan ranged from 0–14 to 0–14.64 μg/mg, respectively. Principal component analysis showed that soil organic matter is the key soil parameter controlling the occurrence and fate of endosulfan under sandy loam soil conditions of Vehari District. There is a serious need of improving technical and environmental knowledge of farmer about pesticide risks on human health in the studied area, in particular, and the entire country in general. Findings are of great use for policymaking in Pakistan to minimize pesticide risks in Pakistan.

  相似文献   

11.

Agricultural pesticides transported to surface waters pose a major risk for aquatic ecosystems. Modelling studies indicate that the inlets of agricultural storm drainage systems can considerably increase the connectivity of surface runoff and pesticides to surface waters. These model results have however not yet been validated with field measurements. In this study, we measured discharge and concentrations of 51 pesticides in four out of 158 storm drainage inlets of a small Swiss agricultural catchment (2.8 km2) and in the receiving stream. For this, we performed an event-triggered sampling during 19 rain events and collected plot-specific pesticide application data. Our results show that agricultural storm drainage inlets strongly influence surface runoff and pesticide transport in the study catchment. The concentrations of single pesticides in inlets amounted up to 62 µg/L. During some rain events, transport through single inlets caused more than 10% of the stream load of certain pesticides. An extrapolation to the entire catchment suggests that during selected events on average 30 to 70% of the load in the stream was transported through inlets. Pesticide applications on fields with surface runoff or spray drift potential to inlets led to increased concentrations in the corresponding inlets. Overall, this study corroborates the relevance of such inlets for pesticide transport by establishing a connectivity between fields and surface waters, and by their potential to deliver substantial pesticide loads to surface waters.

  相似文献   

12.

Although the use of endosulfan to control cotton pests has declined, this insecticide still has widespread application in agriculture and can contaminate riverine systems as runoff from soil or by aerial deposition. The degradation of endosulfan in pure water at different pH values of 5, 7 and 9 and in river water from the Namoi and the Hawkesbury rivers of New South Wales (NSW), Australia, was studied in the laboratory. Endosulfan transformation into endosulfan sulfate in river water using artificial mesocosms was also investigated. The results show endosulfan is stable at pH 5, with increasing rates of disappearance at pH 7 and pH 9 by chemical hydrolysis. Incubation of endosulfan with river water at pH 8.3 resulted in the disappearance of endosulfan and the formation of endosulfan diol due to the alkaline pH as well as formation of endosulfan sulfate. Although the degradation of endosulfan by Anabaena, a blue-green alga, did not result in the transformation of endosulfan to endosulfan sulfate, we conclude that other microorganisms catalyzed the formation of the sulfate. Significant conversions of endosulfan into endosulfan sulfate were also reported from associated field studies using artificial mesocoms containing irrigation water from rivers inhabitated by micro-macro fauna. From these results, we conclude that the presence of endosulfan sulfate in river water cannot be used to distinguish contamination by runoff from soil from contamination by aerial drift or redeposition.  相似文献   

13.
Solla SR  Martin PA 《Chemosphere》2011,85(5):820-825
Reptiles often breed within agricultural and urban environments that receive frequent pesticide use. Consequently, their eggs and thus developing embryos may be exposed to pesticides. Our objectives were to determine (i) if turtle eggs are capable of absorbing pesticides from treated soil, and (ii) if pesticide absorption rates can be predicted by their chemical and physical properties. Snapping turtle (Chelydra serpentina) eggs were incubated in soil that was treated with 10 pesticides (atrazine, simazine, metolachlor, azinphos-methyl, dimethoate, chlorpyrifos, carbaryl, endosulfan (I and II), captan, and chlorothalonil). There were two treatments, consisting of pesticides applied at application rate equivalents of 1.92 or 19.2 kg a.i/ha. Eggs were removed after one and eight days of exposure and analyzed for pesticides using gas chromatography coupled with a mass selective detector (GC-MSD) or high performance liquid chromatography (HPLC). Absorption of pesticides in eggs from soil increased with both magnitude and duration of exposure. Of the 10 pesticides, atrazine and metolachlor generally had the greatest absorption, while azinphos-methyl had the lowest. Chlorothalonil was below detection limits at both exposure rates. Our preliminary model suggests that pesticides having the highest absorption into eggs tended to have both low sorption to organic carbon or lipids, and high water solubility. For pesticides with high water solubility, high vapor pressure may also increase absorption. As our model is preliminary, confirmatory studies are needed to elucidate pesticide absorption in turtle eggs and the potential risk they may pose to embryonic development.  相似文献   

14.
The acute toxicity of endosulfan and diazinon to the freshwater rotifer Brachionus calyciflorus was determined after 24 hours exposure to these toxicants. The mean 24 hr-LC50 values were 5.15 and 29.22 mg/L for endosulfan and diazinon respectively. Based on these results, four sublethal concentrations were chosen to determined the median lethal time (LT50) at each concentration of toxicant tested. We also used a control with the solvent (acetone). The concentration tested were 1/5, 1/4, 1/2 and 2/3th LC50 (24hr) for both pesticides. We found a decrease in the median lethal time (LT50) with increasing pesticide concentrations. The LT50 values ranged from 6.49 to 3.48 days after endosulfan treatment, and from 6.96 to 2.49 days after diazinon exposure. No effects on survival were observed in control animals exposed to the solvent.  相似文献   

15.

