首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.

The morphological, physiological, and biochemical parameters of 6-week-old seedlings of Scots pine (Pinus sylvestris L.) were studied under deficiency (1.2 nM) and chronic exposure to copper (0.32, 1, 2.5, 5, and 10 μM CuSO4) in hydroculture. The deposit of copper in the seed allowed the seedlings to develop under copper deficiency without visible disruption of growth. The high sensitivity of Scots pine to the toxic effects of copper was shown, which manifested as a significant inhibition of growth and development. The loss of dominance of the main root and a strong inhibition of lateral root development pointed to a lack of adaptive reorganization of the root system architecture under copper excess. A preferential accumulation of copper in the root and a minor translocation in aerial organs confirmed that Scots pine belongs to a group of plants that exclude copper. Selective impairment in the absorption of manganese was discovered, under both deficiency and excess of copper in the nutrient solution, which was independent of the degree of development of the root system. Following 10 μM CuSO4 exposure, the absorption of manganese and iron from the nutrient solution was completely suppressed, and the development of seedlings was secured by the stock of these micronutrients in the seed. The absence of signs of oxidative stress in the seedling organs was shown under deficiency and excess of copper, as evidenced by the steady content of malondialdehyde and 4-hydroxyalkenals. Against this background, no changes in total superoxide dismutase activity in the organs of seedlings were revealed, and the increased content of low-molecular-weight antioxidants was observed in the roots under 1 μM and in the needles under 5 μM CuSO4 exposures.

  相似文献   

2.

Goal, Scope and Background

Elevated concentrations of copper in the environment result in accumulation of the metal in plants and cause an increase in reactive oxidative species (ROS). The first response to elevated amounts of ROS is increased levels of enzymatic and non-enzymatic antioxidants that reduce oxidative stress. The aim of our study was to evaluate the early stages of antioxidative responses to the low copper concentrations usually present in moderately polluted environments. In addition, some other parameters were examined to evaluate the effect of copper on plants.

Methods

Duckweed (Lemna minor L.) was exposed to different concentrations of copper sulphate for up to 24 hours. Glutathione concentration and enzymatic activities of catalase, guaiacol peroxidase and glutathione reductase were measured spectrophotometrically. Additionally, delayed and prompt chlorophyll fluorescence was measured by luminometry and fluorometry, respectively. The accumulation of copper in plants exposed for 24 hours to various concentrations of copper sulphate was measured by flame atomic absorption spectrophotometry.

Results

The treatment of plants with copper sulphate resulted in an immediate decrease of the glutathione pool, which was replenished after 24 hours at CuSO4 concentrations lower than 2 μM. Higher CuSO4 concentrations caused a decrease of reduced glutathione. The responses of the antioxidant enzymes glutathione reductase, guaiacol peroxidase and catalase to CuSO4 differed during the first six hours of exposure, but their enzyme activities all increased after 24 hours of exposure. All these enzymes displayed biphasic activity curves with maximum values between 0.5 μM and 1 μM CuSO4. The response of guaiacol peroxidase was the most pronounced and statistically significantly specific and that of catalase the least. Delayed chlorophyll fluorescence decreased after exposure to 1 μM CuSO4, but no significant effect on maximum quantum yield of photosystem II (Fv/Fm) was observed. L. minor accumulated relatively high concentrations of copper. The accumulation rate was higher at lower concentrations of copper in the test medium (up to 2 μM CuSO4) than at concentrations above 2 μM CuSO4.

Discussion

One of the most pronounced antioxidative responses to copper exposure was modified levels of oxidized and reduced forms of glutathione. The decrease of the glutathione pool is most probably coupled with induced production of phytochelatins. Antioxidative enzymes showed the biphasic enzyme activity characteristic of stress response. Guaiacol peroxidase exhibited the greatest significant increase of activity, even at higher CuSO4 concentrations at which the activity of catalase and glutathione reductase dropped. The intensity of delayed chlorophyll fluorescence decreased, indicating reduced photosynthesis of plants under stress. All the measured parameters showed that plants respond to even low copper concentrations very soon after exposure. The accumulation rate of copper in duckweed tissues indicates that L. minor is an accumulator species.

