首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Passive samplers with two different collection substrates were used to obtain an average ozone concentration for 1 month during the summer of 2002 for each South Carolina county. One sampler contained a filter coated with indigo carmine, whose color fades when exposed to ozone. The fading was measured by reflectance spectroscopy. The other sampler contained filters that were coated with nitrite, which is oxidized to nitrate when exposed to ozone. The nitrate was measured by ion chromatography.

Calibration curves were developed for the two methods by comparing color fading from indigo carmine and nitrate ion concentration from the nitrite filter with ambient ozone concentration measured by a co-located reference continuous UV ozone analyzer. These curves were used to calculate integrated ozone concentrations for samplers distributed across South Carolina.

Using the indigo carmine method, the average ozone concentrations ranged from 21 to 64 ppb (average = 46 ± 7.9 ppb, n = 58) across the 46 counties in the state during one summer month of 2002. Concentrations for the same time period from the nitrite-coated filters ranged from 23 to 62 ppb (average = 41 ± 8.1 ppb, n = 58). Also for the same time period, the 23 continuous UV photometric ozone monitors operated by the South Carolina Department of Health and Environmental Control at sites within 10 miles of some of the passive monitors showed ozone concentrations ranging from 28 to 50 ppb (average = 39 ± 6.3 ppb, n = 22).  相似文献   

2.
Abstract

To evaluate methods of reducing exposure of school children in southwest Mexico City to ambient ozone, outdoor ozone levels were compared to indoor levels under three distinct classroom conditions: windows/doors open, air cleaner off; windows/doors closed, air cleaner off; windows/ doors closed, air cleaner on. Repeated two-minute average measurements of ozone were made within five minutes of each other inside and outside of six different school classrooms while children were in the room. Outdoor ozone two-minute average levels varied between 64 and 361 ppb; mean outdoor levels were above 160 ppb for each of the three conditions. Adjusting for outdoor relative humidity, for a mean outdoor ozone concentration of 170 ppb, the mean predicted indoor ozone concentrations were 125.3 (±5.7) ppb with windows/doors open; 35.4 (±4.6) ppb with windows/ doors closed, air cleaner off; and 28.9 (±4.3) ppb with windows/ doors closed, air cleaner on. The mean predicted ratios of indoor to outdoor ozone concentrations were 0.71 (±0.03) with windows/doors open; 0.18 (±0.02) ppb with windows/doors closed, air cleaner off; and 0.15 (±0.02) ppb with windows/doors closed, air cleaner on. As outdoor ozone concentrations increased, indoor ozone concentrations increased more rapidly with windows and doors open than with windows and doors closed. Ozone exposure in Mexican schools may be significantly reduced, and can usually be kept below the World Health Organization (WHO) guideline of 80 ppb, by closing windows and doors even when ambient ozone levels reach 30Q ppb or more.  相似文献   

3.
From 28 November to 23 December 2009, 24-h?PM2.5 samples were collected simultaneously at six sites in Guangzhou. Concentrations of 18 polycyclic aromatic hydrocarbons (PAHs) together with certain molecular tracers for vehicular emissions (i.e., hopanes and elemental carbon), coal combustion (i.e., picene), and biomass burning (i.e., levoglucosan) were determined. Positive matrix factorization (PMF) receptor model combined with tracer data was applied to explore the source contributions to PAHs. Three sources were identified by both inspecting the dominant tracer(s) in each factor and comparing source profiles derived from PMF with determined profiles in Guangzhou or in the Pearl River Delta region. The three sources identified were vehicular emissions (VE), biomass burning (BB), and coal combustion (CC), accounting for 11?±?2 %, 31?±?4 %, and 58?±?4 % of the total PAHs, respectively. CC replaced VE to become the most important source of PAHs in Guangzhou, reflecting the effective control of VE in recent years. The three sources had different contributions to PAHs with different ring sizes, with higher BB contributions (75?±?3 %) to four-ring PAHs such as pyrene and higher CC contributions (57?±?4 %) to six-ring PAHs such as benzo[ghi]perylene. Temporal variations of VE and CC contributions were probably caused by the change of weather conditions, while temporal variations of BB contributions were additionally influenced by the fluctuation of BB emissions. Source contributions also showed some spatial variations, probably due to the source emission variations near the sampling sites.  相似文献   

