首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Effects of azadirachtin (isomer A, AZ‐A) and tebufenozide (TF) on freshwater algae were investigated using indoor aquatic microcosms. AZ‐A and TF were dosed at different concentrations to 10‐L microcosms. Chlorophyll and protein contents of the algae, and the concentrations of the insecticides in water and algae were monitored at intervals of time up to 20 d. Chlorophyll and protein contents in algae were inhibited at treatment levels of 3.0 and 4.5 μg AZ‐A/mL, whereas at 1.5 μg/mL, the chemical stimulated the chlorophyll production. The partition of AZ‐A between water and algae was reversible, and the bioconcentration factor (BCF) was low. In contrast, TF dosed at 0.25 to 0.75 μg/mL stimulated algal growth, probably due to its utilization of carbonaceous and nitrogenous intermediates and other breakdown products of TF as nutrients. The BCF was high and the organism functioned as a sink for the chemical. Extension of the laboratory findings to complex outdoor systems are discussed.  相似文献   

2.
Abstract

The phytochemical insecticide, azadirachtin (AZ), undergoes UV‐induced photodegradation. Using the isomer AZ‐A as a standard, its photochemical stability was studied with and without adding lecithin surfactant as a UV protectant. Standard solutions of pure AZ‐A and Margosan‐O® were prepared in methanol‐hexane with (AZ‐A:lecithin, 1:2 by weight) and without lecithin, applied separately onto glass plates and maple (Acer L.) foliage and exposed to radiant energy under controlled conditions. Noticeable photostabilization of AZ‐A was achieved in the samples containing lecithin compared to AZ‐A samples without the lecithin additive. First‐order kinetic evaluation of the data showed that the DTy50 (half‐life) and C (rate constant) values for AZ‐A with and without lecithin on glass plates were 5.68 d and 0.122, and 5.42 d and 0.128, respectively. The corresponding values for the Margosan‐0 formulation were 7.37 d and 0.094, and 6.24 d and 0.111. The DT50 and C values for the pure AZ‐A on maple foliage with and without lecithin were 8.77 d and 0.079, and 6.54 d and 0.106, respectively. The corresponding values for the Margosan‐0 formulation on foliage were 8.35 d and 0.083, and 7.45 d and 0.093. The kinetic data gave quantitative information regarding the photostabilization of AZ‐A in the presence of lecithin. Good UV protection can only be achieved if the additive has the matching Xmax of AZ‐A. The mechanism of photostabilization of AZ‐A in the presence of lecithin was due to either energy transfer from the excited AZ‐A to lecithin and/or competitive absorption of UV photons by the latter.  相似文献   

3.
Abstract

A commercial flowable formulation of tebufenozide, RH‐5992 2F [N'‐t‐butyl‐N'‐(3,5‐dimethylbenzoyl)‐N‐(4‐ethylbenzoyl) hydrazine], was diluted with water, water and canola oil, and water and the methyl ester of canola oil, to provide six end‐use mixes with concentrations of 35 and 70 g of active ingredient (Al) litre‐1. The mixes were applied at 70 and 140 g Al ha‐1 over white spruce [Picea glauca (Moench) Voss] seedlings in a laboratory spray chamber and foliar concentrations of tebufenozide were determined over a 60‐d period. At intervals of time post‐spray, seedlings were sprayed with monosized droplets of Sunspray®11N as rainfall, and the amount of tebufenozide knocked off from foliage was determined. The potential energy of adhesion (PEA) of the Al particles on the foliage increased with time and varied according to the type of end‐use mix, its viscosity and the dosage sprayed.

