首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
Fate of imidacloprid in soil and plant after application to cotton seeds   总被引:1,自引:0,他引:1  
El-Hamady SE  Kubiak R  Derbalah AS 《Chemosphere》2008,71(11):2173-2179
This study aimed to investigate the persistence of imidacloprid in soil after application to cotton seeds and to obtain a complete picture on the mass balance of this compound in soil and cotton plants. The study was carried out as a pot culture experiment under laboratory conditions using a Gaucho formulation containing 14C-labeled imidacloprid. Three treatments of cotton seeds were made in sandy loamy soil: live seeds grown in autoclaved soil, dead seeds put in live soil and live seeds grown in live soil. Results showed that total 14C recoveries decreased by time ranging 93.8–96.2, 77.1–88.4 and 53.5–62.4% of the applied radioactivity at 7, 14, and 21 d after application, respectively. The reduction in the extracted 14C from soil coincided with the increase of non-extracted ones. Levels of bound 14C was always less in autoclaved soil than in live ones. Results revealed also that only 1.8–6.8% of the applied 14C was taken up by the plants and fluctuated within the test period. 14C levels were higher in plants grown in autoclaved soil than those in live ones and the radioactivity tended to accumulate on the edges of cotton leaves. Most of the radioactivity in the soil extracts was identified as unchanged 14C-imidacloprid.  相似文献   

2.
Chlordecone was applied between 1972 and 1993 in banana fields of the French West Indies. This resulted in long-term pollution of soils and contamination of waters, aquatic biota, and crops. To assess pollution level and duration according to soil type, WISORCH, a leaching model based on first-order desorption kinetics, was developed and run. Its input parameters are soil organic carbon content (SOC) and SOC/water partitioning coefficient (Koc). It accounts for current chlordecone soil contents and drainage water concentrations. The model was valid for andosol, which indicates that neither physico-chemical nor microbial degradation occurred. Dilution by previous deep tillages makes soil scrapping unrealistic. Lixiviation appeared the main way to reduce pollution. Besides the SOC and rainfall increases, Koc increased from nitisol to ferralsol and then andosol while lixiviation efficiency decreased. Consequently, pollution is bound to last for several decades for nitisol, centuries for ferralsol, and half a millennium for andosol.  相似文献   

3.
Book review     

Chemical Hazards to Human Reproduction by Ian C. Nisbet and Nathan J. Karch, Noyes Data Corp., Park Ridge, N.J. (1983), 245 pp., $28.00.  相似文献   

4.
The purpose of the present study was to investigate the biodegradation kinetics in aerobic and anaerobic soil of the following brominated flame retardants: 2,4,4′-tribromodiphenyl ether (BDE 28), decabromodiphenyl ether (BDE 209), tetrabromobisphenol A (TBBPA), 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH), 2,4,6-tribromophenol (246BrPh), and hexabromobenzene (HxBrBz). For comparison, the biodegradation of the chlorinated compounds 2,4,4′-trichlorodiphenyl ether (CDE 28), 2,4,6-trichlorophenol (246ClPh), hexachlorobenzene (HxClBz), and 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB 153) was also assessed. In aerobic soil, BDE 209 showed no significant degradation during the test period, but concentrations of the other BFRs declined, with half-lives decreasing in the following order: BDE 28 > TBBPA > TBECH > HxBrBz > 246BrPh. Declines in almost the same order were observed in anaerobic soil: BDE 28, BDE 209 > TBBPA > HxBrBz > TBECH >246BrPh.  相似文献   