4.
The aim of this study was to develop a cantilever nanobiosensor for atrazine detection in liquid medium by immobilising the biological recognition element (tyrosinase vegetal extract) on its surface with self-assembled monolayers using gold, 16-mercaptohexadecanoic acid, 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/n-hydroxysuccinimide. Cantilever nanobiosensors presented a surface compression tension increase when atrazine concentrations were increased, with a limit of detection and limit of quantification of 7.754 ppb (parts per billion) and 22.792 ppb, respectively. From the voltage results obtained, the evaluation of atrazine contamination in river and drinking water were very close to those of the reference sample and ultrapure water, demonstrating the ability of the cantilever nanobiosensor to distinguish different water samples and different concentrations of atrazine. Cantilever nanosensor surface functionalization was characterised by combining polarisation modulation infrared reflection-absorption spectroscopy and atomic force microscopy and indicating film thickness in nanometric scale (80.2 ± 0.4 nm). Thus, the cantilever nanobiosensor developed for this study using low cost tyrosinase vegetal extract was adequate for atrazine detection, a potential tool in the environmental field.  相似文献   

5.
Abstract

A high-performance liquid chromatography method with diode-array detection (HPLC-DAD) is described for the determination of three neonicotinoid insecticides imidacloprid, thiacloprid, and thiamethoxam in soil and water. The soil samples were extracted with acetonitrile, while the water samples were extracted using C18 cartridges. The mean recoveries plus standard deviations for spiked soil samples were 82 ± 4.2% for thiamethoxam, 99 ± 4.2% for imidacloprid and 94 ± 1.4% for thiacloprid. The recoveries for water samples ranged from 87 ± 3.4% for thiamethoxam to 97 ± 3.9% for imidacloprid and 97 ± 2.6% for thiacloprid. The limits of quantitation (LOQ) were 0.1, 0.1, 0.01 mg/kg in soil (5 g), and 2, 2, 0.5 µg/L in water (50 mL) for thiamethoxam, imidacloprid, and thiacloprid, respectively.  相似文献   

6.
The most important factor affecting efficacy and drift of pesticide applications is the droplet spectrum. To measure pesticide drift, researchers utilize fluorescent tracers to rapidly quantify spray deposition. Although fluorescent tracers have been used for more than 50 years, no experiments have been performed on the effect they have on the properties of pesticide formulations (density and viscosity) or droplet spectrum, which affect the drift of pesticides. Therefore, we examined the effect of an oil- and water-based tracer on the volume median diameter (VMD), viscosity, and density of oil- and water-based pesticide formulations. In addition, we experimentally fit and demonstrate the utility of using distributions to characterize pesticide droplet spectra. The addition of tracers to both water- and oil-based formulations did not significantly alter the VMD, viscosity, and density. Lognormal distributions provided the best fit for the water- and oil-based formulations with and without tracer. Our results demonstrated that the addition of oil- and water-based tracers do not significantly alter pesticide formulations properties and droplet spectrum, and most likely do not alter the movement of pesticide droplets in the environment.  相似文献   

7.
Tse H  Comba M  Alaee M 《Chemosphere》2004,54(1):41-47
A procedure for the determination of 13 organophosphate insecticides (OPs) in water, sediment and biota at low ppb levels is described. Samples were extracted with dichloromethane or acetone/hexane and cleaned up with micro-column silica gel chromatography. Measurements were made by dual capillary column gas chromatography using both nitrogen-phosphorus (NPD) and electron capture (ECD) detection. Recoveries from fortified water samples ranged from 76% to 102% for all sample types. Practical detection limits ranged between 0.003 and 0.029 microg/l in natural water samples, 0.0004-0.005 microg/g w.w. for sediments, and 0.001-0.005 microg/g w.w for biota using the NPD and ECD method. Losses in sediments were experienced when sulphur was removed. Precision and accuracy were not affected in sediment samples where sulphur was not removed.  相似文献   

8.
Ozone concentrations were measured both inside and outside the Sainsbury Centre for Visual Arts, near a small city in rural eastern England, during a three-week period in summer. The inside concentration was typically 70 ± 10% of the outside concentration during the period of expected maximum outside levels. During the period of observation the maximum outside ozone levels ranged up to 60 ppb, although there have been periods at this location where outside ozone levels have been well in excess of 120 ppb. The relatively high indoor/outdoor ozone ratio is a function of the Centre’s design, its internal geometry, and its ventilation system. Conventional art galleries and museums experience much lower indoor ozone exposure. The measured indoor ozone levels imply deleterious effects on the gallery exhibits and an enhanced ozone exposure may have to be considered in the design of modern galleries and museums.  相似文献   