The end‐use mixes were applied over white spruce trees under field conditions and persistence of tebufenozide was investigated. DT50 values were influenced by the type of mix and dosage sprayed. Oil‐containing mixes and higher dosages increased the PEA of tebufenozide particles.  相似文献   

4.
Abstract

Foliar deposits, volatilization and persistence of azadirachtin‐A (AZ‐A) were investigated after application of four spray mixes prepared from a wettable powder (WP) and three emulsifiable concentrate (EC) formulations of neem. They were applied at the dosage rate of 50 g AI in 4 L/ha onto potted spruce seedlings in a laboratory spray chamber. Droplet‐size spectra and deposits were assessed using Kromekote® card/glass plate collection units. Foliar residues [dislodgeable residues (DR), penetrated residues (PR) and total residues (TR)] of AZ‐A and their volatilization were measured by HPLC at different intervals of time up to 60 h after treatment. Differences in the droplet‐size spectra and deposit levels were observed among the four spray mixes due to the influence of additives present in them. Dissipation half‐lives (DT50) of the DR, PR and TR in the foliage were low (range, 19.5 to 38.9 h) and varied according to the residue type and the spray mix used. The DT50 values of the DR were consistently lower (range, 19.5 to 31.9 h) than those of the PR (range, 30.5 to 38.9 h) due to preferential loss of the surface residues. The low DT50 values observed for the DR and TR in the foliage sprayed with the WP spray mix were attributed to the particulate nature of the deposit. AZ‐A volatilized appreciably from the DR rather than from the PR. The variations found in the amounts of AZ‐A volatilized (42 to 58%) and unaccountable (38 to 46%) from the initial TR values in spruce foliage, after 60 h, were attributed to the physical form of the deposits on the target surface and the influences of additives present in the different spray mixes.  相似文献   

5.
Abstract

Mexacarbate (4‐dimethylamino‐3,5‐xylyl N‐methylcarbamate) insecticide has potential for use in spruce budworm (Choristoneura fumiferana Clem.) control operations in Canada. Its persistence and fate in balsam fir (Abies balsamea (L.) Mill.), litter and soil samples were studied by spraying aerially oil‐based and water‐based formulations, each at 70 g A.I./ha over a coniferous forest near Bathurst, New Brunswick. The oil‐based formulation gave the maximum concentration of the chemical in the substrates studied. In fir needles, the highest concentrations observed were 0.51 ppm and 0.19 ppm (fresh weight) for the oil‐based and emulsion formulations respectively, 1 h after application. The residue levels decreased very rapidly with a half‐life of approximately 5 h. Three and eight days after the spray application of the emulsion and oil formulations respectively, the concentrations of mexacarbate in foliage decreased to trace levels ( 0.008 ppm). Only very low levels of residue were detected in litter and soil. The peak concentrations for the two formulations ranged from 0.02 to 0.11 ppm (fresh weight) in litter and from 0.01 to 0.06 ppm (fresh weight) in soil. The residue levels in both litter and soil decreased to below the detection limit (0.005 ppm) within 1 d. The ground deposit levels found on glass plates and the droplet density and size spectra measured on Kromekote® cards reflected the variations in concentrations found in fir needles, litter and soil samples and correlated with the observed maximum concentrations in them. Under the stipulated use pattern, mexacarbate concentrations found in the terrestrial components studied were low and are not likely to have any undue adverse effects on non‐target species.  相似文献   

6.
Abstract

Bioavailability of fluridone, l‐methyl‐3‐phenyl‐5‐[3‐(trifluoromethyl) phenyl]‐4(1H)‐pyridinone, as affected by soil temperature, soil moisture regime, and duration of incubation was investigated in three soil types by grain sorghum (Sorghum bicolor [L.] Moench cv. Abu Sabien) chlorophyll bioassay. Initial loss of fluridone was rapid and dissipation followed first‐order kinetics under most of the incubation treatments investigated. Soil moisture, in general, had a greater impact than soil temperature on dissipation of fluridone. The herbicide dissipated faster at the fluctuating room temperature (18–24°C) than at the constant 10°C in Sonning sandy clay loam (O.M. = 1.2%) and Erl Wood sandy loam (O.M. = 2.5%) but not in Shropshire loamy peat (O.M. = 33%). In the two mineral soils, bioassay‐detectable residues from an initial rate of 1.00 μg/g were least (0.00 ‐ 0.10 μg/g) at 1/2 field capacity (FC) and greatest (0.16 ‐ 0.37 μg/g) at 1/4 FC, 400 days after treatment. At 10°C, the DT50 values (days) at 1/4 FC and 1/2 FC were, respectively, 147 ± 16 and 69 ± 6 for Erl Wood soil, and 257 ± 28 and 51 ± 12 for Sonning soil. In Shropshire soil, concentrations of bioavailable fluridone were least at each bioassay date when soil moisture was maintained at FC, at both temperatures of incubation. At 10°C, herbicide concentrations in the organic soil from an initial rate of 10.00 μg/g were 0.95 and 4.69 μg/g, respectively, at FC and 1/4 FC.  相似文献   

