首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract

Terbufos, t. sulfoxide and t. sulfone (5 μg ml‐1) were incubated in natural, sterilized natural and distilled water, with initial pH values of 8.8, 8.8 and 6.0, respectively, at 20°C. First‐order disappearance was observed for the three compounds. Rates in natural and sterilized water were similar indicating chemical degradation predominated. Terbufos disappeared rapidly (t½>=3 days) in all systems. T. sulfoxide and t. sulfone were more persistent in the natural (t½>=18–40 days) and distilled water (t½>=280–350 days). Adsorption data for the three compounds in four soil‐water systems showed the decreasing order of adsorption to be terbufos>>t. sulfoxide=t. sulfone. Desorption from soils fortified at 5 μg g‐1 with water was examined for 4 successive 18‐hr cycles. T. sulfoxide and t. sulfone were totally desorbed; terbufos was too unstable to study. The mobility of the compound in soil eluted with water was in the order, t. sulfoxide=t. sulfone>> terbufos, in agreement with adsorption‐desorption results. The octanol‐water partitioning coefficients for terbufos, t. sulfoxide and t. sulfone, at 23°C, were 3:30 x 10 , 164, and 302, respectively.  相似文献   

2.
Abstract

Pretreatment of a Drummer‐Catlin soil mixture with granular formulations of carbofuran or trimethacarb enhanced biodegradation of subsequent treatments with the technical formulations. Degradation of carbofuran was enhanced by pretreatments with trimethacarb, and degradation of trimethacarb was enhanced by pretreatments with carbofuran. Bendiocarb degradation was enhanced by pretreatments of soil with carbofuran or trimethacarb. In bioassays with southern corn rootworm larvae, biological activity of carbofuran, trimethacarb, and bendiocarb was rapidly lost in soils pretreated with granular formulations. Pretreatment of soil with granular terbufos did not enhance the biodegradation of subsequent applications of technical terbufos. Several microbial biomass assays showed an increase in specific carbofuran‐degrading bacteria in soils that were pretreated with carbofuran. Bacteria were isolated that could grow on carbofuran and apparently degrade it when present with another carbon source.  相似文献   

3.
Abstract

A high‐intensity short‐wavelength UV light system was studied for its ability to degrade the pesticides carbofuran, fenamiphos sulfoxide (nemacur sulfoxide), and propazine in aqueous solutions. Half‐lives, rate constants, and breakdown products were determined for all chemicals. The presence of hydrogen peroxide, an oxidant and potential source of hydroxyl radicals, had no effect on the rate of breakdown of any of the chemicals investigated. Short‐wavelength UV light appears to be solely responsible for the observed pesticide breakdown. The breakdown of all three pesticides followed first order kinetics. Carbofuran, nemacur sulfoxide, and propazine had half lives of 3.9, 1.1, and 3.9 minutes, respectively. Breakdown product analysis was performed using capillary gas chromatography/mass spectrometry.  相似文献   

4.

A new approach to surface water analysis has been investigated in order to enhance the detection of different organic contaminants in Nathan Creek, British Columbia. Water samples from Nathan Creek were prepared by liquid/liquid extraction using dichloromethane (DCM) as an extraction solvent and analyzed by gas chromatography mass spectrometry method in scan mode (GC-MS scan). To increase sensitivity for pesticides detection, acquired scan data were further analyzed by Automated Mass Spectrometry Deconvolution and Identification Software (AMDIS) incorporated into the Agilent Deconvolution Reporting Software (DRS), which also includes mass spectral libraries for 567 pesticides. Extracts were reanalyzed by gas chromatography mass spectrometry single ion monitoring (GC-MS-SIM) to confirm and quantitate detected pesticides. Pesticides: atrazine, dimethoate, diazinone, metalaxyl, myclobutanil, napropamide, oxadiazon, propazine and simazine were detected at three sampling sites on the mainstream of the Nathan Creek. Results of the study are further discussed in terms of detectivity and identification level for each pesticide found. The proposed approach of monitoring pesticides in surface waters enables their detection and identification at trace levels.  相似文献   

