首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The coupling products (CPs), which were formed via the peroxosulfate catalyzed oxidation of pentachlorophenol (PCP) with iron(III)-tetrakis(sulfonatophenyl)porphyrin (Fe(III)-TPPS) in the presence of hydroxypropyl-beta -cyclodextrin (HP-beta -CD) or HP-gamma -CD, were separated by ultrafiltration from the reaction mixture. When the percentages of chlorine species in the reaction mixture were calculated from the concentrations of organic chlorine in the reaction mixture and CPs, 10-25% of chlorine species in the reaction mixture was organic chlorine that was incorporated into CDs. Analyses of the CPs by pyrolysis-GC/MS (Py-GC/MS) and 13C NMR showed that the PCP-derived products were covalently incorporated into the CDs. To evaluate the acute toxicity of the CPs, a Microtox test was examined. Toxicities of the CPs were reduced slightly, compared to the controls (PCP alone and PCP + reaction blanks). In the reaction blanks, mesaconic acid (MA) moieties were detected as a result of the oxidation of CDs in the absence of PCP. Thus, factors in the toxicities, detected in the CPs, can be attributed to the oxidation products derived from CDs, such as MA, as well as the PCP-derived products incorporated into the CDs.  相似文献   

2.
Cyclodextrins (CDs), a class of cyclic oligosaccharide molecules containing a variety of chiral centre, are capable of recognizing enantiomeric molecules through the formation of inclusion complexes. In this work, we selected three types of CDs, β-CD and its two derivatives, randomly methylated β-CD (RAMEB) and hydroxypropyl β-CD (HP-β-CD), to evaluate effects on toxicity of racemic fenoxaprop (rac-FA) and its R-enantiomer (R-FA) to freshwater alga Scenedesmus obliquus (S. obliquus) and their dissipation in S. obliquus suspension with and without CDs addition, respectively, in an attempt to get more detail about enantioselective behavior of fenoxaprop acid (FA) in the environment, using CDs as a remediation agent for FA and formulation additive for fenoxaprop-p-ethyl (FE). The significant difference between rac-FA and R-FA was not observed in their acute toxicity to S. obliquus and dissipation in S. obliquus suspension. RAMEB had no effect on either toxicity of FA to S. obliquus or dissipation of FA in S. obliquus suspension, and it also didn't change the extent of enantioselectivity in toxicity of FA to S. obliquus. But the addition of a certain amount of β -CD and HP-β -CD reduced the toxicity of FA to S. obliquus and increased dissipation of FA in S. obliquus suspension, as well as changed the enantioselectivity in toxicity of FA to S. obliquus. The results indicated β-CD and HP-β-CD could be used as a promising agent for remediation of aquatic contamination produced by FA, and RAMEB might be used as potential formulation additives for FE, the parent compound of FA, as RAMEB didn't decrease activity of R-FA and might be environmentally safer than the conventional additives.  相似文献   

3.
Soil was spiked with [9-14C]phenanthrene and [1-14C]hexadecane at 50 mg kg−1 and aged for 1, 25, 50, 100 and 250 d. At each time point, the microcosms were amended with aqueous solutions of cyclodextrin (HP-β-CD) at a range of concentrations (0-40 mM). Mineralisation assays and aqueous HP-β-CD extractions were performed to assess the effect of the amendments on microbial degradation. The results showed that amendments had no significant impact on the microbial degradation of either of the 14C-contaminants. Further, HP-β-CD extractions were correlated with the mineralisation of the target chemicals in each of the soil conditions. It was found that the HP-β-CD extraction was able to predict mineralisation in soils which had not been amended with cyclodextrin; however, in the soils containing the HP-β-CD, there was no predictive relationship. Under the conditions of this study, the introduction of HP-β-CD into soils did not enhance the biodegradation of the organic contaminants.  相似文献   