7.
The precision and accuracy of the determination of particu-late sulfate and fluoride, and gas phase SO2 and HF are estimated from the results obtained from collocated replicate samples and from collocated comparison samples for high-and low-volume filter pack and annular diffusion denuder samplers. The results of replicate analysis of collocated samples and replicate analyses of a given sample for the determination of spherical aluminosilicate fly ash particles have also been compared. Each of these species is being used in the chemical mass balance source apportionment of sulfur oxides in the Grand Canyon region as part of Project MOHAVE, and the precision and accuracy analyses given in this paper provide input to that analysis. The precision of the various measurements reported here is ±1.8 nmol/m3 and ±2.5 nmol/m3 for the determination of SO2 and sulfate, respectively, with an annular denuder. The precision is ±0.5 nmol/m3 and ±2.0 nmol/m3 for the determination of the same species with a high-volume or low-volume filter pack. The precision for the determination of the sum of HF(g) and fine particulate fluoride is ±0.3 nmol/m3. The precision for the determination of aluminosilicate fly ash particles is ±100 particles/m3. At high concentrations of the various species, reproducibility of the various measurements is ±10% to ±14% of the measured concentration. The concentrations of sulfate determined using filter pack samplers are frequently higher than those determined using diffusion denuder sampling systems. The magnitude of the difference (e.g., 2-10 nmol sulfate/m3) is small, but important relative to the precision of the data and the concentrations of particulate sul-fate present (typically 5-20 nmol sulfate/m3). The concentrations of SO2(g) determined using a high-volume cascade impactor filter pack sampler are correspondingly lower than those obtained with diffusion denuder samplers. The concentrations of SOx (SO2(g) plus particulate sulfate) determined using the two samplers during Project MOHAVE at the Spirit Mountain, NV, and Hopi Point, AZ, sampling sites were in agreement. However, for samples collected at Painted Desert, AZ, and Meadview, AZ, the concentrations of SOx and SO2(g) determined with a high-volume cascade impactor filter pack sampler were frequently lower than those determined using a diffusion denuder sampling system. These two sites had very low ambient relative humidity, an average of 25%. Possible causes of observed differences in the SO2(g) and sulfate results obtained from different types of samplers are given.  相似文献   

8.
Abstract

The effect of two tracer dyes [Erio Acid Red (EAR) and Acid Black 48 (AB‐48)] on initial deposits and persistence of Bacillus thuringiensis subsp. kurstaki (Btk) toxin (delta‐endotoxin) was studied after spraying two commercial formulations, Foray® 48B and Foray® 76B, over potted white spruce [Picea glauca (Moench) Voss] seedlings, at a dosage rate of 30 billion international units (BIU) per ha. Spray was applied using a spinning disc atomizer calibrated to deliver droplet sizes similar to those utilized in ultra‐low‐volume (ULV) treatments in operational insect control programs. The sprayed seedlings were left outdoors at the Sault Ste. Marie laboratory for 18 days under natural conditions of sunlight, wind and rainfall. Initial deposits and persistence of delta‐endotoxin protein in spruce foliage were determined by immunoassay [enzyme linked immunosorbent assay (ELISA)] quantification of the delta‐endotoxin. The total protein (inactive plus active) and delta‐endotoxin (active protein) concentrations in the two formulations were determined by a gravimetric procedure and by ELISA respectively.

