共查询到16条相似文献,搜索用时 62 毫秒
1.
利用轨迹模式研究上海大气污染的输送来源 总被引:15,自引:0,他引:15
利用HYSPLIT4模式和全球资料同化系统(GDAS)气象数据,计算了2010年12月─2011年11月期间抵达上海的气流后向轨迹. 结合聚类方法和上海ρ(SO2)、ρ(NO2)、ρ(PM10)数据,分析了各季节不同类型气流轨迹对污染物浓度的影响,利用引入权重因子后的潜在源贡献算法分析了不同季节PM10和NO2潜在WPSCF(源区分布概率)特征. 结果表明:上海气流输送季节变化特征明显. 冬、春和秋季,上海较易受到来自西北、西南等区域的大陆性气流影响,受沙尘或人为污染排放的影响相对较大,ρ(PM10)、ρ(SO2)和ρ(NO2)平均值相对较高,分别为162、74和53μg/m3. 夏季上海主要受较清洁的海洋性气流影响,ρ(PM10)、ρ(SO2)和ρ(NO2)相对较低,分别为47、19和36μg/m3. 上海PM10和NO2的WPSCF分布特征类似,在冬、春和秋季,WPSCF高值(0.2~0.4)主要集中在江苏南部,河南、安徽等地的带状区域也有一定贡献,说明这些区域是上海这2种污染物的潜在源区. 夏季WPSCF的分布较为集中,上海以外区域值基本小于0.1,说明外来污染输送的贡献较小. 相似文献
2.
利用Meteoinfo软件中的Trajstat插件对2019-03—2020-02期间抵达嘉峪关市的气团进行后向轨迹模拟,并结合各类大气污染物数据,对嘉峪关市四季的后向轨迹进行聚类分析,研究抵达嘉峪关市的主要气团输送路径及对应路径的污染物浓度特征。通过潜在源贡献因子法(PSCF)及权重浓度轨迹分析法(CWT)来分析PM10与O3的输送来源及主要潜在源区。结果表明:输送至嘉峪关市的气团中,西北方向气团轨迹数目和污染轨迹数目占比均大于其余方向,嘉峪关市四季的大气污染更易受到西北方向气团的影响。嘉峪关市春季PM10污染相对严重,更易受到新疆东部地区潜在源区的影响,其余三季PM10污染相对较轻,潜在源区主要集中在新疆东部地区,少数位于嘉峪关市东北方向。嘉峪关市春、夏季的O3污染相对严重,强潜在源区主要集中在新疆东部地区及甘肃河西走廊地区,秋、冬季O3污染相对较轻,其中秋季潜在源区主要位于甘肃河西走廊地区,冬季潜在源区主要位于新疆东部地区。 相似文献
3.
文章利用HYSPLIT后向轨迹模式,分析沈阳地区2020年4月-2021年3月的大气颗粒物来源的传输路径及潜在的污染源区。首先,结合PM2.5和PM10的质量浓度监测值,分析了日、月和季节时间变化特征,结果表明,研究时段内颗粒物浓度变化趋势呈“U”型分布,存在明显的季节特征,冬季>春季>秋季>夏季,这与污染物排放和气象状况密切相关。其次,对大气颗粒物进行逐日72 h后向轨迹溯源分析,运用轨迹聚类分析、潜在源区贡献分析和浓度权重轨迹分析3种分析方法。后向轨迹聚类分析表明,沈阳市气流来源轨迹四季变化明显,春夏两季轨迹呈散射状分布、秋冬两季轨迹来源路径主要为长距离西北路径和短距离西南路径,西北路径途径俄罗斯南部、蒙古国和内蒙古东北部,西南路径途径河北东北部、北京、天津、山东东部;各季节来自西南和西北方向的轨迹数量更多且输送的PM2.5、PM10浓度值更高。潜在源区及浓度贡献权重轨迹分析表明,冬季潜在源区分布范围及贡献程度远大于春夏秋三季,强贡献潜在源区主要集中在辽宁本地及环渤海湾一带。 相似文献
4.
5.