Conclusions

The synchronized and prompt inducibility of antioxidants indicates their involvement in a general plant defence strategy for coping with metal-induced oxidative stress. Glutathione concentration and guaiacol peroxidase activity were found to be the most sensitive of the early indicators of exposure to copper concentrations present in polluted water bodies.

Recommendation and Perspectives

The experimental design of the present study allowed us to compare the sensitivity of various methods and parameters for detecting plant responses to heavy metal-induced oxidative stress. The level of glutathione and the enzyme activities of guaiacol peroxidase and glutathione reductase could be used as a rapidly determined early warning system in toxicity studies.
  相似文献   

3.
The aims of this research were to evaluate the efficacy of copper oxychloride (CuCl2.3Cu(OH)2), copper hydroxide (Cu(OH)2) and diquat (1.1′-ethylene-2.2′-bipyridyldiylium dibromide), isolated and in association with 0.1% of both copper sources, in the control of the unicellular algae Ankistrodesmus gracilis and the filamentous algae Pithophora kewesis, and to determine the acute toxicity of the tested chemicals in Hyphressobrycon eques, Pomacea canaliculata, Lemna minor and Azolla caroliniana. The efficacy was estimated by the methods of chlorophyll a and pheophytin a readings, changed into growth inhibition percentage. Both algae were exposed to the following concentrations: 0.2; 0.4; 0.8; 1.2 mg L?1 of diquat and its association with the copper sources; and 0.1; 0.3; 0.5; 0.7; 1.0 and 1.5 mg L?1 in the isolated applications of copper hydroxide and copper oxychloride. An untreated control was kept. The acute toxicity was estimatedby 50% lethal concentration (LC50). The copper sources were effective for A. gracilis control, at rates as high as 0.1 mg L?1 (>95% efficacy). Isolated diquat and its association with copper hydroxide were both effective at rates as high as 0.4 mg L?1, with 95 and 88% control efficacy, respectively. The copper oxychloride was effective at 0.2 mg L?1, with 93% efficacy. None of the tested chemicals and associations was effective on P. kewesis control. The most sensitive non target organism to the tested chemicals was L. minor; the less sensitive was H. eques.  相似文献   

4.
For organisms, temperature is one of the most important environmental factors and gains increasing importance due to global warming, since increasing temperatures may pose organisms close to their environmental tolerance limits and, thus, they may become more vulnerable to environmental stressors. We analyzed the temperature-dependence of the water-soluble antioxidant capacity of the cladoceran Moina macrocopa and evaluated its life trait variables with temperature (15, 20, 25, 30 °C) and humic substance (HS) concentrations (0, 0.18, 0.36, 0.90, 1.79 mM DOC) as stressors. Temperatures below and above the apparent optimum (20 °C) reduced the antioxidative capacity. Additions of HSs increased body length, but decreased mean lifespan at 15 and 20 °C. There was no clear HS-effect on offspring numbers at 15, 20, and 30 °C. At 25 °C with increasing HS-concentration, lifespan was extended and offspring numbers increased tremendously, reaching 250% of the control. Although the applied HS preparation possesses estrogenic and antiandrogenic activities, a xenohormone mechanism does not seem plausible for the reproductive increase, because comparable effects did not occur at other temperatures. A more convincing explanation appears to be the mitohormesis hypothesis which states that a certain increase of reactive oxygen production leads to improved health and longevity and, with Moina, also to increased offspring numbers. Our results suggest that at least with the eurythermic M. macrocopa, a temperature above the optimum can be beneficial for several life trait variables, even when combined with a chemical stressor. Temperatures approximately 10 °C above its optimum appear to adversely affect the lifespan and reproduction of M. macrocopa. This indicates that this cladoceran species seems to be able to utilize temperature as an ecological resource in a range slightly above its thermal optimum.  相似文献   