The initial deposit levels of the toxin on foliage were not markedly affected by the addition of either of the two tracer dyes, and showed only a narrow range of 1521 to 1625 ng/g foliage (fresh weight) for Foray 48B, and 1789 to 2056 ng/g for Foray 76B. However, the persistence of the toxin was significantly influenced by the presence of the dyes. The toxin persisted in foliage only for 7 d post‐spray When the EAR dye was added to Foray 48B, compared to 10 d when no dye was added. The average half‐life (DT50) of disappearance was 17.4 h for Foray 48B with EAR, and 20.9 h when no dye was present. In contrast, the situation was reversed in Foray 76B, since the duration of persistence was 10 d when EAR was added to Foray 76B, compared to 7 d when no dye was added. The average DT50 was 27.9 h for Foray 76B with EAR, and 22.2 h without the dye. Persistence was the longest (14 d) when the AB‐48 dye was added to Foray 76B, and the DT50 was 44.9 h.  相似文献   

9.
Abstract

This study was conducted to evaluate atrazine (2‐chloro‐4‐ethylamino‐6‐isopropyl‐1, 3, 5‐triazine) and alachlor (2‐chIoro‐N‐(methoxymethyl)acetamide) dissipation and movement to shallow aquifers across the Northern Sand Plains region of the United States. Sites were located at Minnesota on a Zimmerman fine sand, North Dakota on Hecla sandy loam, South Dakota on a Brandt silty clay loam, and Wisconsin on a Sparta sand. Herbicide concentrations were determined in soil samples taken to 90 cm four times during the growing season and water samples taken from the top one m of aquifer at least once every three months. Herbicides were detected to a depth of 30 cm in Sparta sand and 90 cm in all other soils. Some aquifer samples from each site contained atrazine with the highest concentration in the aquifer beneath the Sparta sand (1.28 μg L‐1). Alachlor was detected only once in the aquifer at the SD site. The time to 50% atrazine dissipation (DT50) in the top 15 cm of soil averaged about 21 d in Sparta and Zimmerman sands and more than 45 d for Brandt and Hecla soils. Atrazine DT50 was correlated positively with % clay and organic carbon (OC), and negatively with % fine sand. Alachlor DT50 ranged from 12 to 32 d for Zimmerman and Brandt soils, respectively, and was correlated negatively with % clay and OC and positively with % sand.  相似文献   

10.
The potential genotoxic effect of thiacloprid formulation on bovine peripheral lymphocytes was evaluated using the comet assay and the cytogenetic endpoints: chromosome aberrations (CAs), sister chromatid exchanges (SCEs) and micronuclei (MNi). Whole blood cultures were treated with the insecticide at concentrations of 30, 60, 120, 240 and 480 μg mL?1 for 24, 48 h and/or 2 h of incubation. A statistically significant increase in the frequency of DNA damage, as well as in unstable chromosome aberrations (% breaks) were found after exposure to the insecticide at concentrations ranging from 120 to 480 μg mL?1 (P < 0.05, P < 0.01, P < 0.001). For the detection of stable structural chromosome aberrations (e.g., translocations) and numerical aberrations by the FISH method, three whole chromosome painting probes for bovine chromosomes 1, 5 and 7 (BTA1, BTA5 and BTA7) were used in our experiments. We observed numerical aberrations, but without any statistical significance. Regarding the sister chromatid exchanges, no significant elevation in the SCE frequencies was found after 24-h exposure to the insecticide. A dose-related response in the SCE induction was obtained in bovine cultures after the prolonged time of exposure (48 h) to thiacloprid formulation at concentrations ranging from 120 to 480 μg mL?1 in each donor (P < 0.05, P < 0.01), which was associated with a reduction of the PI (P < 0.05, P < 0.01). The insecticide failed to produce MNi; however, a significant reduction of CBPI was observed. Using real-time PCR, a decrease in the expression of bovine glutathione S-transferase M3 (GSTM3) was detected at the lowest dose. The higher concentrations of thiacloprid formulation caused an increase in the mRNA expression.  相似文献   

