首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sorption of the estrogens estrone (E1), 17beta-estradiol (E2) and 17alpha-ethynylestradiol (EE2) on four soils was examined using batch equilibrium experiments with initial estrogen concentrations ranging from 10 to 1000 ng mL-1. At all concentrations, >85% of the three estrogens sorbed rapidly to a sandy soil. E1 sorbed more strongly to soil than E2 or EE2. Partial oxidation of E2 to E1 was observed in the presence of soils. Autoclaving was more effective at reducing this conversion than inhibition with sodium azide or mercuric chloride, and had little effect on sorption, relative to the chemical microbial inhibitors. Sorption of EE2 was greater for fine-textured than coarse-textured soils, but greater than 90% of EE2 sorbed onto all four soils. The greatest degree of desorption of estrogens from the sandy soil occurred with the lowest initial concentration of 10 ng mL-1 and reached levels >or=80% for E1 and E2. Desorption of EE2 was greater in coarser textured soils than finer-textured soils. Again, relative desorption from all soils was greatest with low initial concentrations. Therefore, at environmentally relevant concentrations, estrogens quickly sorb to soils, and soils have a large capacity to bind estrogens, but these endocrine-disrupting compounds can become easily desorbed and released into the aqueous phase.  相似文献   

2.

Sorption of the estrogens estrone (E1), 17β-estradiol (E2) and 17α-ethynylestradiol (EE2) on four soils was examined using batch equilibrium experiments with initial estrogen concentrations ranging from 10 to 1000 ng mL?1. At all concentrations, >85% of the three estrogens sorbed rapidly to a sandy soil. E1 sorbed more strongly to soil than E2 or EE2. Partial oxidation of E2 to E1 was observed in the presence of soils. Autoclaving was more effective at reducing this conversion than inhibition with sodium azide or mercuric chloride, and had little effect on sorption, relative to the chemical microbial inhibitors. Sorption of EE2 was greater for fine-textured than coarse-textured soils, but greater than 90% of EE2 sorbed onto all four soils. The greatest degree of desorption of estrogens from the sandy soil occurred with the lowest initial concentration of 10 ng mL?1 and reached levels ≥80% for E1 and E2. Desorption of EE2 was greater in coarser textured soils than finer-textured soils. Again, relative desorption from all soils was greatest with low initial concentrations. Therefore, at environmentally relevant concentrations, estrogens quickly sorb to soils, and soils have a large capacity to bind estrogens, but these endocrine-disrupting compounds can become easily desorbed and released into the aqueous phase.  相似文献   

3.
研究了厌氧-缺氧-好氧(A2O)活性污泥工艺对生活污水中天然雌激素雌酮(Estrone,E1)、17β-雌二醇(17β-Estradiol,E2)以及17α-乙炔基雌二醇(17α-Ethynylestradiol,EE2)的去除性能。在对COD、N和P具有良好去除效果的前提下,对E1、E2和EE2的去除率可分别达到92.7%、100%和62.7%。通过对各反应单元内3种雌激素的物料平衡分析,表明A2O工艺对雌激素的去除主要发生在厌氧段和好氧段。以失活污泥作为对照组,好氧硝化过程中雌激素去除的小试实验发现,好氧过程中E1、E2的去除主要依靠生物降解作用,而EE2的去除则主要依赖于活性污泥对其的吸附作用。  相似文献   

4.
A2O工艺中雌激素的行为变化和去除机理   总被引:1,自引:0,他引:1  
研究了厌氧-缺氧-好氧(A2O)活性污泥工艺对生活污水中天然雌激素雌酮(Estrone,E1)、17β-雌二醇(17β-Estradiol,E2)以及17α-乙炔基雌二醇(17α-Ethynylestradiol,EE2)的去除性能。在对COD、N和P具有良好去除效果的前提下,对E1、E2和EE2的去除率可分别达到92.7%、100%和62.7%。通过对各反应单元内3种雌激素的物料平衡分析,表明A2O工艺对雌激素的去除主要发生在厌氧段和好氧段。以失活污泥作为对照组,好氧硝化过程中雌激素去除的小试实验发现,好氧过程中E1、E2的去除主要依靠生物降解作用,而EE2的去除则主要依赖于活性污泥对其的吸附作用。  相似文献   