5.
Abstract

Potatoes were grown during 1992 in 2 m2 plots of loam which had received 1, 2 or 3 annual treatments of Di‐Syston 15G, equivalent to 3.36 kg AI/ha, in furrow at planting. The presence of enhanced degradative activity to the sulfoxide and sulfone metabolites of disulfoton in the soil treated in the previous two years was confirmed by laboratory tests prior to the 1992 treatments. Soil, seed potato and foliage from the three treatments were analyzed for disulfoton and its sulfoxide and sulfone metabolites for 12 wk following planting/treatment. Disulfoton was the major insecticidal component of the soil, a minor component of the seed piece and was not detected (<0.02 ppm) in potato foliage. Disulfoton concentrations in each of the three substrates sampled were similar for the three treatments. Disulfoton sulfoxide and sulfone were the major insecticidal components of the seed piece and foliage. Their maximum concentrations in 1st year soil, seed pieces and foliage were ca. 2x, 2x and 6x, respectively, those measured in the 2nd and 3rd year treatments. The results demonstrate that enhanced microbial degradation of relatively minor insecticidal compounds in the soil can profoundly affect insecticide levels in the plant when these compounds are the major insecticidal components accumulated. The broader implications for crop protection using soil‐applied systemic insecticides are discussed.  相似文献   

6.
Abstract

Leaching of fenamiphos and its thiooxidation products, sulfoxide and sulfone, has been studied in two different soils in laboratory conditions. Fenamiphos was much less mobile than its derivatives. A large volume of water was necessary to leach completely the three chemicals. Fenamiphos required an amount of water twice as large as that required by either sulfoxide or sulfone. Mobility and leaching efficiency of the chemicals examined were highly dependent on the properties of the two soils considered.  相似文献   

7.
Abstract

Potatoes were grown in Plainfield sand and muck treated, in furrow, with aldicarb (Temik 15G, 3.36 kg Al/ha). .Soils were contained in 2 mz field plots and had not been treated previously with pesticides. Soil, seed pieces, foliage and tubers were analyzed for the insecticide and its sulfoxide and sulfone metabolites during the 12 wk following planting. The disappearance of aldicarb from the soil was accompanied by partial conversion to the sulfoxide and sulfone. After increasing rapidly during the first 2 wk, the aldicarb concentration in the seed piece declined and a similar concentration of aldicarb sulfoxide accumulated which subsequently slowly disappeared. Aldicarb sulfoxide was the major insecticidal material in the new foliage. High initial concentrations, observed at 3–4 wk, declined by about 90% after 6 wk. Aldicarb sulfoxide residues of 2–4 ppm in the first new tubers at 6 wk declined by 90% by 12 wk. Potatoes were also grown under greenhouse conditions in Plainfield sand treated with Temik 10G at rates equivalent to 1.68, 3.36 and 6.72 kg Al/ha. Maximum aldicarb sulfoxide concentrations in soil, seed piece and foliage increased with application rate. The sulfoxide was much more persistent in the soil and foliage than in the field experiment indicating the importance of environmental factors to its behaviour in both soil and potato plants.  相似文献   

8.
In May 1983, granular formulations of carbofuran, chlorpyrifos, disulfoton, fonofos, isofenphos, phorate, and terbufos were applied in incorporated bands to duplicate 2 m2 field plots of clay loam. Insecticide concentrations were determined in the bands at 0,1,2,3,4,6,8,10,12,16, and 20 wk. Following spring cultivation, the insecticides were applied to the same plots in 1984 and 1985. In addition, carbofuran was applied to previously untreated plots in 1984 and all 7 materials were applied to previously untreated plots in 1985. Sampling and analysis were carried out as in 1983. Persistence was assessed on the basis of the disappearance rates measured for the 1st 8 wk and of a calculated Effectiveness Potential (the ratio of the average residue in the upper 5 cm of the band at 8, 10 and 12 wk and the published LC95 for western corn rootworm in clay loam soil). Soils treated with carbofuran and isofenphos in 1984 and all soils treated in 1985 were tested for anti-insecticide activity. Soil cores from some carbofuran, chlorpyrifos and terbufos treated plots were sectioned vertically to establish the distribution of the insecticides during 1985. In addition, granular and pure chemical forms of isofenphos and carbofuran were applied at 10 ppm to anti-isofenphos and anti-carbofuran active and control soils (from field plots) maintained at 10 and 20% moisture in the laboratory to assess the effect of formulation and moisture on persistence in active soils. Insecticide concentrations were determined at 0,1,3,7, 10,14,21,28, and 35 days. The persistence of chlorpyrifos, terbufos and phorate was relatively constant over the 3 years and between plots receiving single and multiple treatments. Disulfoton and fonofos behavior was more variable and that of carbofuran and isofenphos was extremely variable. Anti-insecticide activity against carbofuran and isofenphos was detectable 2 wk after an initial application and was still present the following spring. Anti-insecticide activity against fonofos, terbufos sulfoxide, phorate sulfone and disulfoton sulfone was also generated in this soil. Anti-insecticide activity against chlorpyrifos, disulfoton, terbufos and phorate was not present. Carbofuran, chlorpyrifos and terbufos (+ metabolites) present in the upper 5 cm of soil averaged 93, 94 and 94%, respectively, of the total core contents over 12 wk. Significant moisture dependent differences were observed between the behavior of granular carbofuran and granular isofenphos in anti-insecticide active soils.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Abstract

