共查询到17条相似文献,搜索用时 78 毫秒
1.
针对高负荷餐厨垃圾和剩余污泥混合发酵系统在实际应用过程中存在的盐度抑制问题,通过批次试验探究了不同钠盐(CH3COONa、NaCl和Na2SO4)对中温混合发酵体系的影响,考察了添加不同浓度钠盐时混合发酵体系的甲烷累积产量、有机物去除率、挥发性脂肪酸(VFAs)累积量及水解、酸化、乙酸化和产甲烷速率的抑制作用.结果表明,随着CH3COONa浓度的增加,相应的甲烷产量逐渐增加,但在高浓度时理论甲烷产量降低,当Na+浓度为8 g·L-1时,对产甲烷抑制率为21%.此外,NaCl和Na2SO4对甲烷累积产量具有抑制作用,相同Na+浓度下,Na2SO4对混合发酵体系甲烷产量的抑制作用更大;当SO42-浓度为8.3 g·L-1时,相应甲烷抑制率为23%.相反,Cl-浓度为3.1~6.2 g·L-1时,对混合发酵过程中甲烷抑制率为4.6%~7.7%;但随着Cl-浓度增至9.3~12.3 g·L-1时,甲烷产量提升了14.5%~37.6%.分析认为,NaCl对混合发酵过程有机物去除率的抑制作用主要是Na+的影响,而Na2SO4的抑制作用主要来源于SO42-和Na+的协同作用.NaCl和Na2SO4对水解速率和产甲烷速率的抑制作用较大,而对酸化速率和乙酸化速率抑制作用较小. 相似文献
2.
比较了厌氧动态膜生物反应器(DMBR)与完全混合式反应器(CSTR)在处理餐厨垃圾(FW)和剩余污泥(WAS)时的发酵产气过程,验证了高负荷餐厨垃圾和剩余污泥混合发酵时DMBR系统运行的稳定性,考察了动态膜(DM)基材孔径(300目、200目和100目)对DMBR运行性能及其固液分离效果的影响.结果表明:一体式DMBR能够强化餐厨垃圾和剩余污泥混合发酵的高负荷稳定运行,DMBR过膜滤液中平均总挥发性脂肪酸(TVFA)为86.1 mg·L-1,低于CSTR排泥中TVFA的浓度(527.3 mg·L-1).当动态膜基材孔径为300目时,DMBR过膜滤液中总有机物(TCOD)为(1.6±1.1)g·L-1,相应的固液分离效果优于200目((3.2±1.9)g·L-1)和100目((32.0±1.3)g·L-1)动态膜基材,即当动态膜基材孔径为100目时,DMBR过膜滤液中TCOD比300目动态膜基材高6.7倍.与200目动态膜基材孔径相比,300目动态膜基材相应的跨膜压差增长缓慢,反洗频率和运行能耗均较低,而100目动态膜基材孔径过大,固液分离效果较低.因此,在高负荷餐厨垃圾和剩余污泥混合发酵系统中,选用300目动态膜基材形成的动态膜过滤效果最优.此外,本文还对比分析了有机废物和废水处理领域中较优的动态膜基材孔径及DMBR的应用情况,为拓展DMBR在有机物处理领域的应用提供依据. 相似文献
3.
采用厌氧膜生物反应器(anaerobic membrane bioreactor,AnMBR)进行剩余污泥与餐厨垃圾的共消化,研究其有机物的去除特性、产气性能和微生物群落组成等运行性能.结果表明,反应器运行过程中有机负荷(organic loading rate,OLR,以VS计)稳定在0.59~0.64 kg·(m~3·d)~(-1),挥发性固体(volatile solids,VS)降解率由单消化17.5%上升至共消化40%,COD截留率为95.3%.消化液含固率提高了3.9倍,最终CH_4体积分数稳定在60%,CH_4产量(以COD_(added)计)为78.7 mL·g~(-1).跨膜压差(transmembrane pressure,TMP)和平均Flux分别维持在-3.1~-2.7 kPa和0.106 L·(m~2·h)~(-1),膜污染较轻.16S rRNA微生物多样性分析表明,AnMBR内部厌氧消化细菌主要是Proteobacteria(变形菌门)、Bacteroidetes(拟杆菌门)和Cloacimonetes(阴沟单胞菌门),产甲烷菌中的优势菌科为Methanobacterium(甲烷杆菌科),优势菌属为Methanosaeta(甲烷鬃毛菌属)和Methanolinea(甲烷绳菌属).这将为AnMBR处理污泥及其它高含固率废物流的稳定性和运行性能研究提供有力的理论参考依据,进而为生物质资源化和能源危机提供有效解决途径. 相似文献
4.
