首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The fate of 14C-labeled herbicide prosulfocarb was studied in an agricultural soil and in a sediment-water system, the sediment part of which was derived from Yangtze Three Gorges Reservoir, China. Time-course studies were performed for 28 d and 49 d, respectively. Main transformation routes of 14C-prosulfocarb were mineralization to 14CO2 and formation of nonextractable residues amounting to 12.13% and 10.43%, respectively, after 28 days (soil), and 9.40% and 11.98%, respectively, after 49 d (sediment-water system). Traces of prosulfocarbsulfoxide were detected by means of TLC, HPLC, and LC-MS; other transformation products were not found. Initial extraction of soil assays using 0.01 M CaCl2 solution showed that the bioavailability of the herbicide was considerably low; immediately after application (0.1 d of incubation), only 4.78% of applied radioactivity were detected in this aqueous fraction. DT50 values of 14C-prosulfocarb estimated from radio-TLC and -HPLC analyses were above 28 d in soil and ranged between 29 d and 49 d in the sediment-water system. Partitioning of 14C from water to sediment phase occurred with DT50 slightly above 2 d. With regard to the sediment-water system, adsorption occurred with log Koc = 1.38 (calculated from 2 day assays) and 2.35 (49 d assays). As similarly estimated from portions of 14C found in CaCl2 extracts of the 0.1 d assays, 14C-prosulfocarb's log Koc in soil was 2.96. With both experiments, similar portions of nonextractable radioactivity were associated with all soil organic matter fractions, i.e. nonhumics, fulvic acids, humic acids, and humin/minerals. Throughout all sample preparation, the experiments were severely impaired by losses of radioactivity especially with concentration of samples containing water in vacuo. All findings pointed to volatility of parent prosulfocarb in presence of water rather than volatility of transformation products. According to literature data, this behavior of prosulfocarb was not expected, though volatility was demonstrated under field conditions.  相似文献   

2.
Two plant species, arugula (Eruca sativa) and mustard (Brassica juncea) were field-grown under four soil management practices: soil mixed with municipal sewage sludge (SS), soil mixed with horse manure (HM), soil mixed with chicken manure (CM), and no-mulch bare soil (NM) to investigate the impact of soil amendments on the concentration of glucosinolates (GSLs) in their shoots. GSLs, hydrophilic plant secondary metabolites in arugula and mustard were extracted using boiling methanol and separated by adsorption on sephadex ion exchange disposable pipette tips filled with DEAE, a weak base, with a net positive charge that exchange anions such as GSLs. Quantification of GSLs was based on inactivation of arugula and mustard myrosinase and liberation of the glucose moiety from the GSLs molecule by addition of standardized myrosinase (thioglucosidase) and spectrophotometric quantification of the liberated glucose moiety. Overall, GSLs concentrations were significantly greater (1287 µg g?1 fresh shoots) in plants grown in SS compared to 929, 890, and 981 µg g?1 fresh shoots in plants grown in CM, HM, and NM soil, respectively. Results also revealed that mustard shoots contained greater concentrations of GSLs (974 µg g?1 fresh shoots) compared to arugula (651 µg g?1 fresh shoots).  相似文献   

3.
The addition of organic matter in soil can modify the bioavailability of heavy metals. A greenhouse pot experiment was carried out using an edible plant species Eruca vesicaria L. Cavalieri grown on an artificially contaminated soil with Zn (665 mg?kg?1). In this study, the effect of compost at 20 t?ha?1 (C20) and at 60 t?ha?1 (C60), manure at 10 t?ha?1 (M10) and at 30 t?ha?1 (M30), and chemical fertilizers (NPK) on Zn fate in a soil–plant system was evaluated. At the end of the experiment, the main growth parameters and Zn content in plants were determined. In addition, Zn speciation in the soil was assessed using the original Community Bureau of Reference sequential extraction and diethylene triamine pentaacetic acid extraction. Zinc, though an essential element for plant growth, caused toxicity effects in plants grown on control and manure treatments, while in the compost treatments, plants showed no visual toxicity symptoms. The concentrations of Zn in roots were similar for all treatments, while significant differences were observed for shoots. In fact, in the compost treatments, plants showed the lowest Zn concentration in shoots. Zinc speciation seems not to be affected by the applied treatments. Indeed, Zn plant content and translocation to shoots seems to be affected. Compost amendments significantly reduced Zn content and translocation in comparison to other treatments.  相似文献   