Potatoes were grown from cut seed in Plainfield sand treated in‐furrow with disulfoton (Di‐Syston 15G, 3.36 kg Al/ha) in 1983 and from whole seed in similarly treated loam in 1991. Soils were contained in 2 m2 field plots. Soil, seed potato and foliage were analyzed for the insecticide and its sulfoxide and sulfone metabolites during the 8–12 wk following planting. Disulfoton disappeared at different rates from the two soils (ksand=0.024 day‐1, kloam=0.056 day‐1) with partial conversion to the sulfoxide and sulfone in both. Larger quantities of the three insecticidal components were absorbed by the seed potato in the cut‐seed/sand combination. The relative amounts of these components in the seed potato also differed between treatments with disulfoton being the largest component of the cut‐seed/sand and smallest in the whole‐seed/loam. Disulfoton sulfoxide and sulfone were the major insecticidal components of the foliage and concentrations in the initial foliage (each ca. 10 ppm) were similar for both treatments. Sulfoxide concentrations in the foliage decreased more rapidly than the sulfone and the decrease in concentration of each of the components was similar for the two treatments.  相似文献   

10.
Abstract

The importance of field surveys to provide data on acute pesticide hazards is discussed. The types of questions which small field surveys of pesticide exposure should answer are presented. In addition to protective clothing, the value of distance, time, and personal hygiene in reducing exposure are considered. Finally, the importance of an adequate data base for the development of protocols and guidelines for public protection is discussed.  相似文献   

11.
To examine the link between corn agriculture and the observed decline of the endangered southern bell frog (SBF), the effects of two corn crop pesticides on larval growth and development were investigated. Tadpoles were exposed to terbufos sulfone (10 μg/L), a major breakdown product of the insecticide terbufos, and the herbicide atrazine (25 μg/L) individually and as a mixture until the completion of metamorphosis. Atrazine did not interact synergistically with terbufos sulfone or result in significant effects on growth and development alone, although there was some indication of accelerated metamorphosis in the pilot study. Terbufos sulfone alone and as a mixture (terbufos/atrazine) significantly slowed larval development and ultimately delayed metamorphosis. The observed developmental effects from an environmentally relevant concentration of terbufos sulfone indicates a risk posed by this persistent degradation product to the endangered SBF, which breeds and develops in the rice bays adjacent to corn fields treated with pesticides.  相似文献   

12.
Abstract

The extent of mass loss on Teflon filters caused by ammonium nitrate volatilization can be a substantial fraction of the measured particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5)or 10 μm (PM10) mass and depends on where and when it was collected. There is no straightforward method to correct for the mass loss using routine monitoring data. In southern California during the California Acid Deposition Monitoring Program, 30-40% of the gravimetric PM2.5 mass was lost during summer daytime. Lower mass losses occurred at more remote locations. The estimated potential mass loss in the Interagency Monitoring of Protected Visual Environments network was consistent with the measured loss observed in California. The biased mass measurement implies that use of Federal Reference Method data for fine particles may lead to control strategies that are biased toward sources of fugitive dust, other primary particle emission sources, and stable secondary particles (e.g., sulfates). This analysis clearly supports the need for speciated analysis of samples collected in a manner that preserves volatile species. Finally, although there is loss of volatile nitrate (NO3 ?) from Teflon filters during sampling, the NO3 ? remaining after collection is quite stable. We found little loss of NO3 ? from Teflon filters after 2 hr under vacuum and 1 min of heating by a cyclotron proton beam.  相似文献   

13.
Abstract

Glutathione‐S‐transferase (GST) activity of maize (Zea mays L.) seedlings treated with 1‐aminobenzotriazole (ABT) derivatives and/or EPTC were measured using EPTC‐sulfoxide as substrate. Both safeners and ABT derivatives significantly elevated the GST activity in the concentrations needed for effective safening action. ABT is considered as an inhibitor of plant cytochrome P‐450 monooxygenases (P‐450) and, because of this, used to study herbicide mode of action. Our data indicate that ABT has multiple effects on plants influencing not only P‐450 but GST as well. Thus the role of ABT in herbicide metabolism needs reconsideration.  相似文献   