5.
To document the toxicity of copper and nickel in binary mixtures, freshwater amphipods Gammarus pulex were exposed to the metals given independently or as mixtures. Toxicity to Cu alone was relatively high: 96-h LC10 and LC50 were found at 91 and 196 μg L?1, respectively. Toxicity to Ni alone was very low, with 96-h LC10 and LC50 of 44,900 and 79,200 μg L?1, respectively. Mixture toxicities were calculated from single toxicity data using conventional models. Modeled toxicity was then compared with the measured toxicity of the binary mixture. Two kinds of mixtures were tested. Type I mixtures were designed as combinations of Cu and Ni given at the same effect concentrations, when taken independently, to identify possible interactions between copper and nickel. In type II mixtures, Cu concentrations varied from 0 to 600 μg L?1 while the nickel concentration was kept constant at 500 μg L?1 to mimic conditions of industrial wastewater discharges. Ni and Cu showed synergic effects in type I mixtures while type II mixtures revealed antagonistic effects. Low doses of Ni reduced Cu toxicity towards G. pulex. These results show that even for simple binary mixtures of contaminants with known chemistry and toxicity, unexpected interactions between the contaminants may occur. This reduces the reliability of conventional additivity models.  相似文献   

6.
Leccinum scabrum is an edible mushroom common in European regions in the northern hemisphere. Macro and trace mineral constituents such as Ag, Al, Ba, Ca, Cd, Co, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, P, Rb, Sr and Zn were studied in L. scabrum and in the top soil collected from the same location underneath soil substratum. The “pseudo-total” and labile (extractable fraction of minerals) were measured to get insight into the levels, distribution between the morphological parts of fruiting bodies, potential for their bioconcentration by mushroom and evaluated for human exposure via consumption of the mushroom. The sampling sites include the Dar?lubska Wilderness, Trójmiejski Landscape Park, Sobieszewo Island, Wdzydze Landscape Park and outskirts of the K?trzyn town in Mazury from the norther part of Poland. Median values of K, Rb and P concentrations in dehydrated L. scabrum were for caps in range 27,000–44,000 mg kg?1, 90–320 mg kg?1 and 6,200–9,100 mg kg?1, and followed by Mg at 880–1,000 mg kg?1, Ca at 48–210 mg kg?1 and Al at 15–120 mg kg?1. The median concentrations of Cu, Fe, Mn and Zn in caps were in range 15–27 mg kg?1 db 38–140 mg kg?1, 5.3–27 mg kg?1 and 130–270 mg kg?1. For Ba and Sr, concentrations on the average were at ~1 mg kg?1, and almost equally distributed between the caps and stipes of the fruiting bodies. L. scabrum mushrooms were low in toxic Ag, Cd, Hg and Pb, for which the median values in dried caps from five locations were, respectively, in range 0.48–0.98 mg kg?1 (cap to stipe index, QC/S, was 2.5–4.1), 1.0–5.8 mg kg?1 (QC/S 2.9–3.8), 0.36–0.59 mg kg?1 (QC/S 1.6–2.7) and 0.20–0.91 mg kg?1 (QC/S 1.2–1.9). Substantial variations in the concentrations of the “pseudo-total” fraction (extracted by aqua regia) or labile fraction (extracted by 20% solution of nitric acid) of the elements determined in forest topsoils were noted between some of the locations examined. The elements K, P, Cd, Cu, Hg, Mn, Na, Rb and Zn can be considered as those which were bioconcentrated by L. scabrum in fruiting bodies, while the rates of accumulation varied with the sampling location.  相似文献   