Potential synergistic toxicity of pesticide mixtures has increasingly become a concern to the health of crop pollinators. The toxicities of individual and mixture of chlorpyrifos (CHL), acephate (ACE), or tetraconazole (TET) with nine pyrethroid insecticides to honey bees (Apis mellifera L.) were evaluated to reveal any aggregated interaction between pesticides. Results from feeding toxicity tests of individual pesticides indicated that organophosphate insecticides CHL and ACE had higher toxicities to honey bees compared to nine pyrethroids. Moreover, different pyrethroids exhibited considerable variation in toxicity with LC50 values ranging from 10.05 (8.60–11.69) to 1125 (922.4–1442) mg a.i. L?1 after exposure for 7 days. Among the 12 examined pesticides, a relatively low toxicity to A. mellifera was detected from the fungicide TET. All the binary mixtures of ACE or TET in combination with pyrethroids exhibited synergistic effects. However, TET in combination with pyrethroids showed greater synergistic toxicity to A. mellifera than ACE in combination with pyrethroids. Approximately 50% binary mixtures of CHL in combination with pyrethroids also showed synergistic responses in honey bees. In particular, CHL, ACE, or TET in combination with either lambda-cyhalothrin (LCY) or bifenthrin (BIF) showed the strongest synergy in A. mellifera, followed by CHL, ACE, or TET in combination with either zeta-cypermethrin (ZCY) or cypermethrin (CYP). The findings indicated that the co-exposure of various pesticides in natural settings might lead to severe injury to crop pollinators. Therefore, pesticide mixtures should be applied carefully in order to minimize negative effects on honey bees while maintaining effective management against crop pests.

  相似文献   

16.
This study aimed to determine the toxicity of three organophosphorous pesticides, chlorpyrifos, terbufos and methamidophos, to three indigenous algal species isolated from local rivers and algal mixtures. The diatom Nitzschia sp. (0.30–1.68 mg L?1 of EC50 -the estimated concentration related to a 50% growth reduction) and the cyanobacteria Oscillatoria sp. (EC50 of 0.33–7.99 mg L?1) were sensitive to single pesticide treatment and the chlorophyta Chlorella sp. was the most tolerant (EC50 of 1.29–41.16 mg L?1). In treatment with the mixture of three pesticides, Chlorella sp. became the most sensitive alga. The antagonistic joint toxic effects on three indigenous algae and algal mixtures were found for most of the two pesticide mixtures. The results suggested that mixture of pesticides might induce the detoxification mechanisms more easily than the single pesticide. The synergistic interactions between terbufos and methamidophos to algal mixtures and between methamidophos and chlorpyrifos to Nitzschia sp. indicated methamidophos might act as a potential synergist. Differential sensitivity of three families of algae to these pesticides might result in changes in the algal community structures after river water has been contaminated with different pesticides, posing great ecological risk on the structure and functioning of the aquatic ecosystem.  相似文献   

17.

To examine pesticide mixture toxicity to aqueous organisms, we assessed the single and combined toxicities of thiamethoxam and other four pesticides (chlorpyrifos, beta-cypermethrin, tetraconazole, and azoxystrobin) to the rare minnow (Gobiocypris rarus). Data from 96-h semi-static toxicity assays of various developmental phases (embryonic, larval, juvenile, and adult phases) showed that beta-cypermethrin, chlorpyrifos, and azoxystrobin had the highest toxicities to G. rarus, and their LC50 values ranged from 0.0031 to 0.86 mg a.i. L?1, from 0.016 to 6.38 mg a.i. L?1, and from 0.39 to 1.08 mg a.i. L?1, respectively. Tetraconazole displayed a comparatively high toxicity, and its LC50 values ranged from 3.48 to 16.73 mg a.i. L?1. By contrast, thiamethoxam exhibited the lowest toxic effect with LC50 values ranging from 37.85 to 351.9 mg a.i. L?1. Rare minnow larvae were more sensitive than embryos to all the pesticides tested. Our data showed that a pesticide mixture of thiamethoxam–tetraconazole elicited synergetic toxicity to G. rarus. Moreover, pesticide mixtures containing beta-cypermethrin in combination with chlorpyrifos or tetraconazole also had synergetic toxicities to fish. The majority of pesticides are presumed to have additive toxicity, while our data emphasized that the concurrent existence of some chemicals in the aqueous circumstance could cause synergetic toxic effect, leading to severe loss to the aqueous environments in comparison with their single toxicities. Thence, the synergetic impacts of chemical mixtures should be considered when assessing the ecological risk of chemicals.