5.
TBT and TPhT persistence in a sludged soil   总被引:1,自引:0,他引:1  
Marcic C  Le Hecho I  Denaix L  Lespes G 《Chemosphere》2006,65(11):2322-2332
The persistence of tributyltin (TBT) and triphenyltin (TPhT) in soils was studied, taking into consideration the quantity of sewage sludge, TBT and TPhT concentrations in soil as well as the soil pH. The organotin compounds (OTC) were introduced into the soil via a spiked urban sludge, simulating agricultural practise. OTC speciation was achieved after acidic extraction of soil samples followed by gas chromatography–pulsed flame photometric analysis (GC–PFPD). Leaching tests conducted on a spiked sludge showed that more than 98% of TBT are sorbed on the sludge. TBT persistence in soil appeared to depend on its initial concentration in sludge. Thus, it was more important when concentration is over 1000 μg(Sn) kg−1 of sludge. More than 50% of the initial TBT added into the soil were still present after 2 months, whatever the experimental conditions. The main degradation product appeared to be dibutyltin. About 90% of TPhT were initially sorbed on sludge, whatever the spiking concentration in sludge was. However, TPhT seemed to be quantitatively exchangeable at the solid/liquid interface, according to the leaching tests. It was also significantly degraded in sludged soil as only about 20% of TPhT remain present after 2 months, the monophenyltin being the main degradation product. pH had a significant positive effect on TBT and particularly TPhT persistence, according to the initial amounts introduced into the soil. Thus, at pH over 7 and triorganotin concentration over 100 μg(Sn) kg−1, less than 10% of TBT but about 60% of TPhT were degraded. When the sludge was moderately contaminated by triorganotins (typically 50 μg(Sn) kg−1 in our conditions) the pH had no effect on TBT and TPhT persistence.  相似文献   

6.
Abstract

A high-performance liquid chromatography method with diode-array detection (HPLC-DAD) is described for the determination of three neonicotinoid insecticides imidacloprid, thiacloprid, and thiamethoxam in soil and water. The soil samples were extracted with acetonitrile, while the water samples were extracted using C18 cartridges. The mean recoveries plus standard deviations for spiked soil samples were 82 ± 4.2% for thiamethoxam, 99 ± 4.2% for imidacloprid and 94 ± 1.4% for thiacloprid. The recoveries for water samples ranged from 87 ± 3.4% for thiamethoxam to 97 ± 3.9% for imidacloprid and 97 ± 2.6% for thiacloprid. The limits of quantitation (LOQ) were 0.1, 0.1, 0.01 mg/kg in soil (5 g), and 2, 2, 0.5 µg/L in water (50 mL) for thiamethoxam, imidacloprid, and thiacloprid, respectively.  相似文献   

7.
Hexachlorocyclohexanes (HCHs) were produced and used in large quantity worldwide and are common soil pollutants. In this study, desorption of α-HCH and γ-HCH from two soil samples collected from a historical pesticide plant in Tianjin, China, was examined. As a comparison, desorption of freshly sorbed γ-HCH was examined, using five typical Chinese soils. Strong resistant desorption was observed for both historically contaminated and freshly contaminated soils, and desorption results were well modeled with a biphasic desorption isotherm. The unique thermodynamic characteristics associated with the desorption-resistant fraction indicated that physical constraint within soil organic matrices was likely the predominant mechanism controlling resistant desorption. Resistant desorption could have significant effects on fate and exposure of HCHs in soil environment. More accurate biphasic desorption models that take into account of the resistant desorption can be used to facilitate regulating, management and remediation of HCH-contaminated sites.  相似文献   

8.

Persistence of triasulfuron [3-(6-methoxy-4methyl-1,3,5-triazin-2-yl)-1-{2-(2-chloroethoxy)-phenylsulfonyl}-urea] in soil was studied under wheat crop and laboratory conditions. Field experiment was conducted in the farms of Agronomy Division, Indian Agricultural Research Institute (IARI), New Delhi. Randomized block design (RBD) was followed with four replicates and two rates of treatments along with control and weedy check. Triasulfuron was applied as post-emergent application to wheat crop at two rates of application viz., 15 g and 20 g a.i. ha?1. Soil samples at 0 (3 h), 1, 3, 5, 7, 10, 15, 20, and 30-day intervals after application were drawn, extracted, cleaned up, and analyzed for herbicide residues by high performance liquid chromatography (HPLC) using C18 column and methanol: water (8:2) as mobile phase at 242 nm wave length. Effect of microbial activity and soil pH was studied under laboratory conditions. Dissipation of triasulfuron followed a first-order-rate kinetics. Residues dissipated from field soil with half-life of 5.8 and 5.9 days at two rates of application. The study indicated biphasic degradation with faster rate initially (t 1/2 = 3.7 days), followed by a slower dissipation rate at the end (t 1/2 = 9.4 days). Similar trend was observed with non-sterile soil in laboratory with a longer half-life. Acidic pH and microbial activity contributed toward the degradation of triasulfuron in soil.  相似文献   

9.