7.
The bioaccumulation of atrazine and its toxicity were evaluated for the cyanobacterium Microcystis novacekii. Cyanobacterial cultures were grown in WC culture medium with atrazine at 50, 250 and 500 μg L?1. After 96 hours of exposure, 27.2% of the atrazine had been removed from the culture supernatant. Spontaneous degradation was found to be insignificant (< 9% at 500 μg L?1), indicating a high efficiency for the bioaccumulation of atrazine by M. novacekii. There were no atrazine metabolites detected in the culture medium at any of the doses studied. The acute toxicity (EC50) of atrazine to the cyanobacterium was 4.2 mg L?1 at 96 hours demonstrating the potential for M. novacekii to tolerate high concentrations of this herbicide in fresh water environments. The ability of M. novacekii to remove atrazine combined with its tolerance of the pesticide toxicity showed in this study makes it a potential biological resource for the restoration of contaminated surface waters. These findings support continued studies of the role of M. novacekii in the bioremediation of fresh water environments polluted by atrazine.  相似文献   

8.
The purpose of the study was to assess the impact of short-term exposure to selected toxicants as well as metal accumulation upon acetylcholinesterase (AChE) in the blue mussel, Mytilus trossulus L., in laboratory in vivo experiments. Mussels were exposed for up to 48 hours to a mixture of copper (Cu2 +, 400 μ g L?1) and cadmium (Cd2 +, 200 μ g L?1), to dichlorvos (DDVP, 100 μ g L?1), and to carbaryl (100 μ g L?1) at two temperatures: 5°C and 20°C. Samples were collected after 0, 6, 12, 24, and 48 hours of exposure, and AChE activity and metal concentration (where applicable) were analysed in gills, digestive gland, mantle+muscles, and the whole soft tissue. Very strong AChE inhibition was observed in response to the dichlorvos treatment, mainly in gills. Carbaryl and the metals caused a short-term inhibition effect. Considerable differences in AChE activity between the two temperatures were noticed. In particular, the metals were accumulated much faster at 20°C than at 5°C, especially in gills. No correlation between AChE activity and metal concentration was found. Gills turned out to be the optimal tissue for AChE activity analysis in short-term studies.  相似文献   

9.
The ecotoxic effects of carbaryl (carbamate insecticide) were investigated with a battery of four aquatic bioassays. The nominal effective concentrations immobilizing 50% of Daphnia magna (EC50) after 24 and 48 h were 12.76 and 7.47 µg L?1, respectively. After 21 days of exposure of D. magna, LOECs (lowest observed effect concentrations) for cumulative molts and the number of neonates per surviving adult were observed at carbaryl concentration of 0.4 µg L?1. An increase of embryo deformities (curved or unextended shell spines) was observed at 1.8 and 3.7 µg L?1, revealing that carbaryl could act as an endocrine disruptor in D. magna. Other bioassays of the tested battery were less sensitive: the IC50-72h and IC10-72h of the algae Pseudokirchneriella subcapitata were 5.96 and 2.87 mg L?1, respectively. The LC50-6d of the ostracod Heterocypris incongruens was 4.84 mg L?1. A growth inhibition of H. incongruens was registered after carbaryl exposure and the IC20-6d was 1.29 mg L?1. Our results suggest that the daphnid test sensitivity was better than other used tests. Moreover, carbaryl has harmful and toxic effects on tested species because it acts at low concentrations on diverse life history traits of species and induce embryo deformities in crustaceans.  相似文献   