4.
采用原位强化生物修复技术对某区块石油污染土壤进行为期16个月的生物修复,考察了处置后污染土壤理化性质、微生物学特性以及石油烃组成的纵向分布特征。实验结果表明,经过修复后各土层的石油烃去除率是表层土IN-3(50.42%)中层土IN-2(23.54%)底层土IN-1(10.51%);IN-1处于缺氧环境,存在硫酸盐还原和反硝化作用,使得土壤pH值从7.86±0.03降低至7.27±0.03,土壤总氮从2.53±0.13 g/kg降低至0.77±0.04 g/kg;厌氧菌的种群数量是IN-1(10.43±0.71×104CFU/g)IN-3(6.74±0.39×104CFU/g)IN-2(5.15±0.42×104CFU/g),放线菌数量与石油烃含量显著负相关(r=-0.989,p=0.0110.05);IN-3对饱和份和芳香份的降解率最高,分别达到了70.27%和54.52%,远高于IN-2和IN-1;模拟蒸馏结果表明,IN-3正构烷烃得到了很大程度的去除,缺氧的IN-1对正构烷烃去除得较少;厌氧菌数量与胶质和沥青质去除率之间成正相关关系,对于污染源较为分散的污染区域,采用原位生物强化修复时可以考虑引入厌氧修复。  相似文献   

5.
This investigation was performed to determine the effect of physicochemical soil properties on penoxsulam, molinate, bentazon, and MCPA adsorption–desorption processes. Four soils from Melozal (35° 43′ S; 71° 41′ W), Parral (36° 08′ S; 71° 52′ W), San Carlos (36° 24′ S; 71° 57′ W), and Panimavida (35° 44′ S; 71° 24′ W) were utilized. Herbicide adsorption reached equilibrium after 4 h in all soils. The Freundlich L-type isotherm described the adsorption process, which showed a high affinity between herbicides and sorption sites mainly because of hydrophobic and H-bonds interaction. Penoxsulam showed the highest adsorption coefficients (4.23 ± 0.72 to 10.69 ± 1.58 mL g?1) and were related to soil pH. Molinate showed Kd values between 1.72 ± 0.01 and 2.3 ± 0.01 mL g?1and were related to soil pH and organic matter, specifically to the amount of humic substances. Bentazon had a high relationship with pH and humic substances and its Kd values were the lowest, ranging from 0.11 ± 0.01 to 0.42 ± 0.01 mL g?1. MCPA Kd ranged from 0.14 ± 0.02 to 2.72 ± 0.01 mL g?1, however its adsorption was related to humic acids and clay content. According to these results, the soil factors that could explain the sorption process of the studied herbicides under paddy rice soil conditions, were principally humic substances and soil pH. Considering the sorption variability observed in this study and the potential risk for groundwater contamination, it is necessary to develop weed rice management strategies that limit use of herbicides that exhibit low soil adsorption in areas with predisposing conditions to soil leaching.  相似文献   

6.

Dissipation and leaching behavior of 14C-monocrotophos was studied for 365 days under field conditions using PVC cylinders. The first set (24 cylinders) was spiked with 1.0 μCi 14C-labeled monocrotophos along with 1.06 mg unlabeled monocrotophos to give a concentration of 2 mg kg ?1 in the soil up to 15 cm depth. The second set (24 cylinders) received 14C-labeled monocrotophos along with other non-labeled insecticides viz., dimethoate @ 300 g a.i ha?1, deltamethrin @ 12.5 g a.i ha?1, endosulfan @ 750 g a.i ha?1, cypermethrin @ 60 g a.i ha?1, and triazophos @ 600 g a.i ha?1 at an interval of 15 days each as recommended for the cotton crop. 14C-monocrotophos dissipated faster, up to 45% in first 90 days in columns treated with only monocrotophos compared to 25% in columns that received monocrotophos along with other insecticides. However, both the columns showed similar residues 180 days onward. After 180 days of treatment, 46% radiolabeled residues were observed, which reduced up to 39.6% after 365 days. Leaching of 14C-monocrotophos to 15–30 cm soil layer was observed in both the experimental setups. In the 15–30 cm soil layer of both soil columns, up to 0.19 mg 14C-monocrotophos kg?1d. wt. soil was detected after 270 days.  相似文献   