利用TrajStat软件和全球资料同化系统数据,计算了2005~2016年北京市逐日72h气流后向轨迹,采用聚类分析方法,结合北京同期PM2.5逐日质量浓度数据,分析北京市年及四季后向气流轨迹特征及其对北京市颗粒物浓度的影响,运用潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT),探讨研究时期内不同季节影响北京市颗粒物质量浓度的潜在源区以及不同源区对北京颗粒物质量浓度的贡献.结果表明,就全年而言,西北输送气流占总轨迹的比例最高,达59.97%,且其输送距离最远、输送高度最高、移速最快.输送高度最低、距离最短、移速最慢的东南气流占比次之,为27.64%,东北气流占比最低为12.40%,其移速和输送距离介于前两者之间.主要污染轨迹来自山东、河北,其次为来自俄罗斯、蒙古国和内蒙古荒漠戈壁地区的西北气流.PSCF和CWT分析发现,蒙中、晋中、冀西南、豫北及鲁西是影响北京PM2.5的主要潜在区域.而不同季节、不同输送路径对北京PM2.5污染影响的差异显著,春季主要受来自蒙晋交界区域的短距离输送气流影响,潜在源区位于冀南、鲁西、豫东和皖西北地区,夏季污染轨迹来自鲁、晋地区,潜在源区为豫东北、皖北和苏北地区;秋季主要受来自冀南地区的短距离气流影响,潜在源区为晋北、冀南、豫北和鲁西地区,冬季主要受来自蒙古国中西部和蒙中地区的远距离输送气流影响,潜在源区主要在冀南、鲁西、豫北、晋和蒙西地区. 相似文献
6.
银川地区大气颗粒物输送路径及潜在源区分析 总被引:4,自引:0,他引:4
利用Traj Stat软件和全球资料同化系统数据,计算了2014—2016年银川市逐日72 h气流后向轨迹,并采用聚类分析方法,结合银川市同期PM~(10)和PM~(2.5)质量浓度数据,分析了银川年及四季气流轨迹特征及其对银川颗粒物浓度的影响.同时,运用潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT),探讨了影响银川颗粒物质量浓度的潜在源区及不同源区对银川颗粒物质量浓度的贡献.结果表明,输送距离最长、高度最高、移速最快的西北气流轨迹占总轨迹的比例最高,达66.7%,且气团移动速度和高度与轨迹距离呈正比;输送高度较低、距离最短、移速最慢的北方气流轨迹占总轨迹数的24.3%;东南气团占总轨迹数的9%,输送距离和移速介于前两者之间,但输送高度较西北气流和北方气流低.四季各类气流轨迹变化特征与年变化特征基本一致,春、秋、冬三季,中、短距离西北气流占气流轨迹总数的比例最高,夏季东南气流占比最高,且夏季南方气流和北方气流占比较春、秋两季高,冬季未出现南方气流和北方气流,春季和冬季气流轨迹输送距离普遍比夏季和秋季长;春、夏、秋三季,偏南气流的输送高度均最低,四季长距离西北气流的输送高度均最高.年及四季都表现为西北气流轨迹对应的银川PM_(10)和PM_(2.5)平均浓度均较高,是影响银川颗粒物质量浓度的最重要输送路径,其次是东南气流轨迹,北方气流轨迹对银川颗粒物浓度影响较小.PSCF和CWT分析发现,位于新疆、甘肃、蒙古国、内蒙古、青海的西北源区及四川、陕西的东南源区是影响银川PM_(10)和PM_(2.5)浓度的两个主要潜在源区,各季节区域范围有所差异. 相似文献
7.