5.
Steroid estrogens, including both natural estrogens (e.g., estrone - E1; 17beta-estradiol - E2; and estriol - E3) and synthetic estrogens (e.g., 17alpha-ethinylestradiol - EE2), are known as endocrine-disrupting compounds. The objective of this research was to evaluate the feasibility of the enzymatic oxidation of estrogens and to optimize this process in municipal wastewater contaminated with steroid estrogens using horseradish peroxidase (HRP) and hydrogen peroxide. An initial HRP activity of 0.02 U ml(-1) was sufficient to completely remove EE2 from the synthetic solution, although greater HRP doses (up to 0.06 U ml(-1)) were required to remove E1, E2 and E3. The optimal molar peroxide-to-substrate ratio was determined to be approximately 0.45. Based on the Michaelis-Menten kinetics, the HRP had an increasing reactivity with E1, E3, E2, and EE2, in increasing order. In real activated sludge process effluent, an HRP dose of 8-10 U ml(-1) was required to completely remove all of the studied estrogens, while only 0.032 U ml(-1) of HRP was necessary to treat synthetic water containing the same estrogen concentrations.  相似文献   

6.
7.
In this study, effects of sewage sludge and manure borne dissolved organic carbon (DOC) on 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) sorption and mineralization processes were investigated in three agricultural soils. Batch equilibrium techniques and equilibrium dialysis methods were used to determine sorption mechanisms between DOC, estrogens and the soil solid phase. It was found that that the presence of organic waste borne DOC decreased estrogen sorption in soils which seems to be controlled by DOC/estrogen complexes in solution and by exchange processes between organic waste derived and soil borne DOC. Incubation studies performed with 14C-estrogens showed that DOC addition decreased estrogen mineralization, probably due to reduced bioavailability of estrogens associated with DOC. This increased persistence combined with higher mobility could increase the risk of estrogen transport to ground and surface waters.  相似文献   

8.
The dissipation of hexazinone (Velpar) in two tropical soil types in Kenya was studied under field and semi-controlled conditions for a period of 84 days. The dissipation was found to be very rapid and this could be attributed to adverse weather conditions including high initial rainfall as well as to low soil-organic-matter content, volatilization, surface run-off and biodegradation. The DT50 values of dissipation obtained by first order kinetics were 20 days and 21.3 days in clay and loam soil types, respectively. The influence of bargasse compost (1000 μg/g dry soil) was also studied and was found to enhance dissipation to some extent, giving DT50 values of 18 days and 18.3 days in clay and loam soil types, respectively.  相似文献   

9.
Stumpe B  Marschner B 《Chemosphere》2009,74(4):556-562
We conducted a series of laboratory microcosm incubations with [(14)C]-labeled 17beta-estradiol (E2), estrone (E1) and 17alpha-ethinylestradiol (EE2) in 17 different natural soils to characterize hormone mineralization. A significantly higher mineralization was observed for E1 (2.0-37.6%) and E2 (4.2-50.2%) than for EE2 (0.5-2.6%) in all test soils after 21 days. Soil physical or chemical parameters were not related to estrogen mineralization. Although sorption parameters varied greatly for E2 (K(F)=21.9-317.5 mL g(-1)), for E1 (K(F)=46.0-517.5 mL g(-1)) and for EE2 (K(F)=29.9-326.1 mL g(-1)) this apparently did not control estrogen bioavailability since it showed no effects on hormone mineralization. In order to elucidate the controlling factors, experiments with combined additions of radiolabeled estrogens and different substrates were conducted. Additions of ammonium nitrate or alanine to soil samples generally increased EE2 mineralization, thus indicating N-limitation. Additions of glucose induced higher E2 and EE2 degradation in comparison to control samples which is attributed to co-metabolism. Additions of saw dust, catechol or streptomycin influenced the microbial population in the test soils and affected the mineralization of E2 and EE2. Thus, we clearly demonstrate that different microbial communities are responsible for E2 and EE2 degradation in soils. We suggest that EE2 is mineralized by white-rot fungi and E2 by bacteria.  相似文献   