11.
Abstract

The distribution and persistence of aerially applied mexacarbate were studied in a New Brunswick aquatic forest environment after spraying twice at a dosage of 70 g A.l./ha using a fixed‐wing aircraft. Average droplet density (drops/cm2) and ground deposition (g A.1./ha) between the two applications differed considerably. The values for the first and second applications were 1.7 and 0.73, and 5.2 and 2.0, respectively; but the average NMD (20 μm) and VMD (36 μm) for both applications were nearly the same. The maximum 1‐h postspray concentrations of mexacarbate in the stream and pond waters were 0.73 and 18.74 ppb, respectively. Concentrations fell rapidly to below detection limits within 12 h in stream and within 3 d in pond water. Cattails (Typha latifolia), manna grass (Glyceria borealis) and bog moss (Sphagnum sp.) collected from the pond contained peak 1‐h postspray concentrations of 720, 482 and 81 ppb, respectively. The concentration levels decreased rapidly and the average half‐lives of the chemical in them were about 3.9, 8.5 and 2.0 h. Bog moss, stream moss (Fontinalis sp.), watercress (Nasturtium officinalis), buttercup (Ranunculus aquatilis) and green alga (Drapamaldia sp.) sampled from the stream sites did not contain measurable levels of mexacarbate. Also, caged and wild tadpoles (Rana clamitans melanota) from the pond, and brook trout (Salvelinus fontinalis) (caged and wild), Atlantic salmon (Salmo salar) (wild) and mayfly nymphs (Ephemeralla sp.) collected from the stream did not contain any of the material. Mexacarbate was not detected in stream and pond sediments. The demethylated products, 4‐methylamino and 4‐amino‐3,5‐xylyl methylcarbamates and the phenol, 4‐dimethylamino‐3,5‐xylenol, were frequently detected as metabolites in water and in the aquatic plants. The presence of these compounds showed that demethylation and hydrolytic routes are the major metabolic pathways for the dissipation of mexacarbate from these substrates.  相似文献   

12.
In Germany, there is a lack of consistent and comparable data for the time dependent behaviour and spatial distribution of dioxin-like and indicator PCB in ambient air, deposition and plants. The aim of this study was to improve the data on PCDD/PCDF, dioxin-like PCB and non dioxin-like PCB in spruce and pine shoots from different locations and years by retrospective monitoring. The survey was conducted with archived samples of one-year old spruce shoots (Picea abies) and pine shoots (Pinus sylvestris) from the German environmental specimen bank. Two sets of samples from locations in urbanized areas in western and eastern Germany (Warndt and Duebener Heide Mitte, respectively) were investigated as time series. Additionally, spruce shoots from seven different rural locations sampled in the years 2000-2004 were analyzed in order to get an overview about the spatial distribution of PCB and PCDD/PCDF. The analytical results of the samples from the two urbanized areas clearly show that the atmospheric contamination with PCDD and PCDF has declined by about 75% between 1985 and 1997 at Warndt and about 40% between 1991 and 1997 at Duebener Heide. However, concentrations stayed virtually constant at both locations from 1997 to 2004 at a level of about 1 ng WHO-TEQ/kg dry matter (d.m.). Similarly, the investigation of spruce shoots from rural locations from 2000 to 2004 did not reveal a temporal trend at any site. PCDD/PCDF levels were between 0.1 and 1.0 ng WHO-TEQ/kg d.m. At the urbanized location Warndt the six indicator PCB as well as the 12 dioxin-like PCB according to WHO revealed a significant decline by more than 75% between 1985 and 1999. Thereafter, PCB levels stayed virtually constant. At the location Duebener Heide an overall decrease of PCB concentrations in pine shoots of about 60% was detected between 1991 and 2004. Spruce shoots from all locations showed a relevant contribution of dioxin-like PCB to the total WHO toxicity equivalent (PCDD/PCDF+PCB). In most samples, the contribution of dioxin-like PCB was between 21% and 41%. The TEQ contribution of PCB in the samples from three rural sites was higher and similar to the TEQ value of PCDD/PCDF. The investigated pine shoots from the urbanized site Duebener Heide showed a 15-28% contribution of dioxin-like PCB to total TEQ and thus lower than in spruce shoots from different locations. In all samples except one PCB 126 contributed to more than 80% to the PCB-TEQ.  相似文献   

13.

