首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
随着中国社会经济水平的加速发展,近年来各类突发性场地污染事故频发,如何有效地在第一时间对污染物进行应急控制及场地修复显得尤为重要.以突发性场地污染为研究对象,探讨了土壤及地下水中污染物的应急控制及场地修复技术的研究状况,给出了各项应急控制技术在突发性场地污染事故中适用的目标污染物及土壤类型,以便在实际运用中根据场地的污染类型和土壤性质快速做出响应.最后还指出,应急控制技术作为一种暂时性处理手段,可在场地污染事故发生后对污染物扩散进行快速控制,但不可作为一种长期处置措施.  相似文献   

2.
污染土壤电动修复增强方法研究进展   总被引:6,自引:0,他引:6  
污染土壤电动修复是一项新兴绿色原位修复技术。其原理是在土壤上施加直流电场 ,利用电迁移和电渗去除污染物 ,土壤pH、Zeta电位以及土壤化学性质等因素影响电动修复效果。为了提高修复效率和扩大电动修复应用范围 ,现在已经发展了针对不同类型土壤和污染物的增强修复技术。本文归纳总结了 1995年以来土壤电动修复中常用增强处理效果的 8种方法 ,即酸碱中和法、阳离子选择膜法、电渗析法、络合剂法、表面活性剂法、氧化 还原法、EK 生物联用和LasagnaTM法 ,且对每种方法的典型实验装置、增强原理、方法特点和适用范围等进行了分析和讨论 ,为以后的实验设计提供了有益的参考  相似文献   

3.
重质非水相液体(DNAPLs)是土壤及地下水中广泛存在的有机污染物,原位热处理技术是目前修复受DNAPLs污染土壤及地下水的最具潜力的技术之一。综述了国内外常用原位热处理技术的基本原理及其影响因素,介绍了相关现场应用实例,并展望了该技术未来的应用前景和发展趋势,以期为中国污染土壤及地下水的原位修复提供有益借鉴。  相似文献   

4.
Laboratory column flushing experiments were conducted to remove phenanthrene from contaminated soils by Triton X-100 (TX100) with an aim to investigating the effect of surfactant sorption on the performance of surfactant-enhanced remediation process. The effluent concentration of phenanthrene from soil columns showed strong dependence on the sorption breakthrough curves of TX100. The removal of phenanthrene from contaminated soils was enhanced only when the sorption breakthrough of TX100 occurred and the influent concentration of TX100 was greater than the critical enhanced flushing concentration (CEFC). The sorption of surfactant onto soils and the subsequent partitioning of contaminants into soil-sorbed surfactant had a significant effect on the solute equilibrium distribution coefficient (KD) and thus the flushing efficiency for phenanthrene. A model was developed to predict KD and CEFC values for simulating the performance of surfactant-enhanced flushing for contaminated soils. These results are of practical interest in developing effective and safe surfactant-enhanced remediation technologies.  相似文献   

5.
随着工业和经济的发展,土壤重金属污染越来越严重,因此重金属污染土壤的修复迫在眉睫。植物修复技术因其经济、环保等优点已经成为国内外研究的热点,但存在修复植物稀少的问题。将其他技术与植物修复技术联用可能是突破植物修复这一局限性的关键举措之一。介绍了基因工程技术与植物修复技术联用的研究进展;总结了微生物技术与植物修复技术联用中植物根际促生细菌、菌根真菌的作用;概述了材料化学技术联合植物修复的应用现状,着重介绍了土壤改良剂和螯合剂的实际应用。最后对基因工程、微生物、材料化学等技术联合植物修复技术在研究和应用中的未来方向进行了前景展望,旨在为植物修复技术发展提供更多新的思路和参考。  相似文献   

6.
Bioremediation, the process by which hazardous substances are degraded by microorganisms, is at the forefront of a larger group of innovative remediation technologies being applied at hazardous waste sites worldwide. Although the process of bioremediation has been utilized for decades in the field of wastewater engineering, its application to soils and groundwater at hazardous waste sites is fairly new and still undergoing intensive development. This article is intended to provide both an overview of the state of practice of bioremediation in hazardous waste remediation operations, and an inventory of issues to consider when evaluating the use of this technology for a contaminated site. These topics will be the subject matter of a unique Bioremediation Satellite seminar to be broadcast on January 9, 1992. The seminar, a joint venture between the Air and Waste Management Association (A&WMA) and the Hazardous Waste Action Coalition (HWAC), is the first in a series of satellite seminars that will deal with innovative hazardous waste remediation technologies. The intent of these seminars is to design programs which will make hazardous waste practitioners more familiar with innovative remediation technologies so that they will consider using the technologies in future clean-up operations.  相似文献   