4.
Conifer needles are used for the monitoring of atmospheric persistent organic pollutants. The objective of the present study was to develop a method for the detection of airborne chlorinated paraffins (CPs) using spruce needles as a passive sampler. The method is based on liquid extraction of the cuticular wax layer followed by chromatographic fractionation and detection of CPs using two different GCMS techniques. Total CP concentrations (sum of short (SCCP), medium (MCCP) and long chain CPs (LCCP)) were determined by EI-MS/MS. SCCP and MCCP levels as well as congener group patterns (n-alkane chain length, chlorine content) could be evaluated using ECNI-LRMS. For the first time, data on environmental airborne CPs on spruce needles taken within the Monitoring Network in the Alpine Region for Persistent and other Organic Pollutants (MONARPOP) are presented providing evidence that spruce needles are a suitable passive sampling system for the monitoring of atmospheric CPs.  相似文献   

5.
ABSTRACT

In attempt to evaluate the effects of cyclodextrins (CDs) on enantioselectivity of chiral pesticides toxicity, this study investigated effects of three kinds of cyclodextrins including α-CD, β-CD and randomly methylated β-CD (RAMEB) on toxicity of four enantiomers of isomalathion including (1R, 3R)-isomalathion, (1S, 3S)-isomalathion, (1S, 3R)-isomalathion and (1R, 3S)-isomalathion. Generally, the addition of α-CD and RAMEB (1.5 g/L to 3.5 g/L concentration) could lead to reduction of isomalathion toxicity in most cases, while the presence of β-CD (0.3 g/L to 1.5 g/L concentration) enhanced the toxicity of isomalathion. It was speculated that higher electronic cloud density and lower water solubility of β-CD than α-CD and RAMEB might favor to combination between acetylcholinesterase (AChE) and isomalathion included by β-CD. With respect for α-CD and RAMEB, isomalathion included by them could be easily dissolved in water because of high water solubility of the two CDs. Therefore, α-CD and RAMEB can be used as remediation regent for the pollution of isomalathion, and β-CD can act as an additive in improving bioactivity of such pesticides. In addition, the presence of CDs can alter enantioselectivity of chiral pesticides. The differences on the extent of enantioselectivity variation of isomalathion induced by α-CD, RAMEB and β-CD might be ascribe to the different cavity, electron cloud density and solubility among the three CDs. In conclusion, the above results gave researchers a possibility to change enantioselectivity of chiral pesticides from undesirable outcomes to desirable ones.  相似文献   

6.
Oishi K  Toyao K  Kawano Y 《Chemosphere》2008,73(11):1788-1792
The suppressive effects of cyclodextrins (CDs) on the strong estrogenic activity of 17β-estradiol (E2) in water environments were investigated in this study. Cyclodextrins are doughnut-shaped molecules that possess a hydrophobic cavity and a hydrophilic exterior. The cavity can incorporate nonpolar molecules as guests to form inclusion complexes. β-CD and 2-hydroxypropyl-β-CD (HP-β-CD) were the most successful in forming a complex with E2 and improving its low aqueous solubility. The E2/CDs complexes bound to the estrogen receptor in a cell-free system as determined by ELISA and suppressed the hormone activities as measured by a yeast two-hybrid assay. These results indicate that hydrophobic E2 is easily transported through the lipid zone of the plasma membrane into the target cell and can bind to the nuclear receptor. However, the hydrophilic E2/β-CD and E2/HP-β-CD complexes do not penetrate the membrane. Therefore, these CDs are able to suppress the hormone activity of E2 through complex formation.  相似文献   

7.
Cyclodextrins (CDs) can improve the apparent solubility and bioavailability of a variety of organic compounds through the formation of inclusion complexes; accordingly, they are suitable for application in innovative remediation technologies of contaminated soils. However, the different interactions in the tertiary system CD/contaminant/soil matrix can affect the bioavailability of the inclusion complex through the possible sorption of CD and CD complex in the soil matrix, as well as with the potential of the sorbed CD to form the complex, concurrent with the desorption processes. This work focuses in changes produced by three different CDs in soil sorption-desorption processes of chlorpyrifos (CPF), diazinon (DZN), and chlorothalonil (CTL), and their major degradation products, 3,5,6-trichloro-2-pyridinol (TCP), 2-isopropyl-6-methyl-4-pyrimidinol, and hydroxy-chlorothalonil (OH-CTL). Cyclodextrins used were β-cyclodextrin (β-CD), methyl-β-cyclodextrin (Mβ-CD), and 2-hydroxypropyl-β-cyclodextrin (HPβ-CD). The studied soils belong to the orders Andisol, Ultisol, and Mollisol with different organic matter contents, mineral composition, and pH. The apparent sorption constants were significantly lower for the three pesticides in the presence of all CDs. The highest displacement of sorption equilibria was produced by the influence of Mβ-CD, with the most pronounced effect for CPF, a pesticide strongly sorbed on soils. The same was obtained for TCP and OH-CTL, highlighting the need to assess the risk of generating higher levels of groundwater contamination with polar metabolites if degradation rates are not controlled. The highest desorption efficiency was obtained for the systems CPF-β-CD, DZN-Mβ-CD, and CTL-Mβ-CD. Since the degree of adsorption of the complex is relevant to obtain an increase in the bioavailability of the contaminant, a distribution coefficient for the complexed pesticide in all CD–soil–pesticide system was estimated by using the apparent sorption coefficients, the stability constant for each CD–pesticide complex, and the distribution coefficients of free pesticide.  相似文献   