7.
Natural steroidal estrogens, such as 17 β-estradiol (E2), as well as antimicrobials such as doxycycline and norfloxacin, are excreted by humans and hence detected in sewage sludge and biosolid. The disposal of human waste products on agricultural land results in estrogens and antibiotics being detected as mixtures in soils. The objective of this study was to examine microbial respiration and E2 mineralization in sewage sludge, biosolid, and soil in the presence and the absence of doxycycline and norfloxacin. The antimicrobials were applied to the media either alone or in combination at total rates of 4 and 40 mg kg?1, with the 4 mg kg?1 rate being an environmentally relevant concentration. The calculated time that half of the applied E2 was mineralized ranged from 294 to 418 days in sewage sludge, from 721 to 869 days in soil, and from 2,258 to 14,146 days in biosolid. E2 mineralization followed first-order and the presence of antimicrobials had no significant effect on mineralization half-lives, except for some antimicrobial applications to the human waste products. At 189 day, total E2 mineralization was significantly greater in sewage sludge (38 ±0.7%) > soil (23 ±0.7%) > biosolid (3 ±0.7%), while total respiration was significantly greater in biosolid (1,258 mg CO2) > sewage sludge (253 mg CO2) ≥ soil (131 mg CO2). Strong sorption of E2 to the organic fraction in biosolid may have resulted in reduced E2 mineralization despite the high microbial activity in this media. Total E2 mineralization at 189 day was not significantly influenced by the presence of doxycycline and/or norfloxacin in the media. Antimicrobial additions also did not significantly influence total respiration in media, except that total CO2 respiration at 189 day was significantly greater for biosolid with 40 mg kg?1 doxycycline added, relative to biosolid without antimicrobials. We conclude that it is unlikely for doxycycline and norfloxacin, or their mixtures, to have a significant effect on E2 mineralization in human waste products and soil. However, the potential for E2 to be persistent in biosolids, with and without the presence of antimicrobials, is posing a challenge for biosolid disposal to agricultural lands.  相似文献   

8.
Phthalic acid esters (PAEs) pollution in agricultural soils caused by widely employed plastic products is becoming more and more widespread in China. PAEs polluted soil can lead to phytotoxicity in higher plants and potential health risks to human being. We evaluated the individual toxicity of di-n-butyl phthalate (DnBP) and bis(2-ethylhexyl) phthalate (DEHP), two representative PAEs, to sown rape (Brassica chinensis L.) seeds within 72 h (as germination stage) and seedlings after germination for 14 days by monitoring responses and trends of different biological parameters. No significant effects of six concentrations of PAE ranging from 0 (not treated/NT) to 500 mg?kg?1 on germination rate in soil were observed. However, root length, shoot length, and biomass (fresh weight) were inhibited by both pollutants (except root length and biomass under DEHP). Stimulatory effects of both target pollutants on malondialdehyde (MDA) content, superoxide dismutase (SODase) activity, ascorbate peroxidase (APXase) content, and polyphenoloxidase (PPOase) activity in shoots and roots (SODase activity in shoots excluded) were in the same trend with the promotion of proline (Pro) but differed with acetylcholinesterase activity (except in shoots under DnBP) for analyzed samples treated for 72 h and 14 days. Responses of representative storage compounds free amino acids (FAA) and total soluble sugar (TSS) under both PAEs were raised. Sensitivity of APXase and Pro in roots demonstrates their possibility in estimation of PAE phytotoxicity and the higher toxicity of DnBP, which has also been approved by the morphological photos of seedlings at day 14. Higher sensitivity of the roots was also observed. The recommended soil allowable concentration is 5 mg DnBP?kg?1 soil for the development of rape. We still need to know the phytotoxicity of DEHP at whole seedling stage for both the growing and development; on the other hand, soil criteria for PAE compounds are urgently required in China.  相似文献   