7.
Electrokinetic-enhanced phytoremediation of soils: Status and opportunities   总被引:2,自引:0,他引:2  
Phytoremediation is a sustainable process in which green plants are used for the removal or elimination of contaminants in soils. Both organic and inorganic contaminants can be removed or degraded by growing plants by several mechanisms, namely phytoaccumulation, phytostabilization, phytodegradation, rhizofiltration and rhizodegradation. Phytoremediation has several advantages: it can be applied in situ over large areas, the cost is low, and the soil does not undergo significant damages. However, the restoration of a contaminated site by phytoremediation requires a long treatment time since the remediation depends on the growth and the biological cycles of the plant. It is only applicable for shallow depths within the reach of the roots, and the remediation efficiency largely depends on the physico-chemical properties of the soil and the bioavailability of the contaminants. The combination of phytoremediation and electrokinetics has been proposed in an attempt to avoid, in part, the limitations of phytoremediation. Basically, the coupled phytoremediation–electrokinetic technology consists of the application of a low intensity electric field to the contaminated soil in the vicinity of growing plants. The electric field may enhance the removal of the contaminants by increasing the bioavailability of the contaminants. Variables that affect the coupled technology are: the use of AC or DC current, voltage level and mode of voltage application (continuous or periodic), soil pH evolution, and the addition of facilitating agents to enhance the mobility and bioavailability of the contaminants. Several technical and practical challenges still remain that must be overcome through future research for successful application of this coupled technology at actual field sites.  相似文献   

8.
利用电动技术强化有机污染土壤原位修复研究   总被引:3,自引:1,他引:3  
电动修复技术是近几年发展起来的一种新型土壤修复技术,由于其处理的高效性受到了越来越多的关注。本文介绍了利用电动技术强化土壤有机污染物原位修复的原理及其最新进展。电动强化有机物污染修复的基本原理是利用电动效应对有机物的迁移作用或者强化生物修复过程(注入营养物、电子受体和活性微生物等)达到去除污染物的目的。研究表明,该技术不破坏生态环境,安装操作简单成本低廉,具有广泛的应用前景,其中电动强化原位生物修复和能够适应于各种不同成分污染(如有机物重金属复合污染)的多技术联合是今后电动技术发展的重要方向。  相似文献   

9.
随着城市结构调整,工业企业易地搬迁后遗留下大量污染场地,严重威胁人居环境,亟待开展土壤修复.土壤淋洗技术具有工艺简单、处理范围广、修复效率高和治理费用相对低廉等优点,是目前修复重金属污染土壤最有效的技术之一,同时对于有机物污染土壤也具有显著修复效果.经过大量资料、文献调研,系统梳理土壤淋洗技术在国内的研究现状,结合实际...  相似文献   

10.
The possible application of two environmental remediation technologies - soil washing and photocatalysis - to remove and decompose various aromatic pollutants present in excavated soils of a contaminated industrial site has been investigated. Aqueous solutions containing the non-ionic surfactant Brij 35 were used to extract the contaminants from the soil samples. The photocatalytic treatment of the obtained washing wastes, performed in the presence of TiO(2) suspensions irradiated with simulated sunlight, showed a slow abatement of the toxic compounds due to the relevant concentrations of organics in the waste. A neat improvement of the process performances, obtained by operating in the presence of added potassium peroxydisulfate, suggests a feasible treatment route.  相似文献   

11.
Bioremediation, the process by which hazardous substances are degraded by microorganisms, is at the forefront of a larger group of innovative remediation technologies being applied at hazardous waste sites worldwide. Although the process of bioremediation has been utilized for decades in the field of wastewater engineering, its application to soils and groundwater at hazardous waste sites is fairly new and still undergoing intensive development.

This article is intended to provide both an overview of the state of practice of bioremediation in hazardous waste remediation operations, and an inventory of issues to consider when evaluating the use of this technology for a contaminated site.

These topics will be the subject matter of a unique Bioremediation Satellite seminar to be broadcast on January 9, 1992. The seminar, a joint venture between the Air and Waste Management Association (A&WMA) and the Hazardous Waste Action Coalition (HWAC), is the first in a series of satellite seminars that will deal with innovative hazardous waste remediation technologies. The intent of these seminars is to design programs which will make hazardous waste practitioners more familiar with innovative remediation technologies so that they will consider using the technologies in future clean-up operations.  相似文献   

12.
In the hazardous waste community, the term “thermal destruction” is a catchallphrase that broadly refers to high temperature destruction of hazardous contaminants. Included in the thermal destruction category are treatment technologies such as rotary kiln incineration, fiuidized bed incineration, infrared thermal treatment, wet air oxidation, pyrolytic incineration, and vitrification. Among them, conventional rotary kiln incineration, a disposal method for many years, is the most well established, and often serves as a barometer to gauge the relative success of similar technologies. Public sentiment on environmental issues and increasingly stringent environmental regulations has, over time, spurred design and development of innovative thermal treatment processes directed toward reducing harmful emissions and residuals that may require further treatment or disposal. In situ vitrification (ISV), a technology that combines heat and immobiliztion, is one such innovative and relatively new technology.