8.
Tomy GT  Billeck B  Stern GA 《Chemosphere》2000,40(6):679-683
Short chain (C10-C13) polychloro-n-alkanes (sPCAs) mixtures were synthesized by refluxing pure n-alkane (> 99%) with sulfuryl chloride (SO2Cl2) in the presence of UV-light (550 W). The free radical initiated reactions produced analogs containing approximately 4-9 chlorine atoms on each carbon chain. Purification of reaction products was achieved by adsorption chromatography on Florisil. The products were characterized by high-resolution gas chromatography/mass spectrometry (HRGC/MS) operated in the electron capture negative ionization (ECNI) and in electron ionization (EI) modes. Individual standards can now be combined to create standards whose profiles resemble that of environmental samples. Quantification of a known amount of the newly synthesized sPCAs mixture, using an industrial formulation as an external standard, resulted in an overestimation (approximately 28%) in its true value.  相似文献   

9.
10.
An allophanic soil (AS) catalyzed the formation of dark-colored polymers via polycondensation reactions between catechol and glycine. The organic carbon content of the AS was increased from 0.16% to 1.3%, indicating that some of the dark-colored polymers had been adsorbed to the AS. The characteristics of the dark-colored polymers adsorbed on the AS were similar to those of a humin that is not extractable with an aqueous alkaline solution. Such a humin-like substance (HuLS) was separated from the AS by treatment with a mixture of HF and HCl. The HuLS and humic acid-like substance (HaLS), comprising the acid-insoluble fraction in the reaction mixture, were characterized by elemental analysis, size exclusion chromatography, pyrolysis-GC/MS and 13C NMR. However, the structural features of HaLS and HuLS had many points in common. These results suggest that HuLS-AS can be regarded as an organo-clay complex formed by the strong adsorption of HaLS to the AS. The adsorption of pentachlorophenol (PCP) to AS and HuLS-AS was examined at pH 5.5. At this pH, the zeta potential of the HuLS-AS showed a negative value. It would, therefore, be expected that pentachlorophenolate anions would adsorb with difficulty to HuLS-AS because of electrostatic repulsion. Nevertheless, the adsorption coefficient for PCP to HuLS-AS, as estimated by the Freundlich isotherm, was seven times larger than that for AS. These results show that HuLS, when adsorbed on the AS surface, has the capability to enhance the adsorption of PCP.  相似文献   

11.
Liou RM  Chen SH  Hung MY  Hsu CS 《Chemosphere》2004,55(9):1271-1280
Pentachlorophenol (PCP) is a wood preserving agent that is commonly found in contaminated soils at wood treatment sites. The catalytic properties of Fe+3-resin for the oxidation of PCP in aqueous solution and soil suspension with H2O2 were tested. Batch tests in aqueous solution were performed at various dosages of catalyst and H2O2, and reaction temperatures. The results showed that the oxidation of PCP in aqueous solution depends on the dose of H2O2 and the temperature. Essentially complete oxidation of 100 mgl(-1) PCP was obtained with 0.5% Fe+3-resin catalyst, 0.1 M H2O2 and at a reaction temperature of 80 degrees C. The oxidation of PCP achieved in three different soil suspensions was more than 94% within 30-50 min. Moreover, it was demonstrated that the same Fe+3-resin could be reused for at least six cycles of PCP oxidation in soil solutions without loss in efficiency unless the pH of the reaction falls below 5. It was proposed that the loss in used Fe+3-resin catalyst activity could be related to the leaching of Fe+3 at low pH.  相似文献   

12.
13.