Impacts of diazinon (O,O-diethyl O-2-isopropyl-6-methylpyrimidin-4-yl phosphorothioate), imidacloprid [1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine] and lindane (1,2,3,4,5.6-hexachlorocyclohexane) treatments on ammonium, nitrate, and nitrite nitrogen and nitrate reductase enzyme activities were determined in groundnut (Arachis hypogaea L.) field for three consecutive years (1997 to 1999). Diazinon was applied for both seed- and soil-treatments but imidacloprid and lindane were used for seed treatments only at recommended rates. Diazinon residues persisted for 60 days in both the cases. Average half-lives (t1/2) of diazinon were found 29.3 and 34.8 days respectively in seed and soil treatments. In diazinon seed treatment, NH4 +, NO3 ?, and NO2 ? nitrogen and nitrate reductase activity were not affected. Whereas, diazinon soil treatment indicated significant increase in NH4 +-N in a 1-day sample, which continued until 90 days. Some declines in NO3 ?N were found from 15 to 60 days. Along with this decline, significant increases in NO2 ?N and nitrate reductase activity were found between 1 and 30 days. Imidacloprid and lindane persisted for 90 and 120 days with average half-lives (t1/2) of 40.9 and 53.3 days, respectively. Within 90 days, imidacloprid residues lost by 73.17% to 82.49% while such losses for lindane residues were found 78.19% to 79.86 % within 120 days. In imidacloprid seed-treated field, stimulation of NO3 ?N and the decline in NH4 +NO2 ?-N and nitrate reductase enzyme activity were observed between 15 to 90 days. However, lindane seed treatment indicated significant increases in NH4 +-N, NO2 ?-N and nitrate reductase activity and some adverse effects on NO3 ?N between 15 and 90 days.  相似文献   

10.
Abstract

Aldicarb, Temik® 15 G, was incorporated in furrows at 3.37 and 6.73 kg ai (active ingredent)/ha and carrots (Caucus carota L.) were directly seeded on the same day. The numbers of nematode larvae were significantly suppressed in the treated plots; averages were 249, 74, and 51/ 50 cc soil samples for control (0), 3.37 and 6.73 kg ai/ha, respectively. Aldicarb treatment resulted in a 28% yield increase as compared to the untreated. Aldicarb residue in carrots was 28 ppb for the low treatment and 46 ppb for the high. Residual levels in soil of high treatment declined from 6l to 31 ppb during two weeks prior to harvest, meanwhile, those in the low decreased slightly from 13 to 12 ppb. Carrots placed in hydroponic solution containing aldicarb 14.5 ppm for 6 days, had an aldicarb residue of 10.26 ppb and the hydroponic solution, 2.7 ppb. Persistence of aldicarb residue was in carrot > in soil > in hydroponic solution.  相似文献   

11.
Endosulfan in China 2—emissions and residues   总被引:4,自引:0,他引:4  
Background, aim, and scope  Endosulfan is one of the organochlorine pesticides (OCPs) and also a candidate to be included in a group of new persistent organic pollutants (UNEP 2007). The first national endosulfan usage inventories in China with 1/4° longitude by 1/6° latitude resolution has been reported in an accompanying paper. In the second part of the paper, we compiled the gridded historical emissions and soil residues of endosulfan in China from the usage inventories. Based on the residue/emission data, gridded concentrations of endosulfan in Chinese soil and air have been calculated. These inventories will provide valuable data for the further study of endosulfan. Methods  Emission and residue of endosulfan were calculated from endosulfan usage by using a simplified gridded pesticide emission and residue model—SGPERM, which is an integrated modeling system combining mathematical model, database management system, and geographic information system. By using the emission and residue inventories, annual air and soil concentrations of endosulfan in each cell were determined. Results and discussion  Historical gridded emission and residue inventories of α- and β-endosulfan in agricultural soil in China with 1/4° longitude by 1/6° latitude resolution have been created. Total emissions were around 10,800 t, with α-endosulfan at 7,400 t and β-endosulfan at 3,400 t from 1994 to 2004. The highest residues were 140 t for α-endosulfan and 390 t for β-endosulfan, and the lowest residues were 0.7 t for α-endosulfan and 170 t for β-endosulfan in 2004 in Chinese agricultural soil where endosulfan was applied. Based on the emission and residue inventories, concentrations of α- and β-endosulfan in Chinese air and agricultural surface soil were also calculated for each grid cell. We have estimated annual averaged air concentrations and the annual minimum and maximum soil concentrations across China. The real concentrations will be different from season to season. Although our model does not consider the transport of the insecticide in the atmosphere, which could be very important in some areas during some special time, the estimated concentrations of endosulfan in Chinese air and soil derived from the endosulfan emission and residue inventories are in general consistent with the published monitoring data. Conclusions  To our knowledge, this work is the first inventory of this kind for endosulfan published on a national scale. Concentrations of the chemical in Chinese air and agricultural surface soil were calculated for each grid cell. Results show that the estimated concentrations of endosulfan in Chinese air and soil agree reasonably well with the monitoring data in general. Recommendations and perspectives  The gridded endosulfan emission/residue inventories and also the air and soil concentration inventories created in this study will be updated upon availability of new information, including usage and monitoring data. The establishment of these inventories for the OCP is important for both scientific communities and policy makers.  相似文献   