9.
For 41 days between 25 May 1996 and 27 March 1997, peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) have been measured by electron capture gas chromatography at Santa Rita near Porto Alegre, RS, Brazil, where light-duty vehicles used either ethanol or a gasoline–MTBE blend. Daily maximum concentrations ranged from 0.19 to 6.67 ppb for PAN and 0.06 to 0.72 ppb for PPN. Linear regression of maximum PPN vs. maximum PAN yielded a slope of 0.105±0.004 (R2=0.974). Diurnal variations of ambient PAN often followed those of ozone with respect to time of day but not with respect to amplitude. This was reflected in the large relative standard deviations associated with the study-averaged PAN/ozone concentration ratio, 0.037±0.105 (ppb/ppb, n=789) and the maximum PAN/maximum ozone concentration ratio, 0.028±0.015 (ppb/ppb, range 0.005–0.078, n=41). On several days PAN accounted for large fractions of the total ambient NOx in the late morning and afternoon hours, e.g., PAN/NOx⩽0.58 and PAN/(NOx–NO) ⩽0.76 on 27 March 1997. The amount of PAN lost by thermal decomposition (TPAN) was comparable in magnitude to that present in ambient air. The ratios TPAN/(PAN+TPAN) were up to 0.53, 0.67 and 0.64 during the warm afternoons of 25, 26 and 27 March 1997, respectively. The highest calculated value of TPAN was 5.6 ppb on 27 March 1997. On that day the 24 h-averaged value of TPAN (1.01 ppb) was nearly the same as that of PAN (1.09 ppb). Using computer kinetic modeling (SAPRC 97 chemical mechanism) and sensitivity analysis of VOC incremental reactivity, we ranked VOC present in Porto Alegre ambient air for their importance as precursors to PAN and to PPN. Using as input data the averages of VOC concentrations measured in downtown Porto Alegre during the ca. 1 yr period March 1996–April 1997, we calculated that the most important precursors to PAN and PPN were the SAPRC 97 model species ARO2 (which includes the aromatics xylenes, trimethylbenzenes, ethyltoluenes, etc.), which accounted for ca. 17% of the total PAN and total PPN formation potentials. Overall, the results indicate a major role for aromatics and alkenes and a minor role for acetaldehyde and ethanol as precursors to peroxyacyl nitrates in the Porto Alegre urban area.  相似文献   

10.
Formic and acetic acid were measured in the gas phase at three sites in eastern and northern Austria using an annular diffusion denuder sampling technique. The daytime background concentration of formic acid averaged 1.4 ±0.2 ppb (63 ± 9 nmol m−3) in a semirural area in eastern Austria. In a rural area in Austria the corresponding level was 0.9 ±0.3 ppb (40 ± 13 nmol m−3). About twice as high levels of formic acid were found during a photochemically active summer period and a wintertime pollution episode. The concentration of acetic acid was generally about 50 % lower than that of formic acid during daylight hours. In summer diurnal variation with a night-time minimum and a daytime maximum in the late afternoon hours was observed. The diurnal variation was not evident in results from measurements above the inversion layer or during winter conditions with snow cover. No increase in the formic and acetic acid levels was found in the airshed of Vienna, indicating that traffic emissions do not form a major primary source for the semirural concentrations measured. Although there might be biogenic sources for formic and acetic acid, our findings suggest a noticeable contribution from various anthropogenic emissions being a source for photochemical production of the acids.  相似文献   

11.
The results of 35 Individual SF6 tracer tests conducted in Norway during 1978 demonstrate the applicability of tracer techniques to the study of a wide variety of pollutant transport problems found in the primary aluminum industry. Tracer methods were employed to determine the efficiency of the pollutant control system over a single reduction cell under a variety of operating conditions. Two tests conducted during normal operation gave efficiencies equal to 100 ±19% and 79 ± 12%, while a test performed during the occurrence of an anode effect yielded an efficiency equal to 66 ± 22%.