Abstract The in vivo effects of sublethal concentrations of deltamethrin (DM), a pyrethroid insecticide, on the hepatic microsomal cytochrome P450 (Cyt P450) content and the Cyt P450‐dependent monooxygenase activities (para‐nitrophenetole‐O‐deethylase, pNPOD; aminopyrene‐N‐demethylase, APND; ethylmorphine‐N‐demethylase, EMND; 7‐ethoxycoumarin‐O‐deethylase, ECOD; and ethoxyresorufin‐O‐deethylase, EROD) were examined in adult carp (Cyprinus carpió L.).

0.2 μg/1 DM treatment resulted in significant increases in APND, EMND and ECOD activities, whereas 2 μg/1 DM resulted in significant inhibitions of all studied isoenzyme activities with the exceptions of pNPOD and APND after 72 h. EROD was the only enzyme for which a slight increase in activity was observed. On repeated treatment, Cyt P450 could not be detected after 48 h, but the Cyt P420 level increased. All tested isoenzyme activities were inhibited, with the exception ofthat of EROD, which was enhanced.

All these changes in enzyme activities and Cyt P450 content demonstrate the effects of DM on fish. DM treatment at low concentration is presumed to cause induction of the Cyt P450‐dependent monooxygenases which may lead to faster metabolization of the insecticide. In contrast, DM at higher concentration strongly inhibited the activities of the studied enzymes. This finding may be due to the damaging effect of DM on the xenobiotic metabolizing enzyme systems offish.  相似文献   

14.
Two plant species, arugula (Eruca sativa) and mustard (Brassica juncea) were field-grown under four soil management practices: soil mixed with municipal sewage sludge (SS), soil mixed with horse manure (HM), soil mixed with chicken manure (CM), and no-mulch bare soil (NM) to investigate the impact of soil amendments on the concentration of glucosinolates (GSLs) in their shoots. GSLs, hydrophilic plant secondary metabolites in arugula and mustard were extracted using boiling methanol and separated by adsorption on sephadex ion exchange disposable pipette tips filled with DEAE, a weak base, with a net positive charge that exchange anions such as GSLs. Quantification of GSLs was based on inactivation of arugula and mustard myrosinase and liberation of the glucose moiety from the GSLs molecule by addition of standardized myrosinase (thioglucosidase) and spectrophotometric quantification of the liberated glucose moiety. Overall, GSLs concentrations were significantly greater (1287 µg g?1 fresh shoots) in plants grown in SS compared to 929, 890, and 981 µg g?1 fresh shoots in plants grown in CM, HM, and NM soil, respectively. Results also revealed that mustard shoots contained greater concentrations of GSLs (974 µg g?1 fresh shoots) compared to arugula (651 µg g?1 fresh shoots).  相似文献   