9.
Interest in identifying pools of antibacterial-resistance genes has grown over the last decade, with veterinary antibiotics (VAs) receiving particular attention. In this paper, a mesoscale study aimed at evaluating the vertical transport of common VAs—namely, fluoroquinolones, tetracyclines, sulfonamides, and lincosamides in agricultural soil subjected to drip irrigation—was performed under greenhouse conditions. Accordingly, leachates of cropped and uncropped soil, amended with swine-slurry leading to 19–38 μg kg?1 (dry mass) antibiotics in the soil, were analyzed over the course of the productive cycle of a lettuce (42 days) with three sampling campaigns (N?=?24). High lincomycin (LCM) concentrations (30–39 μg L?1) were detected in the leachates collected from the swine-slurry-amended soil. The highest LCM mass recovered in the leachates (30.1?±?1.63 %) was obtained from cropped experimental units. In addition, the LCM leaching constant and its leaching potential as obtained from the first-order model were higher in the leachates from the cropped experimental units. Lower concentrations of sulfadimethoxine were also detected in leachates and in soil. Enrofloxacin and oxytetracycline occurred only in soil, which is consistent with high soil interaction.  相似文献   

10.
This study was conducted to evaluate cyhalofop‐p‐butyl mobility in a sandy loam soil and subsequent distribution of residues at various depths under field conditions. Soil samples were taken from 0 to 150 cm depths at 3–90 d after rains in lysemeter of 1 and 2 m depths. Cyhalofop‐p‐butyl application at two rates and subsequent precipitation had a significant impact on soil, physico‐chemical properties and herbicide mobility. Precipitation caused substantial mobility of cyhalofop‐p‐butyl in the soil and 1.1–7.6 μg L?1 of cyhalofop‐p‐butyl was found in leachates. Cyhalofop‐p‐butyl residues in the leachates were probably due to preferential flow through the soil. Cyhalofop‐p‐butyl residues were detected in significant amounts from the soil up to 10 d, later, residues were found below the detection limit but its three transformation products viz., cyhalofop acid, diacid, and phenol were detected.  相似文献   

11.
Abstract

Degradation of trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) was investigated in soils taken from three different locations at Harran region of Turkey under laboratory conditions. Surface (0–10 cm) soils, which were taken from a pesticide untreated field Gürgelen, Harran-1 and Ikizce regions in the Harran Plain, were incubated in biometer flasks for 350 days at 25°C. Ring-UL-14C-trifluralin was applied at the rate of 2 µg g?1 with 78.7 kBq radioactivity per 100 g soil flask. Evolved 14CO2 was monitored in KOH traps throughout the experiment. Periodically, soil sub-samples were removed and extracted by supercritical fluid extraction (SFE). Unextractable soil-bound 14C residues were determined by combustion. During the 350 days incubation period 6.6, 5.4, and 3.3% of the applied radiocarbon was evolved as 14CO2 from the Harran-1, Gürgelen, and Ikizce soil, respectively. At the end of 350 days the SFE-extractable and bound 14C-trifluralin residues were 39.0 and 29.2% of the initially applied herbicide in Gürgelen soil. The corresponding values for Harran-1 and Ikizce soils were 36.2, 28.4% and 41.6, 18.5% respectively.  相似文献   