10.
In recent decades, biodegradation has been considered a promising and eco-friendly way to eliminate organophosphorus pesticides (OPs) from the environment. To enrich current biodegrading-enzyme resources, an alkaline phosphatase (AP3) from Bacillus amyloliquefaciens YP6 was characterized and utilized to test the potential for new applications in the biodegradation of five broad-spectrum OPs. Characterization of AP3 demonstrated that activity was optimal at 40?°C and pH 10.3. The activity of AP3 was enhanced by Mg2+, Ca2+, and Cu2+, and strongly inhibited by Mn2+, EDTA, and L-Cys. Compared to disodium phenyl phosphate, p-nitrophenyl phosphate (pNPP) was more suitable to AP3, and the Vm, Km, kcat, kcat/Km values of AP3 for pNPP were 4,033?U mg?1, 12.2?mmol L?1, 3.3?×?106 s?1, and 2.7?×?108 s?1mol?1L, respectively. Degradation of the five OPs, which included chlorpyrifos, dichlorvos, dipterex, phoxim, and triazophos, was 18.7%, 53.0%, 5.5%, 68.3%, and 96.3%, respectively, after treatment with AP3 for 1?h. After treatment of the OP for 8?h, AP3 activities remained more than 80%, with the exception of phoxim. It can be postulated that AP3 may have a broad OP-degradation ability and could possibly provide excellent potential for biodegradation and bioremediation in polluted ecosystems.  相似文献   

11.

Human activities have increased anthropogenic CO2 emissions, which are believed to play important roles in global warming. The spatiotemporal variations of CO2 concentration and flux at fine spatial scales in aquaculture ponds remain unclear, particularly in China, the country with the largest aquaculture. In this study, the plot-scale spatiotemporal variations of water CO2 concentration and flux, both within and among ponds, were researched in shrimp ponds in Shanyutan Wetland, Min River Estuary, Southeast China. The average water CO2 concentration and flux across the water–air interface in the shrimp ponds over the shrimp farming period varied from 22.79?±?0.54 to 186.66?±?8.71 μmol L?1 and from ??0.50?±?0.04 to 2.87?±?0.78 mol m?2 day?1, respectively. There was no remarkable difference in CO2 concentration and flux within the ponds, but significantly spatiotemporal differences in CO2 flux were observed between shrimp ponds. Chlorophyll a, pH, salinity, air temperature, and morphometry were the important factors driving the spatiotemporal patterns of CO2 flux in the shrimp ponds. Our findings highlighted the importance and spatiotemporal variations of CO2 flux in the important coastal ecosystems.

  相似文献   

12.

Subacute studies of monocrotophos [Dimethyl (E)-1-methyl-2-(methyl-carbamoyl) vinyl phosphate] on mosquito fish, Gambusia affinis, were carried out in vivo for 24 days to assess the locomotor behavior, structural integrity of gill, and targeted enzyme acetylcholinesterase (AChE, EC: 3.1.1.7) interactions. Monocrotophos (MCP) can be rated as moderately toxic to G. affinis, with a median lethal concentration (LC50) of 20.49 ± 2.45 mgL?1. The fish exposed to sublethal concentration of LC10 (7.74 mgL?1) were under stress and altered their locomotor behavior, such as distance traveled per unit time (m min?1) and swimming speed (cm sec?1) with respect to the length of exposure. Inhibition in the activity of brain AChE and deformities in the primary and secondary lamellae of gill may have resulted in failure of exchange of gases. The maximum inhibition of 95% of AChE activity was observed on days 20 and 24.

Morphological aberrations in the gills were also studied during exposure to the sublethal concentration of monocrotophos for a period ranging from 8 to 24 days. The extent of damage in gill was dependent on the duration of exposure. The findings revealed that inhibition in brain AChE activity and structural alteration in gill were responsible for altering the locomotor behavior of exposed fish.  相似文献   