  相似文献   

18.
The objectives of this study were to determine environmental occurrence and concentrations of selected currently-used-pesticides and some transformation products in agricultural farms in the Okanagan Valley (OKV), and to conduct a simple risk assessment of environmental pesticides levels detected in OKV on non-target aquatic organisms. The OKV is the tree fruit country of the Province of British Columbia where considerable amount of pesticides are applied annually. Water, sediment and soil samples were collected at eleven sites in early June and late September following rainfall events and/or extended periods of irrigation from drainage ditches and/or from small streams. Undisturbed reference sites were also sampled. Study results showed that forty of the eighty chemicals analyzed, including organochlorine, nitrogen-containing and organophosphate pesticides commonly used for OKV crops, were detected in runoff and small stream water samples. Among which, endosulfan-sulfate was the most frequently detected chemical. Also, azinophos-methyl (0.699–25.5 ng/L), diazinon (0.088–214 ng/L) exceeded, and α-, β- endosulfan, endosulfan sulphate approached the guidelines for the protection of aquatic life.  相似文献   

19.
R Schulz 《Chemosphere》2001,45(4-5):543-551
Spray drift and edge-of-field runoff are regarded as important routes of nonpoint-source pesticide input into aquatic surface waters, with current regulatory risk assessment in Europe focussing largely on spray drift. However, the two routes of entry had rarely been compared directly in the same catchment. To this end, the concentrations and loads of the current-use insecticides azinphos-methyl (AZP) and endosulfan (END) were monitored in the Lourens River, South Africa downstream of a 400-ha fruit orchard area during normal farming practice. Spray drift-related peak pesticide levels in the tributaries were in the range of 95th-percentiles of standard drift values according to regulatory risk assessment procedures. Resulting concentrations in Lourens River water samples (n = 3) at a discharge of 0.28 m3/s were as high as 0.04 +/- 0.01 microg/l AZP and 0.07 +/- 0.02 microg/l END. Pesticide levels at the same site during runoff following 3 storm events varying in rainfall between 6.8 and 18.4 mm/d (discharge: 7.5-22.4 m3/s) were considerably higher: by factors between 6 and 37 for AZP (0.26-1.5 microg/l) and between 2 and 41 for END (0.13-2.9 microg/l). Levels of pesticides associated with suspended particles were increased during runoff only up to 1247 microg/kg AZP and 12082 microg/kg END. A possible reason for the relative importance of runoff is that runoff largely integrates potential pesticide input over both time and space, because the prerequisites for the occurrence of runoff in terms of application and plot characteristics as well as meteorological conditions are far less specific than for spray drift. A probability analysis based on pesticide application patterns and 10-yr rainfall data indicates that the frequencies of rainfall events > or = 10 and > or = 15 mm/d are 3.4 and 1.7 per spraying season, respectively.  相似文献   

20.
The distribution of organochlorine pesticides in the aquatic ecosystem from the Densu river revealed varying levels of concentration in water and the sediment samples. Three locations were sampled along the river to evaluate the levels of organochlorine pesticide residue in the river. Sediment and surface water samples were extracted by soxhlet and liquid-liquid extraction respectively and analyzed using Gas Chromatograph coupled with electron capture detector. The detectable organochlorine pesticides were gamma-hexachlorocyclohexane (HCH), delta-hexachlorocyclohexane, heptachlor, aldrin and dieldrin. The other pesticides that were investigated are gamma-chlordane, alpha endosulfan, endosulfan sulfate, p,p′-DDT and its metabolite p,p′-DDE, methoxychlor, endrin and its metabolite endrin aldehyde and endrin ketone. The order of increasing frequency of detection of samples was higher in sediment than water. In sediment, the mean concentration ranged from 0.030 μg kg−1 dry weight (endrin) to 10.98 μg kg−1 dry weight (aldrin). The highest detected concentration of organochlorine in water was endosulfan sulfate with mean concentration of 0.185 μg L−1. Analysis of variance indicated significant differences for most organochlorine pesticide residue in the sediment sampled from the various locations. Some of the levels of organochlorine pesticides detected in water were relatively high compared to guideline values set by World Health Organization and Australia and thus could be harmful if the trend is not checked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号