12.
Organochlorine pesticides present in sewage sludge can contaminate soil and water when they are used as either fertilizer or agricultural soil conditioner. In this study, the technique solid–liquid extraction with low temperature purification was optimized and validated for determination of ten organochlorine pesticides in sewage sludge and soil samples. Liquid–liquid extraction with low temperature purification was also validated for the same compounds in water. Analyses were performed by gas chromatography-mass spectrometry operating in the selective ion monitoring mode. After optimization, the methods showed recoveries between 70% and 115% with relative standard deviation lower than 13% for all target analytes in the three matrices. The linearity was demonstrated in the range of 20 to 70 µg L?1, 0.5 to 60 µg L?1, and 3 to 13 µg L?1, for sludge, soil, and acetonitrile, respectively. The limit of quantification ranged between 2 and 40 µg kg?1, 1 and 6 µg kg?1, and 0.5 µg L?1 for sludge, soil, and water, respectively. The methods were used in the study of pesticide lixiviation carried out in a poly vinyl chlorine column filled with soil, which had its surface layer mixed with sludge. The results showed that pesticides are not leached into soil, part of them is adsorbed by the sewage sludge (4–40%), and most pesticides are lost by volatilization.  相似文献   

13.
This study examined the mercury concentration in the Grisette Amanita vaginata Fr. and soil below the fruiting bodies collected between 2000 and 2008 from the wild at seven distant sites across Poland. The Hg content in samples was determined by cold atomic absorption method (CV-AAS) at a wavelength of 253.7 nm. Mean Hg contents varied from 0.096 ± 0.052 to 0.48 ± 0.13 mg kg?1 dry matter (dm) in caps (range, 0.043–0.73 mg kg?1), from 0.047 ± 0.02 to 0.23 ± 0.07 mg kg?1 dm (range, 0.028–0.47 mg kg?1) in stipes, and in underlying soil were from 0.035 ± 0.018 to 0.096 ± 0.036 mg kg?1 dm (range, 0.017 to 0.16 mg kg?1). The median Qc/s values ranged from 1.2 to 2.2 (mean 1.2 ± 0.4 to 2.1 ± 0.5) indicating that Hg content in stipes was generally lower than in caps. This mushroom species has some potential to bioconcentrate Hg in the fruiting bodies, as the values of the bioconcentration factor (BCF) varied for the sites between 1.2 ± 0.6 to 11 ± 5 for caps and 0.61 ± 0.26 to 7.4 ± 3.9 for stipes. Also available literature data on Hg in A. vaginata are reviewed and discussed.  相似文献   

14.
The degradation of chlorpyrifos (CP) by an endophytic bacterial strain (HJY) isolated from Chinese chives (Allium tuberosum Rottl. ex Spreng) was investigated. Strain HJY was identified as Sphingomonas sp. based on morphological, physiological, and biochemical tests and a 16S rDNA sequence analysis. Approximately 96% of 20 mg L?1 CP was degraded by strain HJY over 15 days in liquid minimal salts medium (MSM). The CP degradation rate could also be increased by glucose supplementation. The optimal conditions for the removal of 20 mg L?1 CP by strain HJY in MSM were 2% inoculum density, pH 6.0, and 30–35°C. The CP degradation rate constant and half-life were 0.2136 ± 0.0063 d?1 and 3.2451 ± 0.0975 d, respectively, under these conditions, but were raised to 0.7961 ± 0.1925 d?1 and 0.8707 ± 0.3079 d with 1% glucose supplementation. The detection of metabolic products and screening for degrading genes indicated that O,O-diethyl O-3,5,6-trichloropyridinol was the major degradation product from CP, while it was likely that some functional genes were undetected and the mechanism responsible for CP degradation by strain HJY remained unknown. Strain HJY is potentially useful for the reduction of CP residues in Chinese chives and may be used for the in situ phytoremediation of CP.  相似文献   

15.
Abstract

The persistence of two insecticidally active compounds from the neem tree, azadirachtin A and B, was determined at two different temperatures (15 and 25°C) in the laboratory after application of the commercial neem insecticide, Margosan‐O, to a sandy loam soil. The influence of microbial activity on degradation was also examined by comparing autoclaved and non‐autoclaved soils also at 15 and 25°C. Temperature influenced degradation rates. The DT 50 (time required for 50% disappearance of the initial concentration) for azadirachtin A was 43.9 and 19.8 d for non‐autoclaved soil kept at 15 and 25°C, respectively. The DT 50 for azadirachtin B was 59.2 and 20.8 d for non‐autoclaved soil kept at 15 and 25°C, respectively. Microbial activity was also responsible for faster degradation because DT 50 ’s for autoclaved soil were much longer than for non‐autoclaved soils. DT 50 s for azadirachtin A in autoclaved soil were 91.2 (15°C) and 31.5 d (25°C). DT50’s for azadirachtin B in autoclaved soil were 115.5 (15°C) and 42.3 d (25°C). Two degradation products of azadirachtin were detected, but were not identified. Higher levels of the two degradation products were detected in non‐autoclaved soil.  相似文献   