12.
Abstract

The persistence of two insecticidally active compounds from the neem tree, azadirachtin A and B, was determined at two different temperatures (15 and 25°C) in the laboratory after application of the commercial neem insecticide, Margosan‐O, to a sandy loam soil. The influence of microbial activity on degradation was also examined by comparing autoclaved and non‐autoclaved soils also at 15 and 25°C. Temperature influenced degradation rates. The DT 50 (time required for 50% disappearance of the initial concentration) for azadirachtin A was 43.9 and 19.8 d for non‐autoclaved soil kept at 15 and 25°C, respectively. The DT 50 for azadirachtin B was 59.2 and 20.8 d for non‐autoclaved soil kept at 15 and 25°C, respectively. Microbial activity was also responsible for faster degradation because DT 50 ’s for autoclaved soil were much longer than for non‐autoclaved soils. DT 50 s for azadirachtin A in autoclaved soil were 91.2 (15°C) and 31.5 d (25°C). DT50’s for azadirachtin B in autoclaved soil were 115.5 (15°C) and 42.3 d (25°C). Two degradation products of azadirachtin were detected, but were not identified. Higher levels of the two degradation products were detected in non‐autoclaved soil.  相似文献   

13.
14.
This paper reviews current remediation technologies that use chelating agents for the mobilization and removal of potentially toxic metals from contaminated soils. These processes can be done in situ as enhanced phytoextraction, chelant enhanced electrokinetic extraction and soil flushing, or ex situ as the extraction of soil slurry and soil heap/column leaching. Current proposals on how to treat and recycle waste washing solutions after soil is washed are discussed. The major controlling factors in phytoextraction and possible strategies for reducing the leaching of metals associated with the application of chelants are also reviewed. Finally, the possible impact of abiotic and biotic soil factors on the toxicity of metals left after the washing of soil and enhanced phytoextraction are briefly addressed.  相似文献   

15.
We reviewed the published evidence of lead (Pb) contamination of urban soils, soil Pb risk to children through hand-to-mouth activity, reduction of soil Pb bioavailability due to soil amendments, and methods to assess bioaccessibility which correlate with bioavailability of soil Pb. Feeding tests have shown that urban soils may have much lower Pb bioavailability than previously assumed. Hence bioavailability of soil Pb is the important measure for protection of public health, not total soil Pb. Chemical extraction tests (Pb bioaccessibility) have been developed which are well correlated with the results of bioavailability tests; application of these tests can save money and time compared with feeding tests. Recent findings have revealed that fractional bioaccessibility (bioaccessible compared to total) of Pb in urban soils is only 5-10% of total soil Pb, far lower than the 60% as bioavailable as food-Pb presumed by U.S.-EPA (30% absolute bioavailability used in IEUBK model).  相似文献   

16.
Biochars are biological residues combusted under low oxygen conditions, resulting in a porous, low density carbon rich material. Their large surface areas and cation exchange capacities, determined to a large extent by source materials and pyrolysis temperatures, enables enhanced sorption of both organic and inorganic contaminants to their surfaces, reducing pollutant mobility when amending contaminated soils. Liming effects or release of carbon into soil solution may increase arsenic mobility, whilst low capital but enhanced retention of plant nutrients can restrict revegetation on degraded soils amended only with biochars; the combination of composts, manures and other amendments with biochars could be their most effective deployment to soils requiring stabilisation by revegetation. Specific mechanisms of contaminant-biochar retention and release over time and the environmental impact of biochar amendments on soil organisms remain somewhat unclear but must be investigated to ensure that the management of environmental pollution coincides with ecological sustainability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号