10.
An efficient pretreatment and analytical method was developed to investigate the occurrence and fate of four free estrogens (estrone (E1), 17β-estradiol (17β-E2), estriol (E3), and 17α-ethinylestradiol (EE2)), four conjugated estrogens (estrone-3-sulfate sodium salt (E1-3S), 17β-estradiol-3-sulfate sodium salt (E2-3S), estrone-3-glucuronide sodium salt (E1-3G), and 17β-estradiol-3-glucuronide sodium salt (E2-3G)), and bisphenol A (BPA) in three livestock farms raising beef cattle, cows, sheep, swine, and chickens in Qi County, which is located in North China. The results demonstrated that one cow and one beef cattle excreted 956.25–1,270.41 and 244.38–319.99 μg/day of total (free and conjugated) estrogen, respectively, primarily through feces (greater than 91 %), while swine excreted 260.09–289.99 μg/day of estrogens, primarily through urine (98–99 %). The total estrogen excreted in sheep and broiler chicken feces was calculated to be 21.64–28.67 and 4.62–5.40 μg/day, respectively. It was determined that conjugated estrogens contributed to 21.1–21.9 % of the total estrogen excreted in cow feces and more than 98 % of the total estrogen excreted in swine urine. After composting, the concentration of total estrogen decreased by 18.7–59.6 %; however, increased levels of BPA were measured. In treated compost samples, estrogens were detected at concentrations up to 74.0 ng/g, which indicates a potential risk of estrogens entering the surrounding environment.  相似文献   

11.
This work focused on the interactive effects of the fungicide chlorothalonil (2,3,4,6-tetrachloro-1,3-benzendicarbonitrile) and gypsum on the persistence of the soil-residual herbicide metolachlor (2-chloro-N-(6-ethyl-o-tolyl)-N-[(1RS)-2-methoxy-1-methylethyl]acetamide). Gypsum application was included due to its widespread use on peanut (Arachis hypogaea). Both agricultural grade gypsum and reagent CaSO4-2H2O were tested. A laboratory soil incubation was conducted to evaluate interactive effects. Results indicated 1.5X greater metolachlor half-life (DT50) in soil amended with chlorothalonil (37 d) as compared to control soil (25 d). The two gypsum sources alone increased metolachlor DT50 to about 32 d and with the combination of chlorothalonil and gypsum, DT50 was 50 d, 2-fold greater than the control. Chlorothalonil dissipation was rapid (DT50 < 4d). A possible explanation for metolachlor dissipation kinetics is a build-up of the chlorothalonil intermediate (4-hydroxychlorothalonil) which limited soil microbial activity and depleted glutathione S-transferase (GST) from chlorothalonil detoxification. Further information related to gypsum impacts is needed. Results confirm previous reports of chlorothalonil impeding metolachlor dissipation and showed the gypsum application extended persistence even longer. Farming practices, such as reducing metolachlor application rates, may need to be adjusted for peanut cropping systems where chlorothalonil and gypsum are used.  相似文献   

12.
Enchytraeids are ecologically relevant soil species and are commonly used in standardized toxicity tests. Their rapid reaction to a chemical exposure can be used as a toxicological measurement endpoint that assesses the avoidance behavior. The objectives of this investigation were to determine the effects of soil properties on the avoidance behavior of Enchytraeus albidus and to optimize the duration of avoidance test. The avoidance tests included (1) exposures in OECD artificial soil with standard or modified properties (pH, clay or peat content), and (2) exposures to copper chloride, cadmium chloride, and to the organic pesticides dimethoate and phenmedipham for different time periods. Results showed that alteration of OECD soil constituents significantly affected the avoidance behavior of enchytraeids, and that the 48-h exposure was the optimal duration of the test. Consideration of soil properties is important for selecting appropriate experimental design and interpreting the results of the enchytraeid avoidance test.  相似文献   

13.
Extraction is an important procedure for samples that contain soil because other compounds in soil may affect analysis of estrogens. This study was conducted to evaluate three different extraction methods for 17beta-estradiol in soil. Sand, bentonite, and organic-rich silt loam were spiked with 1 mg kg(-1) of 17beta-estradiol as a model compound of estrogens. 17beta-estradiol and its metabolites, estrone and estriol, were extracted using (i) a modified Bligh and Dyer extraction, (ii) a pressurized fluid extraction, and (iii) a diethyl ether extraction, and measured by liquid chromatography tandem mass spectrometry. There were significant differences in the extraction efficiency for 17beta-estradiol among the extraction methods and the soils: the efficiencies ranged from 10% to 97%. Overall, the diethyl ether extraction method had the largest efficiency of 17beta-estradiol with 45% and 57% for bentonite and silt loam, respectively. Transformation of 17beta-estradiol to estrone and estriol in the different extraction methods was less than 3.6% during the extraction procedures. This study underlined the importance of sample preparation for estrogen analysis in soil samples.  相似文献   