16.
Canola plants were treated with 14C- prohiofos under conditions simulating local agricultural practices. 14C-residues in seeds were determined at different time intervals. At harvest time about 32 % of 14C-activity was associated with oil. The methanol soluble 14C-residues accounted for 12 % of the total seed residues after further seeds extraction, while the cake contained about 49 % of the total residues. About 69 % of the 14C-activity in the crude oil could be eliminated by simulated commercial processes locally used for oil refining. Chromatographic analysis of crude and refined oil revealed the presence of the parent compound together with three metabolites which were identified as prothiofos oxon, O-ethyl phosphorothioate and O-ethyl S-propyl phosphorothioate, besides one unknown compound. While methanol extract revealed the presence of despropylthio prothiofos and O-ethyl phosphoric acid as free metabolites acid hydrolysis of the conjugated metabolites in the methanol extract yielded 2, 4-dichlorophenole which was detected by color. When rats were fed the extracted cake for 72 hours, the bound residues were found to be bioavailable. The main excretion route was via the expired air (42 %), while the 14C-residues excreted in urine and feces were 30 % and 11 %, respectively. The radioactivity detected among various organs accounted to 7.5 %.Chromatographic analysis of urine indicated the presence of prothiofos oxon, O-ethyl phosphoric acid and 2, 4-dichlorophenole as main degradation products of prothiofos in free and conjugated form.  相似文献   

17.
Abstract

The biotransformation of the nonylphenol isomer [ring-U-14C]-4-(3′,5′-dimethyl-3′-heptyl)-phenol (4-353-NP, consisting of two diastereomers) was studied in soybean and Agrostemma githago cell suspension cultures. With the A. githago cells, a batch two-liquid-phase system (medium/n-hexadecane 200:1, v/v) was used, in order to produce higher concentrations and amounts of 4-353-NP metabolites for their identification; 4-353-NP was applied via the n-hexadecane phase. Initial concentrations of [14C]-4-353-NP were 1 mg L?1 (soybean), and 5 and 10 mg L?1 (A. githago). After 2 (soybean) and 7 days (A. githago) of incubation, the applied 4-353-NP was transformed almost completely by both plant species to four types of products: glycosides of parent 4-353-NP, glycosides of primary 4-353-NP metabolites, nonextractable residues and unknown, possibly polymeric materials detected in the media. The latter two products emerged especially in soybean cultures. Portions of primary metabolites amounted to 19–22% (soybean) and 21–42% of applied 14C (A. githago). After liberation from their glycosides, the primary 4-353-NP metabolites formed by A. githago were isolated by HPLC and examined by GC-EIMS as trimethylsilyl derivatives. In the chromatograms, eight peaks were detected which due to their mass spectra, could be traced back to 4-353-NP. Seven of the compounds were side-chain monohydroxylated 4-353-NP metabolites, while the remaining was a (side-chain) carboxylic acid derivative. Unequivocal identification of the sites of hydroxylation/oxidation of all transformation products was not possible. The main primary metabolites produced by A. githago were supposed to be four diastereomers of 6′-hydroxy-4-353-NP (about 80% of all products identified). It was concluded that plants contribute to the environmental degradation of the xenoestrogen nonylphenol; the toxicological properties of side-chain hydroxylated nonylphenols remain to be examined.  相似文献   

