首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Montgomery RA  Reich PB  Palik BJ 《Ecology》2010,91(12):3641-3655
In ecological communities, the outcome of plant-plant interactions represents the net effect of positive and negative interactions occurring above and below ground. Untangling these complex relationships can provide a better understanding of mechanisms that underlie plant-plant interactions and enhance our ability to predict population, community, and ecosystem effects of biotic interactions. In forested ecosystems, tree seedlings interact with established vegetation, but the mechanisms and outcomes of these interactions are not well understood. To explore such mechanisms, we manipulated above- and belowground interactions among tree seedlings, shrubs, and trees and monitored seedling survival and growth of six species (Pinus banksiana, Betula papyrifera, P. resinosa, Quercus rubra, P. strobus, and Acer rubrum) in mature pine-dominated forest in northern Minnesota, USA. The forest had a moderately open canopy and sandy soils. Understory manipulations were implemented in the forest interior and in large gaps and included removal of shrubs (no interactions), tieback of shrubs (belowground), removal of shrubs with addition of shade (aboveground), and unmanipulated shrubs (both below- and aboveground). We found that shrubs either suppressed or facilitated seedling survival and growth depending on the seedling species, source of interaction (e.g., above- or belowground), and ecological context (e.g., gap or forest interior). In general, shrubs strongly influenced survival and growth in gaps, with more modest effects in the forest interior. In gaps, the presence of shrub roots markedly decreased seedling growth and survival, supporting the idea that belowground competition may be more important in dry, nutrient-poor sites. Shrub shade effects were neutral for three species and facilitative for the other three. Facilitation was more likely for shade-tolerant species. In the forest interior, shrub shade negatively affected seedling survival for the most shade-intolerant species. For several species the net effect of shrubs masked the existence of both positive and negative interactions above and below ground. Our results highlight the complexity of plant-plant interactions, demonstrate that outcomes of these interactions vary with the nature of resource limitation and the ecophysiology of the species involved, and suggest that ecological theory that rests on particular notions of plant-plant interactions (e.g., competition) should consider simultaneous positive and negative interactions occurring above and below ground.  相似文献   

2.
In the last three years, twelve orphan coal surface mines in Iowa, USA, have been reclaimed under the Federal Rural Abandoned Mine Program (RAMP) by smoothing highly acid spoils, covering the spoils with a thin dirt layer and planting a cover crop. Ten years ago a test plot was designed with a wedge of loess over acid spoils. Subsequent observation suggests that on the new RAMP sites, acidified throughflow and discharge of shallow soil moisture and groundwater will gradually kill the vegetation in the lower valleys and erosion will proceed upvalley as a migrating knickpoint. The problem might be eliminated by directing the acidified throughflow beneath the cover material, in sand underdrains or tile lines in the main drainages. The discharge could either be diluted in a nearby creek, if adequate flow is available, or neutralised in a basin paved with limestone rip-rap. Vegetation which was found to be especially well adapted to thin cover sites includes native prairie grasses, crownvetch and cattails. Sphagnum mosses may also offer some possibilities for such locations. A RAMP reclamation site should be designed as an experimental area to test these methods and determine their cost. These recommendations may also be applicable in other mining areas.  相似文献   

3.
Four vegetative associations occur on surface mines located in Mercer County, Pennsylvania. Seventeen different species of grasses and legumes and 30 different species of trees and shrubs were evaluated for their ability to become established and control erosion on surface mines. The amount of organic matter and soil moisture are the principle factors regulating the establishment of vegetative cover on surface mines. Those species possessing a fibrous root system are better able to adapt for erosion control than tap rooted species. Likewise, shrubs such as bristley locust (Robina hispida) and Silver Bush or Autumn Olive (Elaeagnus umbellata) that will produce shoots when a root becomes exposed due to erosion are better adapted for erosion control than other species. The methods and species utilized during reclamation will determine, at least in part, the future use of the land and should establish conditions for natural succession to occur.This study was supported by funds from the National Geographical Society and the Office of Water Resources, U.S. Department of Interior.  相似文献   