Tracer investigations of flow in the wake of a smelter hall indicated that between 1 % and 11 % of secondary, roof-top emissions can become entrained in the recirculation cavity and reenter the hall through the ventilation fresh air supply. These reentry rates were observed for release heights as high as 8 m above the existing roof exhaust duct. Tracer dispersion data collected within 20 building heights of the smelter agreed very well with extrapolations of McEIroy- Pooler dispersion curves for an urban area. Dispersion curves determined from a previous wind tunnel study of flow downwind of an isolated building underestimated dispersion downwind of the vs.melter complex.

The total fluoride mass flow rate measured downwind of a smelter during wet, foggy conditions indicated that wet removal rates of fluorides are in the range 3.2 × 10?4/s to 6.4 × 10?4/s. Simulation of the source with several tracer point releases and simultaneous measurement of fluoride and tracer ground-level concentrations downwind of the smelter eliminated the need for measurements of vertical profiles of wind speed and fluoride concentration during the experiment.  相似文献   

12.
To estimate plausible health effects associated with peak sulfur dioxide (SO2) levels from three coal-fired power plants in the Baltimore, Maryland, area, air monitoring was conducted between June and September 2013. Historically, the summer months are periods when emissions are highest. Monitoring included a 5-day mobile and a subsequent 61-day stationary monitoring study. In the stationary monitoring study, equipment was set up at four sites where models predicted and mobile monitoring data measured the highest average concentrations of SO2. Continuous monitors recorded ambient concentrations each minute. The 1-min data were used to calculate 5-min and 1-hr moving averages for comparison with concentrations from clinical studies that elicited lung function decrement and respiratory symptoms among asthmatics. Maximum daily 5-min moving average concentrations from the mobile monitoring study ranged from 70 to 84 ppb (183–220 µg/m3), and maximum daily 1-hr moving average concentrations from the mobile monitoring study ranged from 15 to 24 ppb (39–63 µg/m3). Maximum 5-min moving average concentrations from stationary monitoring ranged from 39 to 229 ppb (102–600 µg/m3), and maximum daily 1-hr average concentrations ranged from 15 to 134 ppb (40–351 µg/m3). Estimated exposure concentrations measured in the vicinity of monitors were below the lowest levels that have demonstrated respiratory symptoms in human clinical studies for healthy exercising asthmatics. Based on 5-min and 1-hr monitoring, the exposure levels of SO2 in the vicinity of the C.P. Crane, Brandon Shores, and H.A. Wagner power plants were not likely to elicit respiratory symptoms in healthy asthmatics.

Implications: Mobile and stationary air monitoring for SO2 were conducted to quantify short-term exposure risk, to the surrounding community, from peak emissions of three coal-fired power plants in the Baltimore area. Concentrations were typically low, with only a few 5-min averages higher than levels indicated during clinical trials to induce changes in lung capacity for healthy asthmatics engaged in exercise outdoors.  相似文献   

13.
A novel pipette-tip extractor of a graphene/poly (vinyl alcohol) cryogel (graphene/PVA) composite sorbent was prepared to preconcentrate carbamate pesticides in environmental water samples before analysis with a gas chromatograph-flame ionization detector (GC-FID). This novel pipette-tip extractor with the graphene/PVA sorbent exhibited a high porosity when observed through a scanning electron micrograph (SEM). Under optimal conditions, using only 1.0 mL of sample and 0.75 mL of eluting solvent, the developed method provided a wide linear range of 10–700 ng mL?1 and 10–500 ng mL?1 with limit of detection (LOD) of 6.40 ± 0.18 and 9.17 ± 0.34 ng mL?1 for carbofuran (2,3-dihydro-2,2-dimethylbenzofuran-7-yl methylcarbamate) and carbaryl (1-naphthyl methylcarbamate), respectively. The pipette-tip extractor provided high extraction efficiency with high accuracy indicated, by good recoveries in the range of 74.5 ± 4.8% to 119.7 ± 1.6% and 76 ± 15% to 114 ± 19% for carbofuran and carbaryl, respectively. In addition, the fabrication procedure showed a good pipette-tip extractor-to-pipette-tip extractor reproducibility with a relative standard deviation of 1.3–9.8% (n = 5). When the developed pipette-tip extractor was applied for the extraction of carbofuran and carbaryl in surface water samples near vegetable plantation areas, 25.9 ± 8.2 ng mL?1 of carbofuran was found, and carbaryl was also detected in concentrations that ranged from 45.0 ± 4.0 to 191 ± 13 ng mL?1.  相似文献   