15.
Abstract

This study aimed to compare the toxicity for fish of two active ingredients (lambda-cyhalothrin-20?g L?1, a pyrethroid, and acetamiprid-15?g L?1, a neonicotinoid) which are components of a commercial insecticide (Acer 35 EC) used in cotton crop in many West African countries. The juveniles of Oreochromis niloticus (4.01?±?0.34?g, mean body weight) were exposed for 96?h to increasing concentrations of active ingredients (lambda-cyhalothrin and acetamiprid) or a mixture similar to Acer 35 EC (composed by 20?g of chemical compound lambda-cyhalothrin and 15?g of acetamiprid dissolved in 1?L of acetone). The experiments were carried out under controlled conditions in aquaria according to OECD Guidelines. During the experiments, the behavioral responses (loss of balance, color change, hyperactivity, etc.) that usually precede death were observed in exposed fish. Mortalities were recorded in each aquarium and the LC50-96h of each chemical was determined. The LC50-96h obtained were respectively 0.1268, 0.0029, 182.9 and 0.5685?ppm for Acer 35 EC, lambda-cyhalothrin, acetamiprid and mixture. All insecticides used in this study had profound impact on Nile tilapia behavior which may confirm the neurotoxicity of each single active compound as well as of their mixture.  相似文献   

16.
Pharmaceutical compounds are now considered as emerging contaminants of environmental concern. The overall objective of this study was to evaluate the uptake and translocation of clofibric acid (CA) by the macrophyte Scirpus validus growing hydroponically. A set of the three replicates was established for each exposure time and for each CA concentration. Plants were grown in 4 L vessels (four plants per vessel corresponding to the three exposure period studies, i.e., 7, 14, 18, and 21 days) which contained an aerated modified Hoagland nutrient solution that was spiked with CA at concentrations of 0.5, 1.0, and 2.0 mg?L?1. At each exposure period, CA concentration was measured in the nutrient solutions. A sea sand disruption method was employed for the extraction of CA from plant tissues. The determination of the pharmaceutical concentration was carried out using solid phase extraction (SPE) followed by chromatographic analysis. The quantification of CA concentrations in both nutrient solutions (after SPE) and plant tissues (after extraction) was conducted by chromatographic analysis. CA concentrations of 5.4–26.8 μg?g?1 (fresh weight) were detected in the roots and 7.2–34.6 μg?g?1 (fresh weight) in the shoots after 21 days. Mass balance calculations showed that S. validus uptake alone accounted for a significant contribution (6–13 % for the roots and 22–49 % for the shoots) of the total loss of CA. The bioaccumulation factors (BAFs) based on fresh weight for the roots ranged from 6.6 to 23.2, while values for the shoots ranged from 9.5 to 32.1. All the BAFs for the shoots were greater than those in the roots, implying that CA has greater tendency to be translocated to the shoots, rather than the roots of S. validus. All the shoot-to-root concentration ratios were more than 1, denoting that the shoots of S. validus do preferentially accumulate CA. We demonstrated that CA can be actively taken up, subsequently translocated and accumulated by aboveground tissues of S. validus. Since S. validus could account for the removal of 28–62 % of the total mass loss of CA from the system, such phytoremediation technology has great potential for the removal of pharmaceuticals such as CA from inflowing waters.  相似文献   

17.
The ecotoxic effects of carbaryl (carbamate insecticide) were investigated with a battery of four aquatic bioassays. The nominal effective concentrations immobilizing 50% of Daphnia magna (EC50) after 24 and 48 h were 12.76 and 7.47 µg L?1, respectively. After 21 days of exposure of D. magna, LOECs (lowest observed effect concentrations) for cumulative molts and the number of neonates per surviving adult were observed at carbaryl concentration of 0.4 µg L?1. An increase of embryo deformities (curved or unextended shell spines) was observed at 1.8 and 3.7 µg L?1, revealing that carbaryl could act as an endocrine disruptor in D. magna. Other bioassays of the tested battery were less sensitive: the IC50-72h and IC10-72h of the algae Pseudokirchneriella subcapitata were 5.96 and 2.87 mg L?1, respectively. The LC50-6d of the ostracod Heterocypris incongruens was 4.84 mg L?1. A growth inhibition of H. incongruens was registered after carbaryl exposure and the IC20-6d was 1.29 mg L?1. Our results suggest that the daphnid test sensitivity was better than other used tests. Moreover, carbaryl has harmful and toxic effects on tested species because it acts at low concentrations on diverse life history traits of species and induce embryo deformities in crustaceans.  相似文献   