18.
Available information on soil volatile organic compound (VOC) exchange, emissions and uptake, is very scarce. We here describe the amounts and seasonality of soil VOC exchange during a year in a natural Mediterranean holm oak forest growing in Southern Catalonia. We investigated changes in soil VOC dynamics in drought conditions by decreasing the soil moisture to 30% of ambient conditions by artificially excluding rainfall and water runoff, and predicted the response of VOC exchange to the drought forecasted in the Mediterranean region for the next decades by GCM and ecophysiological models.The annual average of the total (detected) soil VOC and total monoterpene exchange rates were 3.2±3.2 and −0.4±0.3 μg m−2 h−1, respectively, in control plots. These values represent 0.003% of the total C emitted by soil at the study site as CO2 whereas the annual mean of soil monoterpene exchange represents 0.0004% of total C. Total soil VOC exchange rates in control plots showed seasonal variations following changes in soil moisture and phenology. Maximum values were found in spring (17±8 μg m−2 h−1). Although there was no significant global effect of drought treatment on the total soil VOC exchange rates, annual average of total VOC exchange rates in drought plots resulted in an uptake rate (−0.5±1.8 μg m−2 h−1) instead of positive net emission rates. Larger soil VOC and monoterpene exchanges were measured in drought plots than in control plots in summer, which might be mostly attributable to autotrophic (roots) metabolism.The results show that the diversity and magnitude of monoterpene and VOC soil emissions are low compared with plant emissions, that they are driven by soil moisture, that they represent a very small part of the soil-released carbon and that they may be strongly reduced or even reversed into net uptakes by the predicted decreases of soil water availability in the next decades. In all cases, it seems that VOC fluxes in soil might have greater impact on soil ecology than on atmospheric chemistry.  相似文献   

19.
This research aimed to develop slow-release formulations (SRFs) of 2,4-dichlorophenoxyacetic acid (2,4-D) using zeolite and bentonite minerals modified with cetyltrimethylammonium (CTMA) surfactant. Adsorption–desorption, greenhouse bioassay and column experiments were carried out to assess the potential of the SRFs to control weeds while reducing the herbicide leaching losses to deep layers of soil. The results showed that only 6.5 mmol 2,4-D kg?1 was retained by Na-bent, and the herbicide was not adsorbed by Na-zeol at all. The surface modification with CTMA surfactant, however, improved the 2,4-D adsorption capacity of the zeolite and bentonite up to 207.5 and 415.8 mmol kg?1, respectively. The synthesized organo-minerals slowly released the retained 2,4-D discharging 22 to 64% of the adsorbed 2,4-D to the solution phase within 7 days. The SRFs significantly (P = 0.05) reduced the herbicide mobility within the soil columns keeping a great portion of the herbicide active ingredient in the upper 5 cm soil layer. The SRFs were significantly (P = 0.05) as effective as the free technical herbicide in weed control without harming the ryegrass as the main plant. Therefore, the synthesized SRFs could be considered as useful tools for weed control in sustainable agriculture.  相似文献   

20.
This study aimed to evaluate the sorption-desorption and leaching of aminocyclopyrachlor from three Brazilian soils. The sorption-desorption of 14C-aminocyclopyrachlor was evaluated using the batch method and leaching was assessed in glass columns. The Freundlich model showed an adequate fit for the sorption-desorption of aminocyclopyrachlor. The Freundlich sorption coefficient [Kf (sorption)] ranged from 0.37 to 1.34 µmol (1–1/n) L1/n kg?1 and showed a significant positive correlation with the clay content of the soil, while the Kf (desorption) ranged from 3.62 to 5.36 µmol (1–1/n) L1/n kg?1. The Kf (desorption) values were higher than their respective Kf (sorption), indicating that aminocyclopyrachlor sorption is reversible, and the fate of this herbicide in the environment can be affected by leaching. Aminocyclopyrachlor was detected at all depths (0?30 cm) in all the studied soils, where leaching was influenced by soil texture. The total herbicide leaching from the sandy clay and clay soils was <0.06%, whereas, ~3% leached from the loamy sand soil. The results suggest that aminocyclopyrachlor has a high potential of leaching, based on its low sorption and high desorption capacities. Therefore, this herbicide can easily contaminate underground water resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号