13.
Field isolates of Didymella applanata, the causal agent of spur blight of raspberry, were evaluated in vitro for their sensitivity to mancozeb, chlorothalonil, captan, fluopyram, boscalid and difenoconazole. A total of 10 isolates, collected during 2013 at five localities in the major raspberry growing region in Serbia, and characterized as copper hydroxide, dithianon, and tebuconazole (sensitive), pyraclostrobin (sensitive or highly resistant) and fluazinam (sensitive or moderately resistant), were used in this study. The EC50 values for the isolates ranged from 1.33 to 2.88 mg L?1 for mancozeb, from 3.18 to 6.65 mg L?1 for chlorothalonil, from 15.75 to 24.69 mg L?1 for captan and from 1.80 to 8.20 mg L?1 for fluopyram. The narrowest range of EC50 values was recorded for difenoconazole (0.23–0.49 mg L?1), whereas the widest range was obtained for boscalid (4.49–49.25 mg L?1). The calculated resistance factors showed that all D. applanata isolates were sensitive to mancozeb, chlorothalonil, captan, and difenoconazole. Four isolates were moderately resistant to boscalid, while three of them were also moderately resistant to fluopyram. This finding of moderately resistant isolates to these SDHI fungicides indicates a possible cross-resistance which should be clarified in further investigations.  相似文献   

14.
Bioaccumulation and toxicity of copper was evaluated on Potamogeton pusillus L. The effect of copper (5–100 μg L?1) applied for several days was assessed by measuring changes in the chlorophyll's, phaeophytin's, malondialdehyde, electrical conductivity, glutathione peroxidase (GPX), glutathione reductase (GR) and guaiacol peroxidase (POD) activities. Plants accumulated copper with a maximum of 162 μg g?1 dw after 7-days exposure at 100 μg L?1, however most of the metal was accumulated after 1-day exposure. The toxic effect caused by Cu was evident by the reduction of photosynthetic pigments, increase of malondialdehyde and electrical conductivity. P. pusillus shows Cu-induced oxidative stress by modulating antioxidant enzymes like GPX, GR and POD. Antioxidant enzymes activity increased significantly after exposure to 40 μg L?1 during 24 h, followed by a drop at longer times. Thus, P. pusillus is proposed as a good biomonitor for the assessment of metal pollution in aquatic ecosystems.  相似文献   

15.
The increasing use of nanoparticles (NPs) worldwide has raised some concerns about their impact on the environment. The aim of the study was to assess the toxicity of metal oxide nanoparticles, singly or combined, in a freshwater fish (Carassius auratus). The fish were exposed for 7, 14, and 21 days to different concentrations of NPs (10 μg Al2O3.L?1, 10 μg ZnO.L?1, 10 μg Al2O3.L?1 plus 10 μg ZnO.L?1, 100 μg Al2O3.L?1, 100 μg ZnO.L?1, and 100 μg Al2O3.L?1 plus 100 μg ZnO.L?1). At the end of each exposure period, antioxidant enzyme activity (catalase, glutathione-S-transferase, and superoxide dismutase), lipid peroxidation, and histopathology were assessed in the gills and livers of C. auratus. The results show an increase in catalase (CAT) and superoxide dismutase (SOD) activity in the gills and livers of fish, especially after 14 days of exposure to single and combined NPs, followed by a reduction at 21 days. An increase in glutathione S-transferase (GST) was observed in gills after 7 days for all tested NP concentrations (single and combined); while in livers, a significant increase was determined after 14 days of exposure to 100 μg.L?1 of both single ZnO and Al2O3 NPs. Lipid peroxidation (LPO) significantly increased in gills after 7 days of exposure to 100 μg.L?1 Al2O3 NPs (single or combined). In livers, LPO increased significantly after 7 days of exposure to all tested concentrations of both single ZnO and Al2O3 (except for 10 μg Al2O3.L?1), and after 14 days of exposure to ZnO (10 and 100 μg.L?1) and Al2O3 (100 μg.L?1). The results from histological observations suggest that exposure to metal oxide NPs affected both livers and gills, presenting alterations such as gill hyperplasia and liver degeneration. However, the most pronounced effects were found in gills. In general, this study shows that the tested NPs, single or combined, are capable of causing sub-lethal effects on C. auratus, but when combined, NPs seem to be slightly more toxic than when added alone.  相似文献   