14.
Abstract

The pH‐disappearance rate profiles were determined at ca. 25°C for 24 insecticides at 4 or 5 pH values over the range 4.5 to 8.0 in sterile phosphate buffers prepared in water‐ethanol (99: 1 v/v). Half‐lives measured at pH 8 were generally smaller than at lower pH values. Changes in half lives between pH 8.0 and 4.5 were largest (>1000x) for the aryl carbamates, carbofuran and carbaryl, the oxime carbamate, oxamyl, and the organophosphorus insecticide, trichlorfon. In contrast, half lives of phorate, terbufos, heptachlor, fensulfothion and aldicarb were affected only slightly by pH changes. Under the experimental conditions described half lives at pH8 varied from 1–2 days for trichlorfon and oxamyl to >1 year for fensulfothion and cyper‐methrin. Insecticide persistence on alumina (acid, neutral and basic), mineral soils amended with aluminum sulfate or calcium hydroxide to different pH values and four natural soils of different pH was examined. No correlation was observed between the measured pH of these solids and the rate of disappearance of selected insecticides applied to them. These observations demonstrate the difficulty of extrapolating the pH dependent disappearance behaviour observed in homogeneous solution to partially solid heterogeneous systems such as soil.  相似文献   

15.
ABSTRACT

A source apportionment study was conducted to identify sources within a large elemental phosphorus plant that contribute to exceedances of the National Ambient Air Quality Standards (NAAQS) for 24-hr PM10. Ambient data were collected at three monitoring sites from October 1996 through July 1999, and included the following: 24-hr PM10 mass, 24-hr PM2.5 and PM10–2.5 mass and chemistry, continuous PM10and PM2.5 mass, continuous meteorological data, and wind-direction-resolved PM2.5 and PM10 mass and chemistry. Ambient-based receptor modeling and wind-directional analysis were employed to help identify major sources or source locations and source contributions. Fine-fraction phosphate was the dominant species observed during PM10 exceedances, though in general, re-suspended coarse dusts from raw and processed materials at the plant were also needed to create an exceedance. Major sources that were identified included the calciners, the CO flares, process-related dust, and electric-arc furnace operations.  相似文献   

16.
ABSTRACT

The Aerosol Research and Inhalation Epidemiology Study (ARIES) was designed to provide high-quality measurements of PM25, its components, and co-varying pollutants for an air pollution epidemiology study in Atlanta, GA.

Air pollution epidemiology studies have typically relied on available data on particle mass often collected using filter-based methods. Filter-based PM2.5 sampling is susceptible to both positive and negative errors in the measurement of aerosol mass and particle-phase component concentrations in the undisturbed atmosphere. These biases are introduced by collection of gas-phase aerosol components on the filter media or by volatilization of particle phase components from collected particles. As part of the ARIES, we collected daily 24-hr PM2.5 mass and speciation samples and continuous PM2.5 data at a mixed residential-light industrial site in Atlanta. These data facilitate analysis of the effects of a wide variety of factors on sampler performance. We assess the relative importance of PM2.5 components and consider associations and potential mechanistic linkages of PM2.5 mass concentrations with several PM2.5 components.

For the 12 months of validated data collected to date (August 1, 1998-July 31, 1999), the monthly average Federal Reference Method (FRM) PM2 5 mass always exceeded the proposed annual average standard (12-month average = 20.3 ± 9.5 ug/m3). The particulate SO4 2- fraction (as (NH4)2SO4) was largest in the summer and exceeded 50% of the FRM mass. The contribution of (NH4)2SO4 to FRM PM2.5 mass dropped to less than 30% in winter. Particu-late NO3 - collected on a denuded nylon filter averaged 1.1 ± 0.9 ug/m3. Particle-phase organic compounds (as organic carbon × 1.4) measured on a denuded quartz filter sampler averaged 6.4 ± 3.1 ug/m3 (32% of FRM PM2 5 mass) with less seasonal variability than SO4 2-.  相似文献   