This paper presents a comparison of ISV and rotary kiln incineration for soils treatment in the areas of process performance, process residuals, process limitations, applicable or relevant and appropriate (ARAJRs) regulations, criteria and limitations, and costs.  相似文献   

13.
In the hazardous waste community, the term "thermal destruction" is a catchall phrase that broadly refers to high temperature destruction of hazardous contaminants. Included in the thermal destruction category are treatment technologies such as rotary kiln incineration, fluidized bed incineration, infrared thermal treatment, wet air oxidation, pyrolytic incineration, and vitrification. Among them, conventional rotary kiln incineration, a disposal method for many years, is the most well established, and often serves as a barometer to gauge the relative success of similar technologies. Public sentiment on environmental issues and increasingly stringent environmental regulations has, over time, spurred design and development of innovative thermal treatment processes directed toward reducing harmful emissions and residuals that may require further treatment or disposal. In situ vitrification (ISV), a technology that combines heat and immobilization, is one such innovative and relatively new technology. This paper presents a comparison of ISV and rotary kiln incineration for soils treatment in the areas of process performance, process residuals, process limitations, applicable or relevant and appropriate (ARARs) regulations, criteria and limitations, and costs.  相似文献   

14.

The demand for high-quality safe and clean water supply has revolutionized water treatment technologies and become a most focused subject of environmental science. Water contamination generally marks the presence of numerous toxic and harmful substances. These contaminants such as heavy metals, organic and inorganic pollutants, oil wastes, and chemical dyes are discharged from various industrial effluents and domestic wastes. Among several water treatment technologies, the utilization of silica nanostructures has received considerable attention due to their stability, sustainability, and cost-effective properties. As such, this review outlines the latest innovative approaches for synthesis and application of silica nanostructures in water treatment, apart from exploring the gaps that limit their large-scale industrial application. In addition, future challenges for improved water remediation and water quality technologies are keenly discussed.

  相似文献   

15.
Electrokinetic remediation has been increasingly used in soils and other matrices for numerous contaminants such as inorganic, organic, radionuclides, explosives and their mixtures. Several strategies were tested to improve this technology effectiveness, namely techniques to solubilize contaminants, control soil pH and also couple electrokinetics with other remediation technologies. This review focus in the experimental work carried out in organochlorines soil electroremediation, aiming to systemize useful information to researchers in this field. It is not possible to clearly state what technique is the best, since experimental approaches and targeted contaminants are different. Further research is needed in the application of some of the reviewed techniques. Also a number of technical and environmental issues will require evaluation for full-scale application. Removal efficiencies reported in real contaminated soils are much lower than the ones obtained with spiked kaolinite, showing the influence of other factors like aging of the contamination and adsorption to soil particles, resulting in important challenges when transferring technologies into the field.  相似文献   

16.
Cleanup of contaminated soils to comply with soil quality limits currently receives much interest.In-situ remediation of contaminated soils relies on the ability of the techniques employed to enhance the rate of release of contaminants from the soil-sorbed and nonaqueous phase liquid (NAPL) phases into the aqueous or gaseous phases from which they can be more readily removed and treated. Contaminant concentrations in these “environmentally mobile” forms usually decline over time so that the economic efficiency and the overall success of remediation technologies are subject to the “law of diminishing returns”. In this paper we consider the “state of the art” in our understanding of NAPL dissolution and transport, desorption of soilsorbed contaminants and fluid flow in porous media. The extent to which these processes may constrain the success of bioremediation, pump-and-treat remediation and soil venting in relation to established soil quality limits is addressed. Finally, we suggest directions for future research and comment on legislative considerations.  相似文献   

17.
This paper will focus on the demonstration of hazardous waste cleanup technologies in the field. The technologies will be at the pilot- or full-scale, and further referred to as field-scale. The main objectives of demonstration at the field-scale are development of reliable performance and cost data. Technology demonstrations provide performance, cost effectiveness, and reliability data so that potential technology users have sufficient information to make effective decisions as to the applicability of the technology to a specific situation. The demonstration and evaluation of a technology should be conducted with the purpose of characterizing performance, need for pre- and post-processing of the waste feed, identification of waste type and constituents applicable to the technology, system throughput, problems and limitations of the technology, and operating and maintenance costs. Table I provides a summary of remediation activities for demonstration projects.  相似文献   

18.