14.
Soil dissipation of the herbicide clopyralid (3,6-dichloropicolinic acid) was measured in laboratory incubations and in field plots under different management regimes. In laboratory studies, soil was spiked with commercial grade liquid formulation of clopyralid (Versatill, 300 g a.i. L(-1) soluble concentrate) @ 0.8 microg a.i. g(-1) dry soil and the soil water content was maintained at 60% of water holding capacity of the soil. Treatments included incubation at 10 degrees C, 20 degrees C, 30 degrees C, day/night cycles (25/15 degrees C) and sterilized soil (20 degrees C). Furthermore, a field study was conducted at the Waikato Research Orchard near Hamilton, New Zealand starting in November 2000 to measure dissipation rates of clopyralid under differing agricultural situations. The management regimes were: permanent pasture, permanent pasture shielded from direct sunlight, bare ground, and bare ground shielded from direct sunlight. Clopyralid was sprayed in dilute solution @ 600 g a.i. ha(-1) on to field plots. Herbicide residue concentrations in soil samples taken at regular intervals after application were determined by gas chromatograph with electron capture detector. The laboratory experiments showed that dissipation rate of clopyralid was markedly faster in non-sterilized soil (20 degrees C), with a half-life (t1/2) of 7.3 d, than in sterilized soil (20 degrees C) with t1/2 of 57.8 d, demonstrating the importance of micro-organisms in the breakdown process. Higher temperatures led to more rapid dissipation of clopyralid (t1/2, 4.1 d at 30 degrees C vs 46.2 d at 10 degrees C). Dissipation was also faster in the day/night (25/15 degrees C) treatment (t1/2, 5.4 d), which could be partly due to activation of soil microbes by temperature fluctuations. In the field experiment, decomposition of clopyralid was much slower in the shaded plots under pasture (t1/2, 71.5 d) and bare ground (t1/2, 23.9 d) than in the unshaded pasture (t1/2, 5.0 d) and bare ground plots (t1/2, 12.9 d). These studies suggest that environmental factors such as temperature, soil water content, shading, and different management practices would have considerable influence on rate of clopyralid dissipation.  相似文献   

15.
Natural and synthetic estrogens present in municipal wastewater can be biodegraded during treatment, particularly in activated sludge. The objective was to assess the extent of transformation of 17-beta-estradiol (E2) and 17-alpha-ethinylestradiol (EE2) by nitrifying activated sludge and evaluate potential relationships between availability of oxygen, nitrification rate, and estrogen removal. For each batch experiment, two reactors were set up--aerobic and alternating anoxic/aerobic-which were then amended with E2 and EE2 from methanolic stock solutions. The EE2 was persistent under anoxic conditions; under aerobic conditions, the observed level of its removal was 22%. The E2 was readily converted to estrone (El)--faster under aerobic (nitrifying) than anoxic (denitrifying) conditions. During the initial anoxic conditions, a metabolite consistent with 17-alpha-estradiol transiently accumulated and was subsequently removed when the reactor was aerated. Higher removal rates of estrogens were associated with higher nitrification rates, which supports the contention that the nitrifying biomass was responsible for their removal.  相似文献   

16.
A detailed study of the free and conjugated estrogen load discharged by the eight major sewage treatment plants into the Yodo River basin, Japan was carried out. Sampling campaigns were focused on the winter and autumn seasons from 2005 to 2008 and the free estrogens estrone(E1), 17β-estradiol(E2), estriol(E3), 17α-ethynylestradiol(EE2) as well as their conjugated (sulfate and glucuronide) forms. For both sewage effluent and river water E2 and E1 concentrations were greatest during the winter period (December-March). This coincides with the period of lowest rainfall and lowest temperatures in Japan. E1 was the dominant estrogenic component in effluent (means of 10-50 ng/L) followed by E2 (means of 0.5-3 ng/L). The estrogen sulfate conjugates were found intermittently in the 0.5-1.7 ng/L concentration range in the sewage effluents. The greatest estrogen exposure was found to be in the Katsura River tributary which exceeded 1 ng/L E2-equivalents during the winter period.  相似文献   