5.
为了推进污水厂剩余污泥与餐厨垃圾协同厌氧消化在工程规模中的应用,提高其能源回收率,系统分析了协同厌氧消化机制、产物类型及其主要的影响因子,综述了协同厌氧消化中直接种间电子传递作用的重要研究进展,并展望了协同厌氧消化的未来研究方向,包括开发高效经济的原料预处理方式,表征基质降解特性,基于多组学联用技术理解微生物代谢调控,缓解消化体系中潜在抑制剂影响,原位耦联其他种类废弃物进一步提升消化性能和稳定性,以期为城镇有机固体废弃物的高效能源回收提供指导. 相似文献
6.
污泥和餐厨垃圾联合干法中温厌氧消化性能研究 总被引:5,自引:3,他引:5
采用完全混合式反应器R1~R5(进料脱水污泥与餐厨垃圾的湿重混合比分别为1:0、4:1、3:2、2:3和0:1),在半连续运行的状态下,考察了停留时间(solid retention time,SRT)为20 d时脱水污泥和餐厨垃圾混合干法厌氧消化的产气性能、有机质降解性能和系统稳定性.结果表明,随着进料中餐厨垃圾所占比例的增大,系统的产气率和甲烷产率呈上升趋势,产气中甲烷含量呈下降趋势,污泥中添加餐厨垃圾有助于在利用原有消化罐容积的前提下显著提高有机负荷和体积产气率.餐厨垃圾比例越大,混合物料的水解速率常数越大,有机质降解率越高,R1~R4中有机质水解速率常数分别为0.25、0.61、1.09和1.56 d-1,有机质降解率分别为37.4%、50.6%、60.7%和68.2%,水解速率差异是导致VS降解率不同的主要原因.随着餐厨垃圾比例的增大,系统内pH、总碱度(total alkalinity,TA)、总氨氮(total ammonia nitrogen,TAN)和游离氨氮(free ammonianitrogen,FAN)呈下降趋势,当污泥中添加的餐厨垃圾提高60%时,系统内pH、总碱度、总氨氮和游离氨氮分别下降6%、16%、22%和75%.游离氨和Na+分别是影响污泥和餐厨垃圾单独干法消化稳定性的重要因素,污泥和餐厨垃圾混合消化可降低潜在抑制性物质的浓度,显著提高系统稳定性. 相似文献
7.
餐厨垃圾有机质浓度高,在厌氧消化处理过程中容易致系统酸化而导致消化系统中止。采用餐厨垃圾与市政污泥联合厌氧消化技术解决餐厨垃圾消化条件难控制的问题。结果表明,系统稳定运行时,在进料总固体(TS)浓度为10%左右,水力停留时间(HRT)为20 d,碱度控制在6 000~8 000 mg/L时,餐厨垃圾与市政污泥联合厌氧消化能稳定运行,且有机负荷达到5.29 g/(L•d),沼气产量达1.03 L/g〔以挥发性固体(VS)计〕,沼气中的甲烷浓度在59%以上。 相似文献
8.
9.
造纸污泥和餐厨垃圾混合发酵联产氢气和甲烷试验 总被引:3,自引:0,他引:3
采用联产氢气和甲烷复合工艺,对造纸污泥和餐厨垃圾进行中温-高温混合厌氧消化,通过设计两种物料的不同配比(质量比,以VS计),研究了不同比例混合的物料联产氢气和甲烷的性能.试验结果表明,造纸污泥和餐厨垃圾混合比例为2:2的反应器总气体产率最高,达496.78mL·g-1(其中,氢气64.48mL·g-1,甲烷432.3mL·g-1,均以VSfed计,下同),其VS去除率也最高,达41.33%,在反应30h后和产甲烷18d后分别完成了80%的氢气产量和甲烷产量,而单纯造纸污泥总气体产率为144.99mL·g-1,单纯餐厨垃圾总气体产率为80.4mL·g-1.综合氢气和甲烷产率、产气速率、VS去除率等指标发现,造纸污泥和餐厨垃圾混合发酵联产氢气和甲烷的最佳配比为2:2. 相似文献
10.