利用HYSPLIT模式计算了2016—2018年西宁市逐日72 h气团后向轨迹,采用聚类分析方法,结合同期颗粒物PM10和PM2.5质量浓度数据,分析逐年和3年平均西宁市颗粒物输送特征及差异,运用潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT)对影响西宁市PM10和PM2.5质量浓度的污染潜在源区及不同潜在源区贡献进行了分析.结果表明,2016—2018年,西宁市颗粒物最主要输送路径源自青海北部的聚类2、甘肃中部的聚类6和甘肃东部的聚类8,占同期总轨迹比例分别为28.1%、27.4%和27.5%;3年平均则源自青海北经青海东折回西宁的聚类2,占比45.3%.最主要输送路径对应颗粒物质量浓度最低,输送距离较短、垂直高度较低、气团移速较慢;影响气团由西北向偏东转变,3年平均则以西北气团为主.2018年源自甘肃经青海东至西宁的短距离输送处于突出地位,所含轨迹占总轨迹的比例高达49.6%.PM10和PM2.5主要输送路径和污染路径由较长距离向较短距离过渡,较长距离输送路径出现比例逐年较小.PM2.5/PM10小于0.3时,主要输送路径与PM10污染轨迹有很好的对应关系;PM2.5/PM10大于0.6时,主要输送路径与PM2.5污染轨迹有较好的对应关系.PSCF和CWT分析发现,影响西宁市颗粒物质量浓度的主要污染潜在源区分布在新疆南部和青海北部,对PM10质量浓度贡献大于100 μg·m-3,对PM2.5质量浓度贡献大于45 μg·m-3.潜在源区分布年变化差异明显,2016年最广,2018年最小.印度北部主要贡献源区虽分布范围逐年减小,但在2017年局部贡献增大,对PM10贡献超250 μg·m-3,对PM2.5贡献超60 μg·m-3.主要贡献区周边区域及西宁至兰州一带为中等贡献源区,对PM10贡献为50~100 μg·m-3,对PM2.5贡献为15~45 μg·m-3. 相似文献
8.
石家庄大气污染物输送通道及污染源区研究 总被引:3,自引:1,他引:3
为探索石家庄的区域输送规律,确定主要污染源区,利用HYSPLIT(Hybrid Single Particle Lagrangian Integrater Trajectory)后向轨迹模式和NCEP的GDAS全球气象要素数据,对2013—2016年从不同高度上抵达石家庄地区的逐日72 h气流后向轨迹进行聚类分析,并结合石家庄逐小时颗粒物污染物浓度数据,分析石家庄PM2.5的潜在源贡献因子(WPSCF)和浓度权重轨迹(WCWT).结果表明,(1)石家庄PM2.5浓度具有明显单峰谷日变化,秋冬季与春夏季峰谷值出现时间不同;(2)近地层大气污染输送路径以近距离,移速慢的轨迹为主,轨迹较短的路径所占比例在40%以上.除夏季外,近距离输送路径均存在螺旋转向,在后向48~36 h内轨迹端点到达河北省内,转为东向和南向输送.(3)大气污染输送通道的垂直分布特征表明,输送轨迹中低于500 m高度的轨迹点占28.7%,高于1000 m低于3000 m高度的轨迹点占36.1%,高于3000 m高度的轨迹点占25.3%.低层多以近距离输送为主,高度越高,近距离输送轨迹的频率越低.500 m高度输送通道仍以近距离输送为主,并存在螺旋转向,1500 m高度以上多远距离输送.(4)石家庄PM2.5的主要污染源区范围较小.途径河北中南部、河南北部、山东西部和山西中北部地区的轨迹对石家庄PM2.5的污染贡献最大. 相似文献
9.
川南自贡市大气颗粒物污染比较严重, 2015~2018年PM_(10)和PM_(2.5)平均浓度分别为(95.42±9.53)μg·m~(-3)和(65.95±6.98)μg·m~(-3),并有明显的下降趋势,冬季PM_(10)和PM_(2.5)浓度远高于其它季节, 1月平均浓度最高,分别为(138.08±52.29)μg·m~(-3)和(108.50±18.05)μg·m~(-3),夏季平均浓度最低.PM_(2.5)与PM_(10)的平均比值为69.12%,冬季比值约为夏季的1.17倍,空气污染以PM_(2.5)为主.采用拉格朗日混合单粒子轨迹模型(HYSPLIT)和全球资料同化系统的GDAS气象数据,对自贡市细颗粒物(PM_(2.5))浓度和逐日72 h后向轨迹进行计算和聚类研究,利用潜在源贡献分析法(PSCF)和浓度权重轨迹分析法(CWT),探讨不同季节影响自贡市PM_(2.5)浓度的潜在源区以及不同源区的污染贡献.结果表明,自贡市近地面四季多受东南风、偏西风和西北风控制,高浓度PM_(2.5)多出现在0~2 m·s~(-1)的低风速区;不同季节、不同输送路径对自贡PM_(2.5)污染影响的差异显著,春季主要受到来自偏西和偏北方向短距离输送气流的影响,夏季污染轨迹主要来自短距离输送的东南气流,秋季主要受来自资阳,经遂宁、重庆和内江的短距离输送气流的影响,冬季除受到资阳、遂宁和内江等周边城市的影响外,还受到来自西藏中部的远距离输送气流影响;除夏季外,自贡市潜在源区主要位于重庆西部与川南交界区域,冬季的主要贡献区范围最广、贡献程度最大,夏季潜在源区范围最小且贡献程度最弱. 相似文献
10.