17.
This study aimed to determine the toxicity of three organophosphorous pesticides, chlorpyrifos, terbufos and methamidophos, to three indigenous algal species isolated from local rivers and algal mixtures. The diatom Nitzschia sp. (0.30–1.68 mg L?1 of EC50 -the estimated concentration related to a 50% growth reduction) and the cyanobacteria Oscillatoria sp. (EC50 of 0.33–7.99 mg L?1) were sensitive to single pesticide treatment and the chlorophyta Chlorella sp. was the most tolerant (EC50 of 1.29–41.16 mg L?1). In treatment with the mixture of three pesticides, Chlorella sp. became the most sensitive alga. The antagonistic joint toxic effects on three indigenous algae and algal mixtures were found for most of the two pesticide mixtures. The results suggested that mixture of pesticides might induce the detoxification mechanisms more easily than the single pesticide. The synergistic interactions between terbufos and methamidophos to algal mixtures and between methamidophos and chlorpyrifos to Nitzschia sp. indicated methamidophos might act as a potential synergist. Differential sensitivity of three families of algae to these pesticides might result in changes in the algal community structures after river water has been contaminated with different pesticides, posing great ecological risk on the structure and functioning of the aquatic ecosystem.  相似文献   

18.
Abstract

With the recent focus on fine particle matter (PM2.5),new, self-consistent data are needed to characterize emissions from combustion sources. Such data are necessary for health assessment and air quality modeling. To address this need, emissions data for gas-fired combustors are presented here, using dilution sampling as the reference.The dilution method allows for collection of emitted particles under conditions simulating cooling and dilution during entry from the stack into the air. The sampling and analysis of the collected particles in the presence of precursor gases, SO2, nitrogen oxide, volatile organic compound, and NH3 is discussed; the results include data from eight gas fired units, including a dual-fuel institutional boiler and a diesel engine powered electricity generator. These data are compared with results in the literature for heavy-duty diesel vehicles and stationary sources using coal or wood as fuels. The results show that the gas-fired combustors have very low PM2.5 mass emission rates in the range of ~10-4 lb/million Btu (MMBTU) compared with the diesel backup generator with particle filter, with ~5 × 10-3 lb/MMBTU. Even higher mass emission rates are found in coal-fired systems, with rates of ~0.07 lb/MMBTU for a bag-filter-controlled pilot unit burning eastern bituminous coal. The characterization of PM2.5 chemical composition from the gas-fired units indicates that much of the measured primary particle mass in PM2.5 samples is organic or elemental carbon and, to a much less extent, sulfate. Metal emissions are quite low compared with the diesel engines and the coal- or woodfueled combustors. The metals found in the gas-fired combustor particles are low in concentration, similar in concentration to ambient particles. The interpretation of the particulate carbon emissions is complicated by the fact that an approximately equal amount of particulate carbon (mainly organic carbon) is found on the particle collector and a backup filter. It is likely that measurement artifacts, mostly adsorption of volatile organic compounds on quartz filters, are positively biasing “true” particulate carbon emission results.  相似文献   

19.
In a research project on risk management of harmful substances in water cycles, clindamycin and 12 further antibiotics were determined in different sewage samples. In contrast to other antibiotics, an increase of the clindamycin concentration in the final effluent in comparison to the influent of the sewage treatment plant (STP) was observed. A back transformation from the main metabolite clindamycin sulfoxide to clindamycin during the denitrification process has been discussed. Therefore, the concentration of this metabolite was measured additionally. Clindamycin sulfoxide was stable in the STP and the assumption of back transformation of the metabolite to clindamycin was confuted. To explain the increasing clindamycin concentration in the STP, the ratio of clindamycin sulfoxide to clindamycin was observed. The ratio increased in dry spells with concentrated samples and with long dwell time in the sewer system. A short hydraulic retention in waste water system and diluted samples in periods of extreme rainfall lead to a lower ratio of clindamycin sulfoxide to clindamycin concentration. A plausible explanation of this behavior could be that clindamycin was adsorbed strongly to a component of the sewage during this long residence time and in the STP, clindamycin was released. In the common sample preparation in the lab, clindamycin was not released. Measurements of clindamycin and clindamycin sulfoxide in the influent and effluent of STP is advised for sewage monitoring.  相似文献   

20.
A granular formulation of terbufos (Counter 15G) was added in-furrow at time of planting of wheat and barley. Foliage collected at several times was analyzed for total terbufos residues as terbufoxon sulfone. Maximum residues from application of 1.5 and 3.0 kg/ha were 7.4 and 10.6 ppm, respectively, in wheat foliage samples collected 10 days postseeding. Wheat foliage collected at 53 days postseeding had residues averaging 0.32 and 0.58 ppm from the 1.5 and 3.0 kg/ha applications, respectively. In 1985 residues in barley were consistently less than in wheat in 1985 with 4.4 and 7.0 ppm detected in foliage collected 10 days post application from the 1.5 and 3.0 kg/ha applications, respectively and 0.21 and 0.34 ppm detected at 53 days. Grain samples had 0.01 ppm or less residue at harvest. Straw samples had up to 0.75 ppm total terbufos residues at harvest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号