4.
Human-imprinted ruffed grouse (Bonasa umbellus) chicks were used to evaluate grouse brood food and cover conditions on reclaimed surface mines in northern West Virginia. Reclaimed surface-mined areas did not provide the quality of habitat for ruffed grouse chicks that unmined land provided. On the surface-mined areas, grasslegume reclamation provided the poorest cover and next to the lowest feeding rates. Of the surface-mined areas a 25-year-old reclaimed mine planted to autumn olive had canopy provided a more favorable micro-climate for insects and herbaceous vegetation was established around the edge. Planting rows of shrubs in addition to the current practice of planting grasses and legumes on surface-mined areas is suggested to create ruffed grouse brood habitat.  相似文献   

5.
We used airborne imaging spectroscopy and scanning light detection and ranging (LiDAR), along with bioacoustic recordings, to determine how a plant species invasion affects avian abundance and community composition across a range of Hawaiian submontane ecosystems. Total avian abundance and the ratio of native to exotic avifauna were highest in habitats with the highest canopy cover and height. Comparing biophysically equivalent sites, stands dominated by native Metrosideros polymorpha trees hosted larger native avian communities than did mixed stands of Metrosideros and the invasive tree Morella faya. A multi-trophic analysis strongly suggests that native avifauna provide biotic resistance against the invasion of Morella trees and exotic birds, thus slowing invasion "meltdowns" that disrupt the functioning of native Hawaiian ecosystems.  相似文献   

6.
Abstract:  Managed landscapes in which non-native ornamental plants are favored over native vegetation now dominate the United States, particularly east of the Mississippi River. We measured how landscaping with native plants affects the avian and lepidopteran communities on 6 pairs of suburban properties in southeastern Pennsylvania. One property in each pair was landscaped entirely with native plants and the other exhibited a more conventional suburban mixture of plants—a native canopy with non-native groundcover and shrubs. Vegetation sampling confirmed that total plant cover and plant diversity did not differ between treatments, but non-native plant cover was greater on the conventional sites and native plant cover was greater on the native sites. Several avian (abundance, species richness, biomass, and breeding-bird abundance) and larval lepidopteran (abundance and species richness) community parameters were measured from June 2006 to August 2006. Native properties supported significantly more caterpillars and caterpillar species and significantly greater bird abundance, diversity, species richness, biomass, and breeding pairs of native species. Of particular importance is that bird species of regional conservation concern were 8 times more abundant and significantly more diverse on native properties. In our study area, native landscaping positively influenced the avian and lepidopteran carrying capacity of suburbia and provided a mechanism for reducing biodiversity losses in human-dominated landscapes.  相似文献   

7.
Abstract: Although the destruction of tropical rain forests receives much attention, tropical dry forests are in general far more threatened and endangered. Eliminating grazing ungulates is often considered a key first step toward protecting these ecosystems, but few studies have investigated the long-term effects of this technique. We examined the effects of ungulate exclusion from a 2.3-ha native dry-forest preserve on the island of Hawaii by comparing its present flora to the flora of an adjacent area subjected to continuous grazing since the preserve was fenced over 40 years ago. Relative to this adjacent area, the fenced preserve contained a more diverse flora with substantially greater coverage of native overstory and understory species. Until recently, however, regeneration of native canopy trees within the preserve appears to have been thwarted by a dominant herbaceous cover of alien fountain grass (   Pennisetum setaceum ) and predation by alien rodent species. Our results indicate that although ungulate exclusion may be a necessary and critical first step, it is not sufficient to adequately preserve and maintain Hawaii's remaining tropical dry forest remnants. Our recent efforts to control the dominant alien species within the fenced preserve suggest that this practice may facilitate both the regeneration of native species and the colonization and potential invasion of new alien plants. Comparisons of seedlings of the dominant native canopy tree Diospyros sandwicensis growing in sites both dominated by and free of fountain grass suggested that fountain grass inhibits Diospyros seedling growth and photosynthesis but may increase survival if seedlings are protected from ungulates.  相似文献   