18.
Abstract

Fourteen cultivars of bai cai (Brassica campestris L. ssp. chinensis var. communis) were grown in the nutrient solutions containing 0–0.5 μg mL?1 of cadmium (Cd) to investigate genotypic differences in the effects of Cd exposure on the plant growth and uptake and distribution of Cd in bai cai plants. The Cd exposure significantly reduced the dry and fresh weights of roots and shoots, the dry weight ratio of shoot/root (S/R), total biomass, and chlorophyll content (SPAD value). Cd concentrations in bai cai ranged from 13.3 to 74.9 μg g?1 DW in shoots and from 163.1 to 574.7 μg g?1 DW in roots under Cd exposure, respectively. The considerable genotypic differences of Cd concentrations and accumulations in both shoots and roots were observed among 14 bai cai cultivars. Moreover, Cd mainly accumulated in the roots. Cd also caused the changes of uptake and distribution of nutrients in bai cai and under the influence of cadmium, the concentration of potassium (K) decreased in shoot and increased in root. However, the concentrations of magnesium (Mg), phosphorus (P), manganese (Mn), boron (B), and iron (Fe) increased in shoots and decreased in roots. In addition, Cd exposure resulted in an increase in calcium (Ca), sulphur (S), and zinc (Zn) concentrations in both shoots and roots but had no significant effects on the whole uptake of the examined mineral nutrients except for S.  相似文献   

19.
Abstract

The persistence of two insecticidally active compounds from the neem tree, azadirachtin A and B, was determined at two different temperatures (15 and 25°C) in the laboratory after application of the commercial neem insecticide, Margosan‐O, to a sandy loam soil. The influence of microbial activity on degradation was also examined by comparing autoclaved and non‐autoclaved soils also at 15 and 25°C. Temperature influenced degradation rates. The DT 50 (time required for 50% disappearance of the initial concentration) for azadirachtin A was 43.9 and 19.8 d for non‐autoclaved soil kept at 15 and 25°C, respectively. The DT 50 for azadirachtin B was 59.2 and 20.8 d for non‐autoclaved soil kept at 15 and 25°C, respectively. Microbial activity was also responsible for faster degradation because DT 50 ’s for autoclaved soil were much longer than for non‐autoclaved soils. DT 50 s for azadirachtin A in autoclaved soil were 91.2 (15°C) and 31.5 d (25°C). DT50’s for azadirachtin B in autoclaved soil were 115.5 (15°C) and 42.3 d (25°C). Two degradation products of azadirachtin were detected, but were not identified. Higher levels of the two degradation products were detected in non‐autoclaved soil.  相似文献   

20.
Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) is a serious pest of corn in several American countries. It is mainly controlled with synthetic insecticides. The objectives of this study were to evaluate the effects of the natural products, neem oil and pyroligneous extract, and the synthetic insecticide, lufenuron, at 2.50mL water (0.25 %) on the mortality of 2-, 4- and 6-day-old caterpillars of S. frugiperda, and their selectivities against fourth instar larvae of Eriopis connnexa Germar (Coleoptera: Coccinellidae). Four- and 6-day-old S. frugiperda caterpillars showed higher mortality after exposure to neem oil (83.33 ± 0.83 and 89.58 ± 0.90 %, respectively) and lufenuron (95.83 ± 0.96 and 85.41 ± 0.83 %), compared to pyroligneous extract (68.75 ± 0.69 and 31.25 ± 0.31 %). The deleterious effect of pyroligneous extract was higher in 2- (83.33 ± 0.83 % mortality) and 4-day-old (68.75 ± 0.69 %) S. frugiperda caterpillars than in 6-day-old caterpillars (31.25 ± 0.31 %). Larval mortality of the predator E. connexa was lower with neem oil and pyroligneous extract (25.00 ± 0.33 %) than with lufenuron (91.66 ± 1.22 %). Neem oil is thus recommended for control of S. frugiperda because of its high toxicity, combined with its relatively low toxicity to larvae of the natural enemy E. connexa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号