16.
Using a laboratory-scale mixed reactor, the performance of alumina in degrading 2,4-Dichlorophenoxyacetic acid with ozone in the presence of tert-butyl alcohol radical scavenger was studied. The operating variables investigated were the dose of alumina catalyst and solution pH. Results showed that using ozone and alumina leads to a significant increase in 2,4-D removal in comparison to non-catalytic ozonation and adsorption processes. The observed reaction rate constants (kobs ) for 2,4-D during ozonation were found to increase linearly with increasing catalyst dose. At pH 5, the kobs value increased from 19.3 to 26 M?1 s?1 and 67 M?1 s?1 when varying the alumina dose from 1 to 2 and 4 g L?1, respectively. As pH was increased, higher reaction rates were observed for both non-catalytic ozonation and catalytic ozonation processes. Thus, at pH 3 and using a catalyst dose of 8 g L?1, the kobs values for non-catalytic ozonation and catalytic ozonation processes were 3.4 and 58.9 M?1 s?1, respectively, whereas at pH 5 reaction rate constants of 6.5 and 128.5 M?1 s?1 were observed, respectively. Analysis of total organic carbon suggested that catalytic ozonation with alumina achieved a considerable level of mineralization of 2,4-D. Adsorption of 2,4-D on alumina was found to play an important role in the catalytic ozonation process.  相似文献   

17.
As important members of the zooplankton community and sources of food for fish, rotifers are used extensively in ecotoxicological research to assess the health of the environment and safety of compounds. However, most rotifer toxicity tests are only conducted using rotifer neonates derived from unexposed mothers, thus ignoring the potential transfer of contaminants from mother to offspring. To understand better the mother to offspring exposure, a multigenerational study was conducted using three successive generations (F0, F1 and F2) of the common freshwater rotifer Brachionus calyciflorus to investigate the toxic effects of the widely used organophosphate pesticide, dimethoate (O, O-dimethyl S-methylcarbamoylmethyl phosphorodithioate). When the F0 generation was exposed to five pesticide concentrations, the population growth rate (r) displayed symptoms of hormesis, characterized by the conversion of low-concentration stimulation to high-concentration inhibition. Despite this observation, the exposure to any given concentration of dimethoate reduced the population growth rates of the F1 and F2 generation rotifers. Significant differences existed between the F0, F1 and F2 rotifers for the population growth rate under dimethoate stress: F2 individuals were more sensitive than F1, whereas the F1 individuals were more sensitive than F0. The results indicated that the parental exposure to a given toxic stress could result in increased sensitivity and decreased fitness in the offspring. This study illustrates the utility of multigenerational toxicity tests, which may better reflect and more accurately predict the effects of long-term pesticide exposure to aquatic organisms at the population level.  相似文献   

18.
The influences of HCO3 ?, Cl?, and other components on the UV/TiO2 degradation of the antineoplastic agents ifosfamide (IFO) and cyclophosphamide (CP) were studied in this work. The results indicated that the presence of HCO3 ?, Cl?, NO3 ?, and SO4 2? in water bodies resulted in lower degradation efficiencies. The half-lives of IFO and CP were 1.2 and 1.1 min and increased 2.3–7.3 and 3.2–6.3 times, respectively, in the presence of the four anions (initial compound concentration = 100 μg/L, TiO2 loading =100 mg/L, anion concentration = 1000 mg/L, and pH = 8). Although the presence of HCO3 ? in the UV/TiO2/HCO3 ? system resulted in a lower degradation rate and less byproduct formation for IFO and CP, two newly identified byproducts, P11 (M.W. = 197) and P12 (M.W. = 101), were formed and detected, suggesting that additional pathways occurred during the reaction of ?CO3 ? in the system. The results also showed that ?CO3 ? likely induces a preferred ketonization pathway. Besides the inorganic anions HCO3 ?, Cl?, NO3 ?, and SO4 2?, the existence of dissolved organic matter in the water has a significant effect and inhibits CP degradation. Toxicity tests showed that higher toxicity occurred in the presence of HCO3 ? or Cl? during UV/TiO2 treatment and within 6 h of reaction time, implying that the effects of these two anions should not be ignored when photocatalytic treatment is applied to treat real wastewater.  相似文献   