8.
We use permanent-plot data from the USDA Forest Service's Forest Inventory and Analysis (FIA) program for an analysis of the effects of competition on tree growth along environmental gradients for the 14 most abundant tree species in forests of northern New England, USA. Our analysis estimates actual growth for each individual tree of a given species as a function of average potential diameter growth modified by three sets of scalars that quantify the effects on growth of (1) initial target tree size (dbh), (2) local environmental conditions, and (3) crowding by neighboring trees. Potential growth of seven of the 14 species varied along at least one of the two environmental axes identified by an ordination of relative abundance of species in plots. The relative abundances of a number of species were significantly displaced from sites where they showed maximum potential growth. In all of these cases, abundance was displaced to the more resource-poor end of the environmental gradient (either low fertility or low moisture). The pattern was most pronounced among early successional species, whereas late-successional species reached their greatest abundance on sites where they also showed the highest growth in the absence of competition. The analysis also provides empirical estimates of the strength of intraspecific and interspecific competitive effects of neighbors. For all but one of the species, our results led us to reject the hypothesis that all species of competitors have equivalent effects on a target species. Most of the individual pairwise interactions were strongly asymmetric. There was a clear competitive hierarchy among the four most shade-tolerant species, and a separate competitive hierarchy among the shade-intolerant species. Our results suggest that timber yield following selective logging will vary dramatically depending on the configuration of the residual canopy, because of interspecific variation in the magnitude of both the competitive effects of different species of neighbors and the competitive responses of different species of target trees to neighbors. The matrix of competition coefficients suggests that there may be clear benefits in managing for specific mixtures of species within local neighborhoods within stands.  相似文献   

9.
Robust predictions of competitive interactions among canopy trees and variation in tree growth along environmental gradients represent key challenges for the management of mixed-species, uneven-aged forests. We analyzed the effects of competition on tree growth along environmental gradients for eight of the most common tree species in southern New England and southeastern New York using forest inventory and analysis (FIA) data, information theoretic decision criteria, and multi-model inference to evaluate models. The suite of models estimated growth of individual trees as a species-specific function of average potential diameter growth, tree diameter at breast height, local environmental conditions, and crowding by neighboring trees. We used ordination based on the relative basal area of species to generate a measure of site conditions in each plot. Two ordination axes were consistent with variation in species abundance along moisture and fertility gradients. Estimated potential growth varied along at least one of these axes for six of the eight species; peak relative abundance of less shade-tolerant species was in all cases displaced away from sites where they showed maximum potential growth. Our crowding functions estimate the strength of competitive effects of neighbors; only one species showed support for the hypothesis that all species of competitors have equivalent effects on growth. The relative weight of evidence (Akaike weights) for the best models varied from a low of 0.207 for Fraxinus americana to 0.747 for Quercus rubra. In such cases, model averaging provides a more robust platform for prediction than that based solely on the best model. We show that predictions based on the selected best models dramatically overestimated differences between species relative to predictions based on the averaged set of models.  相似文献   

10.
Abstract:  Because dragonflies are very sensitive to alien trees , we assessed their response to large-scale restoration of riparian corridors. We compared three types of disturbance regime—alien invaded , cleared of alien vegetation , and natural vegetation (control)—and recorded data on 22 environmental variables. The most significant variables in determining dragonfly assemblages were percentage of bank cover and tree canopy cover , which indicates the importance of vegetation architecture for these dragonflies. This finding suggests that it is important to restore appropriate marginal vegetation and sunlight conditions. Recovery of dragonfly assemblages after the clearing of alien trees was substantial. Species richness and abundance at restored sites matched those at control sites. Dragonfly assemblage patterns reflected vegetation succession. Thus , initially eurytopic , widespread species were the main beneficiaries of the removal of alien trees , and stenotopic , endemic species appeared after indigenous vegetation recovered over time. Important indicator species were the two national endemics ( Allocnemis leucosticta and Pseudagrion furcigerum ) , which , along with vegetation type , can be used to monitor return of overall integrity of riparian ecology and to make management decisions. Endemic species as a whole responded positively to restoration , which suggests that indigenous vegetation recovery has major benefits for irreplaceable and widespread generalist species .  相似文献   