14.
We present two years (January 2007–December 2008) of atmospheric SO2, NO2 and NH3 measurements from ten background or rural sites in nine provinces in China. The measurements were made on a monthly basis using passive samplers under careful quality control. The results show large geographical and seasonal variations in the concentrations of these gases. The mean SO2 concentration varied from 0.7 ± 0.4 ppb at Waliguan on Qinghai Plateau to 67.3 ± 31.1 ppb at Kaili in Guizhou province. The mean NO2 concentration ranged from 0.6 ± 0.4 ppb at Waliguan to 23.9 ± 6.9 ppb at Houma in southern Shanxi. The mean NH3 concentration ranged from 2.8 ± 3.0 ppb at Shangdianzi in northeastern Beijing to 13.7 ± 8.4 ppb at Houma. At most sites, SO2 and NO2 peaked in winter and reached minima in summer, while NH3 showed maximum values in summer and lower values in cold seasons. On the whole, the geographical distributions of the observed gas concentrations are consistent with those of emissions. The ground measurements of SO2 and NO2 are contrasted to the SCIAMACHY SO2 and OMI NO2 tropospheric columns, respectively. Although the satellite data can capture the main features of emissions and concentrations of SO2, they do not reflect the variations of SO2 in the surface layer. The situation is better for the case of NO2. The OMI NO2 columns capture the geographical differences in the ground NO2 and correlate fairly well with the ground levels of NO2 at six of the ten sites.  相似文献   

15.
A cationic dye, Rhodamine B (RhB), could be efficiently discolored by heterogeneous Fenton-like reaction catalyzed by natural schorl. In this work, with the main goal of the optimization for RhB discoloration, central composite design under the response surface methodology (RSM) was employed for the experiment design and process optimization. The significance of a second-order polynomial model for predicting the optimal values of RhB discoloration was evaluated by the analysis of variance and 3D response surface and counter plots for the interactions between two variables were constructed. The Pareto graphic analysis of the discoloration process indicated that, among all the variables, solution pH (X 3, 47.95 %) and H2O2 concentration (X 1, 24.39 %) had the largest influences on the heterogeneous Fenton-like discoloration of RhB. Based on the model prediction, the optimum conditions for RhB discoloration were determined to be 45 mM H2O2 concentration, 2.5 g/L schorl dosage, solution pH 2, and 110 min reaction time, with the maximum RhB discoloration ratio of 98.86 %. The corresponding experimental value of RhB discoloration ratio under the optimum conditions was determined as 99.31 %, which is very close to the optimized one, implying that RSM is a powerful and satisfactory strategy for the process optimization.  相似文献   

16.
Perchlorate concentrations in rice samples from many different provinces, and correlation with surface water contamination, were investigated in the Republic of Korea. Perchlorate levels in the 51 rice samples purchased from local markets ranged from below the detection limit to 1.79?±?0.39 μg/kg with a mean level of 0.21 μg/kg and 7 samples collected from the Nakdong River watershed ranged from 0.38?±?0.1 to 3.23?±?0.47 μg/kg with a mean level of 0.9 μg/kg. The correlation coefficient between perchlorate levels in rice samples from the Nakdong river watershed and the levels in surface water was estimated to be approximately 0.904 in the 95 % confidence interval. These results show that surface water contamination was highly related to the perchlorate pollution of rice in the Republic of Korea.  相似文献   

17.
H Koch  P Weisser 《Chemosphere》2001,44(2):307-312
Spray deposits of plant protection products on cultivated plants present a potential hazard to non-target arthropods. This hazard is considered in the risk assessment procedure when such products are registered. The results of deposit measurements in the laboratory and field, including mean spray deposits on plant surfaces, their variability and their relation to the delivered dose are presented. Initial deposits expressed as ng/cm2 plant surface were measured on individual leaves of various plant species using a fluorescent tracer. The results show that the mean deposit is plant-specific but with a high degree of variability. Mean deposits on field-grown cereals were 3, 9 (growth stage BBCH 10) and 4, 7-14 ng/cm2 (growth stage BBCH 29-63) at a delivered dose rate of 20 g sodium flourescein (SF) per ha. This is equivalent to 200 ng tracer per cm2 ground area. On apple leaves, mean deposits varied between 18 and 50 ng/cm2 at a rate of 20 g tracer/10,000 m2 fruitwall. Coefficients of variation of leaf deposits ranged between 30% and 90%. In addition to the leaf-to-leaf variability, there was a notable variation of the deposit on individual leaves themselves as shown for wheat. Data from field measurements were supported principally by data from tray-grown plants on a laboratory spray track which gives information on targets positioned in a more or less two-dimensional system.  相似文献   