19.
Abstract

Sensitivity of 24 isolates of Colletotrichum destructivum O’Gara, collected from alfalfa plants in Serbia, to eight selected fungicides, was investigated in this study. Molecular identification and pathogenicity test of isolates tested were also performed. Fungicide sensitivity was evaluated in vitro, using mycelial growth assay method. All isolates exhibited significant pathogenicity, causing necrosis at the alfalfa seedling root tips two days after inoculation. Using the primer pair GSF1-SR1 and by comparing the amplified fragments of the tested isolates with the marker (M), the presence of the amplicon of the expected size of about 900?bp was determined for all isolates. The isolates tested in this study showed different sensitivity towards fungicides in vitro. Mycelial growth was highly inhibited by QoI (quinone outside inhibitors) fungicide pyraclostrobin (mean EC50=0.39?µg mL?1) and by DMI (demethylation-inhibiting) fungicide tebuconazole (mean EC50=0.61?µg mL?1), followed by azoxystrobin (mean EC50=2.83?µg mL?1) and flutriafol (mean EC50=2.11?µg mL?1). Multi-site fungicide chlorothalonil and MBC (methyl benzimidazole carbamate) fungicide thiophanate-methyl evinced moderate inhibition with mean EC50=35.31 and 62.83?µg mL?1, respectively. Thirteen isolates were sensitive to SDHI (succinate dehydrogenase inhibitors) fungicide boscalid and fluxapyroxad, (mean EC50=0.49 and 0.19?µg mL?1, respectively), while the rest of isolates were highly resistant.  相似文献   

20.
Potential exposures from ground-level pyrotechnics were assessed by air monitoring and developing emission factors. Total particulate matter, copper and SO2 exposures exceeded occupational health guidelines at two outdoor performances using consumer pyrotechnics. Al, Ba, B, Bi, Mg, Sr, Zn, and aldehyde levels were elevated, but did not pose a health hazard based on occupational standards. Emission factors for total particulate matter, metals, inorganic ions, aldehydes, and polyaromatic hydrocarbons (PAHs) were determined for seven ground-supported pyrotechnics through air sampling in an airtight room after combustion. Particle generation ranged from 5 to 13% of the combusted mass. Emission factors (g Kg?1) for metals common to pyrotechnics were also high: K, 23–45; Mg, 1–7; Cu, 0.05–7; and Ba, 0.03–6. Pb emission rates of 1.6 and 2.7% of the combusted mass for two devices were noteworthy. A high correlation (r2 ≥ 0.89) between metal concentrations in pyrotechnic compositions and emission factors were noted for Pb, Cr, Mg, Sb, and Bi, whereas low correlations (r2 ≤ 0.1) were observed for Ba, Sr, Fe, and Zn. This may be due to the inherent heterogeneity of multi-effect pyrotechnics. The generation of inorganic nitrogen in both the particulate (NO2?, NO3?) and gaseous (NO, NO2) forms varied widely (<0.1–1000 mg Kg?1). Aldehyde emission factors varied by two orders of magnitude even though the carbon source was carbohydrates and charcoal for all devices: formaldehyde (<7.0–82 mg Kg?1), acetaldehyde (43–210 mg Kg?1), and acrolein (1.9–12 mg Kg?1). Formation of lower molecular weight PAHs such as naphthalene and acenaphthylene were favored, with their emission factors being comparable to that from the combustion of household refuse and agricultural debris. Ba, Sr, Cu, and Pb had emission factors that could produce exposures exceeding occupational exposure guidelines. Sb and unalloyed Mg, which are banned from consumer fireworks in the US, were present in significant amounts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号