11.
Habitat selection requires choice, which differentiates it from habitat use, and choice, in turn, is dependent upon the responses of organisms to the environmental, social, and other cues that they perceive. Habitat selection by the gopher tortoise (Gopherus polyphemus) was investigated by translocating tortoises and monitoring their movements within two sites in central Florida. The first site supported a stable preponderance of high-quality habitat, and tortoises avoided areas with a dense tree canopy cover caused by fire exclusion. The second site was badly invaded by an introduced weed, and tortoises avoided areas where the weed had formed a dense monoculture. At both sites, individuals appeared to be responding to visual cues to avoid areas that were relatively dark. In landscapes with relatively large amounts of high-quality habitat, this avoidance behavior serves the gopher tortoise well by keeping individuals within the dominant habitat type. In degraded areas, high-quality habitat often becomes increasingly uncommon, and the avoidance behavior exhibited by the tortoises will result in individuals becoming confined to small patches, causing a significant reduction in fitness and hence questioning their long-term survival in such areas. The results from our study show that in order to maintain viable tortoise populations in areas increasingly subjected to human fragmentation and degradation, it is crucial not only to suppress tree canopy cover continually and prevent invasion by exotic weeds, but also to be mindful that the avoidance behavior of the gopher tortoise could prevent individuals from fully occupying a high-quality habitat in response to restoration and management efforts.  相似文献   

12.
Situations in which animals preferentially settle in low-quality habitat are referred to as ecological traps, and species that aggregate in response to conspecific cues, such as scent marks, that persist after the animals leave the area may be especially vulnerable. We tested this hypothesis on harvestmen (Prionostemma sp.) that roost communally in the rainforest understory. Based on evidence that these animals preferentially settle in sites marked with conspecific scent, we predicted that established aggregation sites would continue to attract new recruits even if the animals roosting there perished. To test this prediction, we simulated intense predation by repeatedly removing all individuals from 10 established roosts, and indeed, these sites continued to attract new harvestmen. A more likely reason for an established roost to become unsuitable is a loss of overstory canopy cover caused by treefalls. To investigate this scenario, without felling trees, we established 16 new communal roosts by translocating harvestmen into previously unused sites. Half the release sites were located in intact forest, and half were located in treefall gaps, but canopy cover had no significant effect on the recruitment rate. These results support the inference that communal roost sites are potential ecological traps for species that aggregate in response to conspecific scent.  相似文献   

13.
14.
长期以来通过整地造林去恢复重建植被已在横断山区干旱河谷广为采用,然而这样的实践是否能有效提高植被覆盖率并改善土壤水源涵养能力仍不清楚.选择岷江干旱河谷3个典型地段,调查了多年(7~16 a)后整地造林地上植被覆盖、土壤物理性质以及目的造林树种岷江柏(Cupressus chengiana S.Y. Hu)的保存、生长与结实状况,以评价干旱河谷乡土树种造林成效及造林后的生态效果.结果表明:(1)岷江柏在栽植多年后仍有大量死亡,保存率明显下降,造林16 a后仅为38%;(2)不同年代栽植的岷江柏在造林后2~6 a即开始旱现直径年生长量下降趋势;(3)造林带内乡土植被总盖度、灌木盖度、草本盖度、地衣苔藓盖度均低于保留带,因此等高线水平沟整地造林措施未能有效促进乡土植被发育;(4)造林带土壤水分物理性质也不如保留带,整地造林也没有有效改善土壤水源涵养能力.综合分析发现,整地造林多年后岷汀柏造林不仅没有达到岷江干旱河谷预期的生态恢复重建效果,甚至有加剧生态退化的趋势.因此认为:(1)规模化整地造林并不是有效的干旱河谷生态恢复和保护措施;(2)尽管岷江柏是乡土树种,但并不是干旱河谷植被恢复的适宜种.图3表3参29  相似文献   