Introduction

The ecological risks posed by three chlorophenols (CPs), 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), and pentachlorophenol (PCP) in Chinese surface waters were assessed.

Materials and methods

This was achieved by applying a tiered ecological risk assessment (ERA) approach ranging from deterministic methods to probabilistic options to measured concentrations of CPs in surface water of seven major watersheds and three drainage regions in China and the chronic toxicity data for indigenous Chinese species.

Results and discussion

The results show that the risks of three chlorophenols are ranked PCP>2,4-DCP??2,4,6-TCP. PCP posed little ecological risk while 2,4-DCP and 2,4,6-TCP posed negligible or de minimis risk in Chinese surface water. However, the risks varied with different river basins, for example, PCP posed some ecological risk in the Yangtze, Huaihe, and Pearl Rivers. The magnitude of 2,4-DCP and 2,4,6-TCP pollution in North China was more serious than that in South China.

Conclusion

The probabilistic risk assessment approach, which can provide more information for risk managers and decision makers, was favored over the screening-level single-value estimate method. However, the results from all tiers of the ERA methods in the framework were consistent with each other.  相似文献   

14.
BACKGROUND AND AIMS: Polychlorinated diphenyl ethers (PCDEs), which are among the members of persistent organic pollutants, and PCDEs have been determined in a number of environmental samples. The main possible sources are the technical production of chlorinated phenols and all processes of incomplete combustion. PCDEs were observed in the fly ash from a municipal waste incinerator (MWI). It was speculated that the condensation of chlorophenols with chlorobenzenes occurred via PCDEs to form polychlorinated dibenzofurans (PCDFs). Nevertheless, PCDEs formation from condensation of chlorophenols with chlorobenzenes has not been confirmed by experimental observation. The objective of this paper is to investigate the formation mechanism of PCDEs from the condensation of chlorophenols with chlorobenzenes. The results are expected to be helpful in understanding the formation of PCDEs and in controlling and abating PCDEs emissions from MWI. METHODS: The pyrolysis of pentachlorophenol (PCP) and/or polychlorobenzenes (PCBz) was carried out in a sealed glass tube. The reaction products were extracted and purified with K2CO3 solution. The samples were concentrated and then cleaned up on an alumina column. GC/MS was used for identification and quantification of reaction products. RESULTS AND DISCUSSION: The results showed that the pyrolysis of hexachlorobenzene (HCB) at 340 degrees C for 6 h led to the formation of decachlorodiphenyl ether (DCDE) (2.41 microg/mg) and octachlorodibenzo-p-dioxins (OCDD) (0.24 micropg/mg), while the pyrolysis of PCP yielded DCDE (13.08 microg/mg) and OCDD (180.13 microg/mg). In addition, the amount of DCDE formation from the pyrolysis of the mixture of PCP and HCB was 4.65 times higher than the total amount of DCDE formation from the pyrolysis of HCB and PCP, respectively. This indicated that PCP and HCB were prone to condensation and formation of DCDE. DCDE was the main congener of PCDEs from condensation of PCP with HCB at 340, 400 and 450 degrees C. A small amount of nonachlorodiphenyl ether (NCDE) was formed by dechlorination reaction at 450 degrees C. The condensation of PCP with 1,2,4,5-tetrachlorobenzene (Cl4Bz) formed 2,2',3,4,4',5,5',6-octachlorodiphenyl ether (OCDE). Small amounts of heptachlorodiphenyl ether (HpCDE) and hexachlorodiphenyl ether (HxCDE) were detected at 450 degrees C. Meanwhile, polychlorinated dibenzo-p-dioxins (PCDDs) and PCDFs were detected from the condensation of PCP and PCBz. CONCLUSIONS: Experimental studies clarified the behavior of the formation of PCDEs from condensation of polychlorophenols and PCBz. The condensation of polychlorophenols with PCBz formed PCDEs through elimination of HCl between polychlorophenols and PCBz molecules. Another pathway of PCDEs formation was elimination of H2O between two polychlorophenol molecules. In addition, dechlorination processes had caused the specific homologous pattern of PCDEs under higher temperatures.  相似文献   