18.
The temporal behavior of HONO and NO2 was investigated at an urban site in Guangzhou city, China, by means of a DOAS system during the Pearl River Delta 2006 intensive campaign from 10 to 24 July 2006. Within the whole measurement period, unexpected high HONO mixing ratios up to 2 ppb were observed even during the day. A nocturnal maximum concentration of about 8.43 ± 0.4 ppb was detected on the night of 24 July 2006. Combining the data simultaneously observed by different instruments, the coupling of HONO–NO2 and the possible formation sources of HONO are discussed. During the measurement period, concentration ratios of HONO to NO2 ranged from (0.03 ± 0.1) to (0.37 ± 0.09), which is significantly higher than previously reported values (0.01–0.1). Surprisingly, in most cases a strong daytime correlation between HONO and NO2 was found, contrary to previous observations in China. Aerosol was found to have a minor impact on HONO formation during the whole measurement period. Using a pseudo steady state approach for interpreting the nocturnal conversion of NO2 to HONO suggests a non-negligible role of the relative humidity for the heterogeneous HONO formation from NO2.  相似文献   

19.
As part of the European Tracer Experiment (ETEX) two successful atmospheric experiments were carried out in October and November, 1994. Perfluorocarbon (PFC) tracers were released into the atmosphere in Monterfil, Brittany, and air samples were taken at 168 stations in 17 European countries for 72 h after the release. Upper air tracer measurements were made from three aircraft. During the first experiment a westerly air flow transported the tracer plume north-eastwards across Europe. During the second release the flow was eastwards. The results from the ground sampling network allowed the determination of the cloud evolution as far as Sweden, Poland and Bulgaria. This demonstrated that the PFT technique can be successfully applied in long-range tracer experiments up to 2000 km. Typical background concentrations of the tracer used are around 5–7 fl ?-1 in ambient air. Concentrations in the plume ranged from 10 to above 200 fl/?-1. The tracer release characteristics, the tracer concentrations at the ground and in upper air, the routine and additional meteorological observations at the ground level and in upper air, trajectories derived from constant-level balloons and the meteorological input fields for long-range transport models are assembled in the ETEX database. The ETEX database is accessible via the Internet. Here, an overview is given of the design of the experiment, the methods used and the data obtained.  相似文献   

20.
Breast milk samples from 40 first-time mothers from the Pacific Northwest of the US and Canada were analyzed for polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs). Total PBDEs (summation operator PBDEs), calculated by summing values for the 12 PBDEs congeners analyzed, ranged from 6 to 321 ppb (lipid weight) (mean=96 ppb; median=50 ppb). In approximately 40% of the women (15/40), summation operator PBDEs>100 ppb lw in their milk, and four samples had levels >250 ppb lw. PBDE 47 was the dominant congener in most samples, whereas PBDE 153 was predominant in a few (3/40). summation operator PCBs were calculated by summing values for the 82 PCB congeners analyzed, and ranged from 49 to 415 ppb (lipid weight) (mean=147 ppb; median=126 ppb). approximately 30% of the mothers (13/40) have summation operator PBDEs> summation operator PCBs in their milk samples, and approximately 65% (25/40) have BDE 47>PCB 153 in breast milk samples, with BDE 47 averaging 3-fold greater levels than PCB 153. Clearly, the lower brominated PBDEs are surpassing PCBs as a major environmental concern in North America, and are likely affecting significant portions of the populations in these regions. PBDEs have become a major persistent organic pollutant. However, there are no positive correlations between levels of summation operator PBDEs and summation operator PCBs, or between levels of PBDE 47 and PCB 153, suggesting there may be some differences in exposure pathways for PBDEs and PCBs in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号