15.
The spread of non-native invasive species is affected by human activity, vegetation cover, weather, and interaction with native species. We analyzed data from a 17-year study of the distribution of the non-native Argentine ant (Linepithema humile) and the native winter ant (Prenolepis imparis) in a preserve in northern California (U.S.A.). We conducted logistic regressions and used model selection to determine whether the following variables were associated with changes in the distribution of each species: presence of conspecifics at neighboring sites, distance to development (e.g., roads, buildings, and landscaped areas), proportion of vegetation cover taller than 0.75 m, elevation, distance to water, presence of both species at a site, temperature, and rainfall. Argentine ants colonized unoccupied sites from neighboring sites, but the probability of appearance and persistence decreased as distance to development, vegetation cover, and elevation increased. Winter ants appeared and persisted in sites with relatively high vegetation cover (i.e., highly shaded sites). Presence of the 2 species was negatively associated in sites with high vegetation cover (more winter ants) and sites near development (more Argentine ants). Probability of colonization of Argentine ants decreased where winter ants were most persistent. At sites near development within the preserve, abundant Argentine ant populations may be excluding winter ants. The high abundance of Argentine ants at these sites may be due to immigration from suburban areas outside the preserve, which are high-quality habitat for Argentine ants. In the interior of the preserve, distance from development, low-quality habitat, and interaction with winter ants may in combination exclude Argentine ants. Interactions among the variables we examined were associated with low probabilities of Argentine ant colonization in the preserve.  相似文献   

16.
Life history trade-offs in tropical trees and lianas   总被引:1,自引:0,他引:1  
It has been hypothesized that tropical trees partition forest light environments through a life history trade-off between juvenile growth and survival; however, the generality of this trade-off across life stages and functional groups has been questioned. We quantified trade-offs between growth and survival for trees and lianas on Barro Colorado Island (BCI), Panama using first-year seedlings of 22 liana and 31 tree species and saplings (10 mm < dbh < 39 mm) of 30 tree species. Lianas showed trade-offs similar to those of trees, with both groups exhibiting broadly overlapping ranges in survival and relative growth rates as seedlings. Life history strategies at the seedling stage were highly correlated with those at the sapling stage among tree species, with all species showing an increase in survival with size. Only one of 30 tree species demonstrated a statistically significant ontogenetic shift, having a relatively lower survival rate at the sapling stage than expected. Our results indicate that similar life history trade-offs apply across two functional groups (lianas and trees), and that life history strategies are largely conserved across seedling and sapling life-stages for most tropical tree species.  相似文献   

17.
In large samples of trees > or = 1 cm dbh (more than 1 million trees and 3000 species), in six lowland tropical forests on three continents, we assigned species with >30 individuals to one of six classes of stature at maturity (SAM). We then compared the proportional representation of understory trees (1-2 cm dbh) among these classes. The understory of the three Asian sites was predominantly composed of the saplings of large-canopy trees whereas the African and American sites were more richly stocked with trees of the smaller SAM classes. Differences in class representation were related to taxonomic families that were present exclusively in one continent or another. Families found in the Asian plots but not in the American plot (e.g., Dipterocarpaceae, Fagaceae) were predominantly species of the largest SAM classes, whereas families exclusive to the American plots (e.g., Melastomataceae sensu stricto, Piperaceae, and Malvaceae [Bombacacoidea]) were predominantly species of small classes. The African plot was similar to Asia in the absence of those American families rich in understory species, while similar to America in lacking the Asian families rich in canopy species. The numerous understory species of Africa were chiefly derived from families shared with Asia and/or America. The ratio of saplings (1-2 cm dbh) to conspecific canopy trees (>40 cm dbh) was lower in American plots than in the Asian plots. Possible explanations for these differences include phenology, moisture and soil fertility regimes, phyletic constraints, and the role of early successional plants in forest development. These results demonstrate that tropical forests that appear similar in tree number, basal area, and the family taxonomy of canopy trees nonetheless differ in ecological structure in ways that may impact the ecology of pollinators, dispersers, and herbivores and might reflect fundamental differences in canopy tree regeneration.  相似文献   