15.
The objectives of the present research were (i) to report the mass balance of chlorine during pentachlorophenol (PCP) photodegradation and (ii) to reveal the photodegradation pathway experimentally with a theoretical proof based on the density functional theory (DFT). The chlorine of PCP was completely mineralized to produce chloride ions after 24h of UV irradiation. As intermediates, 2,3,5,6-tetrachlorophenol, 2,3,4,6-tetrachlorophenol and 2,5-dichlorophenol were identified. At least 80% of the chlorine balance during PCP photodegradation was accounted by PCP, these intermediates, and chloride ions. A DFT calculation showed differences in the C-Cl bond dissociation energy level and the positions of respective PCP molecular and the PCP intermediates. The dechlorination intermediates predicted using the calculated C-Cl bond dissociation energy were consistent with those experimentally confirmed, indicating the feasibility of this theoretical method in predicting the dechlorination pathway.  相似文献   

16.
As part of a study on the oxidation mechanism of heterocyclic aromatic compounds, some aspects of the atmospheric chemistry of several alkyl derivatives of furan have been investigated. The aim of this work was to identify the products of the reactions of chlorine atoms with 2-methylfuran, 2-ethylfuran and 2,5-dimethylfuran. Experiments were performed in two different smog chambers at 296 ± 2 K and 1000 ± 20 mbar of synthetic air. The experimental investigation was carried out using in situ long-path FTIR absorption spectroscopy and both SPME-GC/FID-ECD and SPME-GC/MS as sampling and detection techniques. The major primary products from the addition reaction channel were 4-oxo-2-pentenoyl chloride and formaldehyde for the reactions of 2-methylfuran and 2,5-dimethylfuran; 4-oxo-2-hexenoyl chloride and acetaldehyde for the reaction of 2-ethylfuran and 5-chloro-2(5H)-furanone for the reactions of both 2-methylfuran and 2-ethylfuran. Other minor products were 4-oxo-2-pentenal, 4-oxo-2-hexenal and 3-hexene-2,5-dione for the 2-methylfuran, 2-ethylfuran and 2,5-dimethylfuran reactions, respectively. From the abstraction pathway, HCl, furfural, 2-acetylfuran, 5-methylfurfural, maleic anhydride and 5-hydroxy-2(5H)-furanone were detected. The formation of furfural, 2-acetylfuran and 5-methylfurfural confirmed the H-atom abstraction from the alkyl group of 2-methylfuran, 2-ethylfuran and 2,5-dimethylfuran, respectively. This mechanism was not observed in previous studies with OH and NO3 radicals. A mechanism is proposed to explain the main reaction products observed. The observed products confirm that addition of Cl atoms to the double bond of the alkylfuran is the dominant reaction pathway.  相似文献   

17.
Six products were formed by reaction of ethynylestradiol (EE2) with sodium hypochlorite in buffered solutions. 4-Chloroethynylestradiol (4-ClEE2) and 2,4-dichloroethynylestradiol (2,4-diClEE2) were identified as the two major reaction products, using preparative HPLC, MS, and NMR. When EE2 reacted with chlorine at different pHs (pH 5, 7, and 9) or chlorine concentrations (0.2, 1, 2, and 5 mmol/l, corresponding to molar ratios to EE2, 1, 5, 10, and 25, respectively), the formation of 4-ClEE2 and 2,4-diClEE2 was observed under the above conditions, and the highest yields were 20 and 52 mol%, respectively. EE2 was consumed almost completely within 5 min of chlorination by addition of chlorine of more than 1 mmol/l (molar ratio to EE2, 5). On the other hand, the two products existed in highly chlorinated solutions after 60 min (4ClEE2, 1-6 mol%; 2,4-diClEE2, 3-25 mol%). The estrogenic activities of 4-ClEE2 by estrogen receptor alpha or beta binding assay were similar to those of the parent EE2, and the activities of 2,4-diClEE2 were lower about 10 times.  相似文献   