11.
为了解常州市冬季大气污染特征,对2013—2015年常州市冬季PM2.5、PM10、SO2、NO2、CO数据进行分析,并结合HYSPLIT 4.9模式研究不同气团来源对常州市各污染物浓度的影响及潜在污染源区分布特征.结果表明,常州市冬季以PM2.5污染为主,其占冬季首要污染物的90%以上,冬季PM2.5小时浓度对应的空气质量级别以良和轻度污染出现频次最多,冬季的ρ(PM2.5)对ρ(PM2.5)年均值的贡献率高达37.4%,不完全燃烧是颗粒物的一个重要来源.冬季ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(NO2)和ρ(CO)的日变化均呈双峰分布,两个峰值分别出现在交通的早高峰和晚高峰附近.ρ(NO2)在晚高峰明显大于早高峰,而ρ(SO2)和ρ(CO)表现为早高峰大于晚高峰.常州市CO/NOx和SO2/NOx的分析结果表明,常州市交通源的贡献明显,点源对常州市的空气质量的影响也较大.1和6 h的ρ(PM2.5)梯度变化可判识细颗粒物的爆发性增长.冬季常州市受到西北、西和西南等地区的大陆性气流影响较大,其对应的ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(NO2)和ρ(CO)平均值相对较高,且对应的污染轨迹出现概率较大.偏东方向的气流由于移动速度慢,不利于污染物扩散易造成污染累积,导致ρ(PM2.5)、ρ(SO2)和ρ(NO2)相对较高.WPSCF(源区分布概率)高值区(>0.5)集中于从芜湖至上海的长江中下游区域和杭州湾区域.PM2.5、PM10、SO2、NO2和CO潜在源区存在较大差异性,NO2、SO2和CO本地化的潜在贡献较PM2.5和PM10更明显.此外,受船舶等影响海洋源区对NO2、SO2和CO的潜在贡献较大.研究显示,长三角区域的大气污染物以本地污染为主,但远距离污染输送贡献也不容忽视. 相似文献
12.
兰州市近年空气质量有所好转,频繁出现"兰州蓝"现象.本文利用兰州市2013—2018年空气污染物实时监测数据,分析了兰州市空气污染特征、潜在来源和成因.结果表明,2013—2018年兰州市SO2、PM2.5和PM10浓度呈下降趋势,NO2、CO和O3浓度呈上升趋势,PM2.5和PM10是兰州市的主要污染物,其值远远高于标准限值.大气污染物与气象参数的关系表明,较低的一次污染物与较高的风速相关,二次污染物O3其较低的浓度值与较低的温度有关.从后向轨迹模型分析来看,新疆塔克拉玛干及周围的戈壁沙漠、内蒙古高原和西部青海地区是春季、秋季和冬季污染物的主要来源区,兰州东南部周边地区是夏季的主要源区和秋季的次要源区.初步分析了当地污染物排放和气象条件的影响,由于严格的排放控制,空气质量的改善可能与污染物排放量的减少有关,而气象条件的贡献并不明显,具体还需要进一步研究. 相似文献
13.