接种比例对酒糟与餐厨垃圾混合厌氧发酵产沼气的影响 总被引:1,自引:0,他引:1
采用酒糟与餐厨垃圾作为混合发酵物料,并接种消化污泥进行厌氧干式发酵,比较接种比例(inoculum to substrate ratios,ISRs)(VS质量比)分别为0.5、0.8、1.0、2.0时的甲烷产率和产量、体系VFA、碱度、游离氨等指标。结果表明:接种比例的提高可有效提高甲烷产生速率,缩短发酵周期,减弱较高浓度VFA引起的抑制作用。当ISRs=1.0时产甲烷效果较好,累计产甲烷率为222.58mL/g,VS去除率达83.4%,继续增加接种比例对发酵效果影响不显著。此外,试验中适宜的VFA/碱度值为0.3~1.2,过大或过小都有可能抑制产甲烷过程。 相似文献
11.
12.
剩余污泥共厌氧消化改善脱水性能研究 总被引:1,自引:1,他引:1
为改善剩余污泥厌氧消化脱水性能,减少后续处理费用,研究了剩余污泥添加废物酒精糟液在高温(55℃)下共厌氧消化后污泥脱水性能,并对影响脱水性能因素进行了回归分析。结果表明:共厌氧消化提高了剩余污泥的碳氮比、有机负荷和产气率,减少了胞外聚合物中有机成分蛋白质和碳水化合物含量,增加颗粒尺寸,明显提高厌氧污泥脱水性能。当进样总体积为450mL、剩余污泥与酒精糟液二者体积比为2:1、污泥停留时间为11.1d时,厌氧消化污泥的脱水性能最好,毛细吸收时间为127s;当有机负荷继续提高时会出现酸化现象,可导致厌氧污泥脱水性能变差。对厌氧消化污泥脱水性能影响明显的因素是污泥颗粒尺寸、紧密粘附胞外聚合物含量。 相似文献
13.
剩余活性污泥和厨余垃圾的混合中温厌氧消化 总被引:21,自引:2,他引:21
研究了混合比例和水力停留时间对剩余活性污泥和厨余垃圾混合中温厌氧消化过程的影响,混合进料按照TS之比分别采用75%∶25%、50%∶50%和25%∶75%,HRT为10d、15d和20d.结果表明,在整个运行期间,进料VS有机负荷为1.53~5.63g/(L.d),没有出现pH降低、碱度不足、氨抑制和VFA积累等抑制现象.进料TS之比为50%∶50%时,具有最大的缓冲能力,稳定性和处理效果都比较理想,相应的挥发性固体去除率为51.1%~56.4%,单位VS的甲烷产率为0.353~0.373 L/g,甲烷含量为61.8%~67.4%. 相似文献
14.
鉴于蒸汽爆破(简称"汽爆")预处理对污泥和餐厨垃圾联合厌氧消化的影响还鲜有报道,为探讨汽爆预处理对污泥和餐厨垃圾联合中温厌氧消化的促进效果及经济可行性,利用小型发酵罐在35℃下开展了未预处理污泥和餐厨垃圾联合消化、汽爆污泥单独消化、汽爆污泥和餐厨垃圾联合消化的试验,并进行能耗分析.结果表明,未预处理污泥与餐厨垃圾联合消化阶段,VS(挥发性固体)去除率为33.9%,沼气产率为311.0 mL/g(以投料VS计);汽爆污泥单独消化阶段,VS去除率和沼气产率均略高于未预处理污泥与餐厨垃圾联合消化阶段,但反应器ρ(NH4+-N)过高,影响产气稳定性,沼气φ(CH4)较低.汽爆污泥与餐厨垃圾联合消化阶段,VS去除率和沼气产率分别达到49.5%和420.5 mL/g,显著优于未预处理联合消化阶段.能耗分析表明,预处理的升温过程使汽爆预处理整体能耗偏高,但若能有效回收70%的热量,则汽爆预处理可提高污泥-餐厨垃圾联合中温厌氧消化工艺3.34 kW·h/t(以污泥量计)的能量产率.研究显示,汽爆预处理可提高污泥和餐厨垃圾联合中温厌氧消化工艺35.2%的沼气产率,但由于预处理能耗较高,预处理过程中热能的有效回收是汽爆预处理应用于污泥和餐厨垃圾联合中温厌氧消化经济可行的关键. 相似文献
15.