18.
It is the first report in which a novel psychrotrophic Pseudomonas putida SKG-1 strain was evaluated for simultaneous bioremediation of pentachlorophenol and Cr6+ under various cultural and nutritional conditions. Pentachlorophenol (PCP) dechlorination products, bacterial structure, and functional groups were characterized by gas chromatography and mass spectrometry (GC–MS), scanning electron microscope and energy dispersive X-ray spectroscopy (SEM–EDS), and Fourier-transform infrared (FTIR) techniques. The strain was extremely tolerant to excessively higher individual concentration of PCP (1,400 mg l?1) and Cr6+ (4,300 mg l?1). Increasing concentration of PCP and Cr6+ exerted inhibitory effect on bacterial growth and toxicants’ removal. The strain exhibited growth, and concomitantly remediated both the pollutants simultaneously over a broad pH (7.0–9.0) and temperature (28–32 °C) range; maximum growth, PCP dechlorination (87.5 %), and Cr6+ removal (80.0 %) occurred at optimum pH 8.0 and 30 °C (from initial PCP 100 mg l?1 and Cr6+ 500 mg l?1) under shaking (150 rpm) within 72 h incubation. Optimization of agitation (125 rpm) and aeration (0.4 vvm) in bioreactor further enhanced PCP dechlorination by ~10 % and Cr6+ removal by 2 %. A direct correlation existed between growth and bioremediation of both the toxicants. Among other heavy metals, mercury exerted maximum and cobalt minimum inhibitory effect on PCP dechlorination and Cr6+ removal. Chromate reductase activity was mainly associated with the supernatant and cytosolic fraction of bacterial cells. GC–MS analysis revealed the formation of tetrachloro-p-hydroquinone, 2,4,6-trichlorophenol, and 2,6-dichlorophenol as PCP dechlorination products. FTIR spectrometry indicated likely involvement of carbonyl and amide groups in Cr3+ adsorption, and SEM–EDS showed the presence of chromium on P. putida surface. Thus, our promising isolate can be ecofriendly employed for biotreatment of various industrial wastes contaminated with high PCP and Cr6+ concentrations.  相似文献   

19.
Both nitrate and pentachlorophenol (PCP) are familiar pollutants in aqueous environment. This research is focused on the simultaneous removal of nitrate and PCP from simulated contaminated groundwater using a laboratory-scale denitrification reactor packed with corncob as both carbon source and biofilm support. The reactor could be started up readily, and the removal efficiencies of nitrate and PCP reached up to approximately 98 % and 40–45 % when their initial concentrations were 50 mg N/L and 5 mg/L, respectively, after 15-day continuous operation at 10 h of hydraulic retention time (HRT) and 25 °C. Approximately 91 % of PCP removal efficiency was achieved, with 2.47 mg/L of chloride ion release at 24 h of HRT. Eighty-two percent of chlorine in PCP removed was ionized. The productions of 3-chlorophenol and phenol and chloride ion release indicate that the reductive dechlorination reaction is a major degradation pathway of PCP under the experimental conditions.  相似文献   

20.
Kinetics of photodegradation and ozonation of pentachlorophenol   总被引:3,自引:0,他引:3  
The oxidation of 2,3,4,5,6-pentachlorophenol (PCP) has been carried out by a photodecomposition process using a polychromatic UV irradiation, and by an ozonation process. In the photodegradation process, the pH accelerated the decomposition rate and the approximate first-order rate constants were evaluated, with values between 0.16+/-0.005 min(-1) at pH=3 and 0.26+/-0.007 min(-1) at pH=9. A more rigorous kinetic study led to the determination of the quantum yields of the reaction, with values of 200+/-7x10(-3) mol/Eins for pH=3 and 22+/-1.1x10(-3) mol/Eins for pH=9. In the ozonation process, the rate constants for the reaction between ozone and PCP were determined by means of a competition kinetics, with values in the range from 0.67x10(5) to 314x10(5) l/mols. The specific rate constants for the un-dissociated and dissociated forms of PCP were also calculated. Finally, in both processes, the intermediate reaction products were identified, the most important being tetrachlorocatechol, tetrachlorohydroquinone and tetra-p-chlorobenzoquinone. Free chloride ion released, which was favored at high pHs, was also followed in both processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号