Oil contamination has become a primary environmental concern due to increased exploration, production, and use. When oil enters the soil, it may attach or adsorb to soil particles and stay in the soil for an extended period, contaminating the soil and surrounding areas. Nanoparticles have been widely used for the treatment of organic pollutants in the soil. Surfactant foam has effectively been employed to remediate various soil contaminants or recover oil compounds. In this research, a mixture of biosurfactant foam/nanoparticle was utilized for remediation of oil-contaminated soil. The results demonstrated that the biosurfactant/nanoparticle mixture and nitrogen gas formed high-quality and stable foams. The foam stability depended on the foam quality, biosurfactant concentration, and nanoparticle dosage. The pressure gradient change in the soil column relied on the flowrate (N2 gas + surfactant/nanoparticle mixture), foam quality, and biosurfactant concentration. The optimal conditions to obtain good quality and stable foams and high oil removal efficiency involved 1 vol% rhamnolipid, 1 wt% nanoparticle, and 1 mL/min flowrate. Biosurfactant foam/nanoparticle mixture was effectively used to remediate oil-contaminated soil, whereas the highest treatment efficiency was 67%, 59%, and 52% for rhamnolipid biosurfactant foam/nanoparticle, rhamnolipid biosurfactant/nanoparticle, and only rhamnolipid biosurfactant, respectively. The oil removal productivity decreased with the increase of flowrate due to the shorter contact time between the foam mixture and oil droplets. The breakthrough curves of oil pollutants in the soil column also suggested that the foam mixture’s maximum oil treatment efficiency was higher than biosurfactant/nanoparticle suspension and only biosurfactant.

  相似文献   

19.
Even in the absence of mobilization of dense nonaqueous phase liquid (DNAPL), the microemulsion that forms when the surfactant solubilizes a dense contaminant such as trichloroethylene will be more dense than water and tends to migrate downward. This paper addresses the issue of migration with a new concept: surfactant enhanced aquifer remediation at neutral buoyancy. Laboratory results of surfactant remediation in two-dimensional model aquifers show that downward migration of microemulsion containing solubilized dense contaminants can be reduced to an acceptable level, even in the absence of capillary barriers in the aquifer. One model experiment was designed to exhibit a small degree of vertical migration and full capture of the microemulsion at the extraction well. The second experiment was designed to demonstrate the effect of large buoyancy forces that lead to excessive downward migration of the microemulsion. Density measurements of aqueous solutions containing sodium dihexyl sulfosuccinate surfactant, isopropanol, trichloroethylene, and sodium chloride are presented. A companion paper presents the results of the flow and transport calculations needed for this approach to surfactant flooding.  相似文献   

20.
Biological remediation of explosives and related nitroaromatic compounds   总被引:2,自引:0,他引:2  
Nitroaromatics form an important group of recalcitrant xenobiotics. Only few aromatic compounds, bearing one nitro group as a substituent of the aromatic ring, are produced as secondary metabolites by microorganisms. The majority of nitroaromatic compounds in the biosphere are industrial chemicals such as explosives, dyes, polyurethane foams, herbicides, insecticides and solvents. These compounds are generally recalcitrant to biological treatment and remain in the biosphere, where they constitute a source of pollution due to both toxic and mutagenic effects on humans, fish, algae and microorganisms. However, relatively few microorganisms have been described as being able to use nitroaromatic compounds as nitrogen and/or carbon and energy source. The best-known nitroaromatic compound is the explosive TNT (2,4,6-trinitrotoluene). This article reviews the bioremediation strategies for TNT-contaminated soil and water. It comes to the following conclusion: The optimal remediation strategy for nitroaromatic compounds depends on many site-specific factors. Composting and the use of reactor systems lend themselves to treating soils contaminated with high levels of explosives (e.g. at former ammunition production facilities, where areas with a high contamination level are common). Compared to composting systems, bioreactors have the major advantage of a short treatment time, but the disadvantage of being more labour intensive and more expensive. Studies indicate that biological treatment systems, which are based on the activity of the fungus Phanerochaete chrysosporium or on Pseudomonas sp. ST53, might be used as effective methods for the remediation of highly contaminated soil and water. Phytoremediation, although not widely used now, has the potential to become an important strategy for the remediation of soil and water contaminated with explosives. It is best suited where contaminant levels are low (e.g. at military sites where pollution is rather diffuse) and where larger contaminated surfaces or volumes have to be treated. In addition, phytoremediation can be used as a polishing method after other remediation treatments, such as composting or bioslurry, have taken place. This in-situ treatment method has the advantage of lower treatment costs, but has the disadvantage of a considerable longer treatment time. In order to improve the cost-efficiency, phytoremediation of nitroaromatics (and other organic xenobiotics) could be combined with bio-energy production. This requires, however, detailed knowledge on the fate of the contaminants in the plants as well as the development of efficient treatment methods for the contaminated biomass that minimise the spreading of the contaminants into the environment during post harvest treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号