利用HYSPLIT-4后向轨迹模式和NCEP(美国国家环境预报中心)的2012年GDAS(全球资料同化系统)气象数据,结合NO2、PM2.5、PM10和SO2等常规大气污染物的质量浓度数据,对舟山本岛2012年4月、7月、10月和12月的大气污染输送过程进行了模拟,并通过聚类分析和潜在源区分析〔包括PSCF(潜在源贡献)和CWT(浓度权重轨迹)计算〕,确定大气污染传输路径及影响源区. 结果表明:舟山本岛气流后向轨迹呈明显的季节变化特征,4月主要受来自黄海海面气流轨迹的影响,其占总轨迹数的36.7%,ρ(PM10)为(53.24±24.33)μg/m3;7月以途经琉球群岛和东海气流轨迹为主,占总轨迹数的48.4%,对ρ(NO2)、ρ(PM2.5)、ρ(PM10)和ρ(SO2)贡献分别为(24.63±6.33)、(28.60±4.83)、(52.89±18.76)和(8.67±3.11)μg/m3;10月气流轨迹主要来自于东海海面,占总轨迹数的49.2%;12月气流则主要来自辽宁南部和黄海,占总轨迹数的66.1%,对ρ(NO2)、ρ(PM2.5)、ρ(PM10)和ρ(SO2)贡献分别为(28.48±15.14)、(58.71±14.10)、(69.83±38.94)和(20.83±13.28)μg/m3. 舟山本岛PM2.5的潜在源主要为毗邻城市间局地污染,集中于浙江沿海城市及杭州湾、上海等地. 相似文献
14.
通过分析重庆市主城区2015~2019年O3浓度和气象要素观测数据,发现主城区O3超标日数、超标日O3中位值和90百分位浓度值均呈现逐年升高趋势,O3与温度成正相关、与相对湿度成负相关,高O3浓度对应每日最高温度区间为35℃以上以及相对湿度区间70%以下.采用T-mode主成分分析法(PCT)对2015~2019年的4~9月850hPa低层位势高度场和风场进行分型,总结出重庆市O3污染期间主要有8种天气类型,其中有利于出现高浓度O3现象的天气类型分别是低压西北侧型(T1)、低压后部型(T4)和高压西侧(T3),对应O3平均超标率分别为34.6%、17.0%和14.2%.利用HYSPLIT4模型后向轨迹聚类方法和潜在源贡献算法(PSCF),计算得到O3污染日的气团主要以中短距离输送为主,主要传输轨迹来自北、东北、南以及西南四个方向,从2015~2019年,主要污染来源有一个明显的从北转南的趋势,O3污染的潜在源贡献分析结果与全市工业源NOx、VOCs排放量空间分布的一致性较高. 相似文献
15.
利用WRF(天气研究与预报模式)输出的高分辨率气象数据驱动HYSPLIT_4.9(混合单粒子拉格朗日轨迹模式),结合PSCF(潜在源贡献因子)和CWT(权重浓度轨迹分析)模拟研究复杂地形下兰州城市尺度大气污染物局地输送特征、潜在源区及其对空气质量的影响. 结果表明:2002—2008年影响兰州城区冬季12月空气质量的轨迹可分为5类,输送类型可分为城区内输送和城区外输送. 第1、3类轨迹出现频率均大于20%且污染轨迹出现频率均大于38%,是污染物的主要输送路径,对应潜在源区为兰州城关区东北部和榆中县东部,这2个源区对ρ(PM10)的影响最大,对ρ(SO2)的影响最小,对ρ(PM10)、ρ(SO2)和ρ(NO2)的贡献分别超过200、80和60 μg/m3. 来自榆中县的第4类轨迹和兰州西固区的第5类轨迹易造成大气重污染,而来自皋兰县的第2类轨迹属于清洁轨迹. 兰州冬季污染既受局地输送的影响,也与地面天气形势密切相关. 相似文献
16.
兰州市大气主要污染物环境与健康风险评价 总被引:3,自引:2,他引:3
为了解兰州市大气污染现状,评价其环境质量和健康风险,选择兰州市污染较重的西固区和污染较轻的榆中县为研究区域,定位监测并分析颗粒物、SO2和NOx等大气主要污染物的分布特征,采用环境空气质量指数法评价兰州市大气污染现状,重点分析颗粒物的构成特征和健康风险. 结果表明:兰州市大气污染物分布呈明显的季节性、区域性特点;大气颗粒物MMD(质量中值直径)在3.2~7.9 μm之间,属细颗粒型;西固区环境空气质量指数及污染水平普遍高于榆中县,其中位于西固区的西固第二小学采样点污染较为严重,污染水平为五级,需要采取控制措施;兰州市15 m大气高度PM10的健康风险高于30和1.5 m,兰州市PM2.5和PM10的健康风险属于可接受风险范围. 相似文献