以污泥和秸秆为共基质,以沼气产量、ρ(VFA)(VFA为挥发性脂肪酸)和CODCr去除率等为指标,探究污泥与秸秆配比(以CODCr计,质量比分别为1:0、1:1、2:1、3:1)对中温两相厌氧消化工艺运行效能的影响,以及最佳配比时SRT(污泥停留时间)对产甲烷相厌氧消化稳态特性的影响.结果表明:与污泥试验组相比,添加秸秆试验组的厌氧消化效能均较好;污泥与秸秆的最佳配比为2:1,该稳定状态下产酸相CODCr的去除率最高,为17.5%,ρ(VFA)为752 mg/L;产甲烷相CODCr的去除率为33.5%,ρ(VFA)为250 mg/L,产气量为47.7 mL/d,总体运行效能较高.在最佳污泥与秸秆配比(2:1)并设定产甲烷相反应器的SRT为20 d时,稳定状态下产甲烷相各组分的变化情况:CODCr去除率为41.20%,ρ(VFA)为238 mg/L,产气量为51.3 mL/d,沼气产率为8.4 mL/(d·g).研究显示,当控制污泥与秸秆配比为2:1、SRT为20 d时,中温两相厌氧消化工艺运行效果良好. 相似文献
16.
餐厨垃圾与秸秆混合中温和高温厌氧消化对比 总被引:2,自引:4,他引:2
餐厨垃圾与秸秆混合厌氧消化可有效改善两者单独厌氧消化易出现的挥发性脂肪酸积累和木质纤维素难以降解等问题,并回收生物质能.在中温(35℃)和高温(55℃)条件下,对餐厨垃圾与秸秆混合厌氧消化进行了序批式试验研究.结果表明,进料的挥发性固体(VS)浓度为3 kg·m~(-3),中温条件下,物料进料比(VS/VS)为9∶1时,单位有机负荷累积甲烷产量达到最高,为272.0 mL·g~(-1);高温条件下,进料比为5∶5时,单位有机负荷累积甲烷产量达到最高,为402.3 mL·g~(-1),分别显著高于两温度条件下餐厨垃圾单独厌氧消化的结果(中温218.6 mL·g~(-1),高温322.0 mL·g~(-1)).高温条件下物料中的碳流向甲烷的比例高于中温,且两物料混合消化促进碳流向甲烷.高温下木质纤维素总降解率为34.7%~45.8%,高于中温的12.6%~42.2%.利用高通量测序技术检测细菌与古菌的16S rRNA基因序列信息和真菌的内转录间隔(ITS)序列信息,结果表明,高温下木质纤维素降解细菌和放线菌数量明显高于中温条件,可解释高温下木质纤维素总降解率更高的原因. 相似文献
17.
通过批处理试验,研究了三种不同类型园林废物〔小叶桉叶,美人蕉叶以及混合杂草(包括空心莲子草、猪毛蒿和胜红蓟)〕对餐厨垃圾厌氧消化的影响。结果表明,添加混合杂草处理表现出最佳的甲烷生产能力,甲烷产率达到827.0 mL/g(以挥发性固体计,下同);而添加小叶桉叶和美人蕉叶处理,甲烷产率分别为307.9和287.3 mL/g。冻融预处理可以使添加混合杂草处理和美人蕉叶处理的甲烷产率分别提高25.0%和85.4%,混合杂草处理的产能效益由6 106 kW·h/t提高到7 633 kW·h/t,美人蕉叶处理的产能效益则由1 694 kW·h/t提高到3 141 kW·h/t。 相似文献