17.
ABSTRACT

Fungicide pyraclostrobin has been widely employed to control plant diseases by inhibiting the mitochondrial respiration of pathogenic fungi. Due to its broad spectrum, the extensive use of pyraclorstrobin was reported to cause emerging resistance on crops. Here, we evaluated the control effect of 250 g L?1 of pyrachlostrobin suspension concentrate (SC) against freckle disease (caused by Phyllosticta spp) on banana. Meanwhile, the dissipation and residue dynamics of pyraclostrobin in banana and soil under field conditions were determined by high performance liquid chromatography (HPLC) with DAD detection in different locations. The analytical method was validated using spiked samples at three levels, which indicated the recoveries ranged from 92.0% to 99.0% with relative standard deviations (RSDs) below 5%, providing a sensitive, precise and reliable method to monitor pyraclostrobin in banana fruit and soil. The dissipation of pyraclostrobine followed the first-order kinetics and its half-lives were 5.25 to 9.90 days. In addition, the terminal residues of pyraclostrobin in banana, banana sarcocarp and soil were below the maximum residue limit (MRL) (0.02 mg kg?1) after a pre-harvest interval (PHI) of 42 days, which suggesting that the use of pyraclostrobin at recommended dosages was safe to banana and the environment. In summary, we demonstrated the integrated evaluation on the disease control capacity of pyraclostrobin and its environmental behavior on banana, aiming to provide solid and basic data for the safe use of fungicide pyraclostrobin.  相似文献   

18.
Although estrogens originating from dairy manure applied to agricultural soils as a fertilizer can potentially contaminate surface water and groundwater, the variables that control transport are poorly understood. Our objective was to assess the potential for off-site movement of endogenous dairy cattle estrogens when manure is applied on fields at agronomically relevant fertilization rates. Estrone (E1), 17α-estradiol (α-E2), and 17β-estradiol (β-E2) were used in laboratory sorption, desorption, and transformation incubations with both manure and an agriculturally relevant soil. Sorption on manure containing 44% organic carbon exceeded sorption on soil containing 0.8% organic carbon by 20 to 150 times, following the pattern of β-E2 > α-E2 > E1. Approximately 20% of E1 and 17% of α-E2 were desorbed from manure, whereas only about 4% of β-E2 was desorbed. Thirty to seventy percent of α-E2 and β-E2 were converted to E1 in soil and manure, making it imperative that transformation reactions be considered when predicting transport and potential biological effects in the environment. Overall results indicate that high organic carbon concentrations and relatively low amounts of desorption inhibit the potential for off-site transport of endogenous dairy manure estrogens.  相似文献   

19.

Extraction is an important procedure for samples that contain soil because other compounds in soil may affect analysis of estrogens. This study was conducted to evaluate three different extraction methods for 17β-estradiol in soil. Sand, bentonite, and organic-rich silt loam were spiked with 1 mg kg? 1 of 17β-estradiol as a model compound of estrogens. 17β-estradiol and its metabolites, estrone and estriol, were extracted using (i) a modified Bligh and Dyer extraction, (ii) a pressurized fluid extraction, and (iii) a diethyl ether extraction, and measured by liquid chromatography tandem mass spectrometry. There were significant differences in the extraction efficiency for 17β-estradiol among the extraction methods and the soils: the efficiencies ranged from 10% to 97%. Overall, the diethyl ether extraction method had the largest efficiency of 17β-estradiol with 45% and 57% for bentonite and silt loam, respectively. Transformation of 17β-estradiol to estrone and estriol in the different extraction methods was less than 3.6% during the extraction procedures. This study underlined the importance of sample preparation for estrogen analysis in soil samples.  相似文献   

20.
The rate of degradation of forchlorfenuron, a cytokinin-based plant growth regulator (PGR) was explored in typical grapevine soils of India with simultaneous evaluation of its effect on biochemical attributes of the test soils in terms of the activities of specific soil microbial enzymes. In all the test soils, namely clay, sandy-loam and silty-clay, the dissipation rate was faster at the beginning, which slowed down with time, indicating a non-linear pattern of degradation. Degradation in soils could best be explained by two-compartment 1st + 1st order kinetics with half-life ranging between 4–10 days. The results suggest that organic matter might be playing a major role in influencing the rate of degradation of forchlorfenuron in soil. The rate of degradation in sandy-loam soil was fastest followed by clay and silty-clay soils, respectively. Comparison of the rate of degradation in natural against sterilized soils suggests that microbial degradation might be the major pathway of residue dissipation. Changes in soil enzyme activities as a consequence of forchlorfenuron treatment were studied for extra-cellular enzymes namely acid phosphatase, alkaline phosphatase and β -glucosidase and intracellular enzyme-dehydrogenase. Although small changes in enzyme activities were observed, forchlorfenuron did not have any significant deleterious effect on the enzymatic activity of the test soils. Simple correlation studies between degradation percentage and individual enzyme activities did not establish any significant relationships. The pattern and change of enzyme activity was primarily the effect of the incubation period rather than the effect of forchlorfenuron itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号