18.
Species interactions affect plant diversity through the net effects of competition and facilitation, with the latter more prevalent in physically stressful environments when plant cover ameliorates abiotic stress. One explanation for species loss in invader-dominated systems is a shift in the competition-facilitation balance, with competition intensifying in areas formerly structured by facilitation. We test this possibility with a 10-site prairie meta-experiment along a 500-km latitudinal stress gradient, quantifying the relationships among abiotic stress, exotic dominance, and native plant recruitment over five years. The latitudinal gradient is inversely correlated with abiotic stress, with lower latitudes more moisture- and nutrient-limited. We observed strong negative effects by invasive dominant grasses on plant establishment, but only in northern sites with lower-stress environments. At these locations, disturbance was critical for recruitment by reducing the suppressive dominant (invasive) canopy. In more stressful environments to the south, the impacts of the dominant invaders on plant establishment became facilitative, and diversity was more limited by seed availability. Disturbance prevented recruitment because seedling survival depended on a protective plant canopy, presumably because the canopy reduced temperature or moisture stress. Seed limitation was similarly prevalent in all sites. Our work confirms the importance of facilitation as an organizing process for plants in higher-stress environments, even with transformations of species composition and dominance. It also demonstrates that the mechanisms regulating diversity, including invader impacts, can vary within the same plant community depending on environmental context. Because limits on native plant recruitment are environmentally contingent, management strategies that seek to increase diversity, including invader eradication, must account for site-level variations in the balance between biotic and abiotic constraints.  相似文献   

19.
Interference competition for limited habitat or refuges is known to produce density-dependent mortality and generate patterns of micro-habitat distribution. While in mobile species the outcome of interference at a local scale can usually be determined from differences in body size and behavior, the population-level consequences of such interactions vary depending on rates of settlement and recruitment at a site, which are not directly correlated to local reproductive success. Previous experimental studies in central Chile demonstrated that interference competition for refuges is the primary factor driving microhabitat segregation between the predatory crabs Acanthocyclus gayi and Acanthocyclus hassleri, with the latter species monopolizing galleries inside mussel beds and excluding A. gayi to rock crevices. Between April 2001 and March 2006 we quantified monthly recruitment rates in artificial collectors at 17 sites over 900 km of the central coast of Chile. Results show that recruitment rates of A. hassleri are almost two orders of magnitude lower than those of A. gayi, and that they are tightly and positively correlated among sites across the region, suggesting that at scales of kilometers larval stages of these species are affected by similar oceanographic processes. Total crab densities per site were also positively correlated between species and strongly associated to mussel cover, with overall low crab densities at all sites where mussel cover was lower than about 60%. At all sites with mussel cover >60%, the ratio of A. gayi to A. hassleri density progressively decreased from recruits (2.6) to juveniles (0.5) to adults (0.04), overcoming initial differences in recruitment rates. The relative success of the inferior competitor at sites with low mussel cover does not appear to provide a potential mechanism favoring regional coexistence through dispersal to other sites (“mass effects”), because their densities were lower than at sites of high mussel cover. Yet, at many sites of low mussel cover the dominant competitor is virtually absent, allowing A. gayi to attain larger population sizes at the scale of the region. Thus, the factors limiting the dominant competitor from successfully utilizing other microhabitats seem to be the most critical factor in promoting both local and regional coexistence between these species.  相似文献   

20.
Abstract: Little is known about the effects of anthropogenic land‐use change on the amphibians and reptiles of the biodiverse tropical forests of Southeast Asia. We studied a land‐use modification gradient stretching from primary forest, secondary forest, natural‐shade cacao agroforest, planted‐shade cacao agroforest to open areas in central Sulawesi, Indonesia. We determined species richness, abundance, turnover, and community composition in all habitat types and related these to environmental correlates, such as canopy heterogeneity and thickness of leaf litter. Amphibian species richness decreased systematically along the land‐use modification gradient, but reptile richness and abundance peaked in natural‐shade cacao agroforests. Species richness and abundance patterns across the disturbance gradient were best explained by canopy cover and leaf‐litter thickness in amphibians and by canopy heterogeneity and cover in reptiles. Amphibians were more severely affected by forest disturbance in Sulawesi than reptiles. Heterogeneous canopy cover and thick leaf litter should be maintained in cacao plantations to facilitate the conservation value for both groups. For long‐term and sustainable use of plantations, pruned shade trees should be permanently kept to allow rejuvenation of cacao and, thus, to prevent repeated forest encroachment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号