首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The historical background on adaptation of algae to various light intensities is analysed. It is argued that there is little evidence to suggest that previous growth at low light intensities enhances the ability of an alga to utilize these low light levels. Rather, the published evidence suggests that the most general response to growth at sub-optimal light intensities is a reduced ability to utilize saturating levels. The present experiments with Phaeodactylum tricornutum Bohlin have tested this concept of light intensity adaptation. Changing photosynthetic abilities during batch growth depended on the light intensity used for growth and these changes affected interpretations of the data. When measurements were made intensities appeared to photosynthesize (at all intensities) better than did those grown at higher light levels. When the changes during batch growth were taken into account, or when the alga was grown in turbidostat cultures, a different picture was obtained. Growth at reduced light intensities was accompanied by (a) increased chlorophyll content, (b) decreased rate of light-saturated photosynthesis expressed on a chlorophyll, cell number or cell protein basis, and (c) decreased activity of RuDP carboxylase. One result suggested that growth at a suboptimal light intensity did enhance the ability to utilize lower light levels. The light-saturation curve of cells grown in batch culture at 0.7 klux showed higher slopes at the low light intensities than did those grown at 12 klux. This was most marked when photosynthesis was expressed per cell, but was also apparent when it was put on a per chlorophyll basis.  相似文献   

2.
Phytoplankton species were grown in batch cultures in the presence of the water-soluble fraction (WSF; 50 and 100%) of a Mexican crude oil (Isthmus Cactus). The algae exhibited various responses ranging from retarded growth to stimulation of growth. The cellular content of chlorophylla and the lipid composition of the algae were examined. Four algae, the bacillariophytesNitzschia closterium andAsterionella glacialis, the cryptophytesRhodomonas lens, and the chlorophyteDunaliella tertiolecta, exhibited retarded growth. In most of these algae, cellular chlorophylla, lipid pigments, glycolipids and triglycerides decreased whereas sterols and hydrocarbons accumulated. Phospholipids did not exhibit any specific pattern of change during the experiments. The cyanophyteAgmenellum quadruplicatum and the bacillariophyteSkeletonema costatum were less sensitive to the WSF. The cell yield of the dinophyteProrocentrum minimum was stimulated by the WSF. In these three latter species, lipid pigments were enhanced or remained at control levels. We concluded that the toxic effect of the WSF disrupts the biosynthesis mechanisms required for a functional photosynthetic apparatus (biosynthesis of chlorophylla, glycolipids and lipid pigments) in sensitive algae, a phenomenon coupled to sterol accumulation in these algae.  相似文献   

3.
In order to test the ability of phytoplankton to adapt to the high frequency light fluctuations induced by sea surface waves, the green alga Dunaliella tertiolecta was grown under both steady and fluctuating (0.1, 1.0 and 10 Hz) illuminations. The latter conditions reproduced those fluctuations experienced by phytoplankton in the upper photic layer. For each culture, photosynthesis versus irradiance were measured under four incubation frequencies (steady, 0.1, 1.0 and 10 Hz fluctuating illuminations). Results indicated that growth rates were similar for algae grown under steady light and 10 Hz fluctuating light (0.26–0.33 d–1). Cells grown at 0.1 and 1.0 Hz showed lower growth rates (0.17–0.26 d–1). Chlorophyll a and b were significantly higher under 0.1 and 10 Hz frequencies than under steady illumination; at 1.0 Hz, there were no significant differences with steady light. No changes in carotenoids were evidenced at any frequency tested. Photosynthetic measurements showed that algae grown under steady illumination had higher photosynthetic efficiency and capacity when incubated under steady and 0.1 Hz fluctuating light. Photosynthetic characteristics of algae grown under 0.1 Hz illumination did not show any clear responses to fluctuating light. Algae grown under 1.0 or 10 Hz had higher photosynthetic efficiency and capacity than those grown under steady illumination, when incubated under 1.0 and 10 Hz light. This suggests that microalgae grown under high frequency illumination (1.0 and 10 Hz) can adapt their photosynthetic characteristics to the rapidly fluctuating light regime experienced during growth, and that algae grown under steady conditions respond better to steady or slowly fluctuating (0.1 Hz) light. Such an adaptation provides a means of probing the photosynthetic responses of phytoplankton to vertical mixing.Contribution to the program of GIROQ (Groupe interuniversitaire de recherches océanographiques du Québec)  相似文献   

4.
The effect of light quality on growth, photosynthesis and carbon metabolism in two species of marine algae,Cyclotella nana (Hustedt) andDunaliella tertiolecta (Butcher), was examined. Relative growth constants forC. nana were 0.37, 0.29 and 0.25 in blue, white and green light, respectively. Corresponding constants were 0.41, 0.31 and 0.29 forD. tertiolecta. Photosynthetic rates in both species were higher in blue light and lower in green light compared with white light of the same intensity. More than 60% of14C assimilated byC. nana orD. tertiolecta grown in blue or green light was incorporated into the ethanol-insoluble fraction, compared with 10 to 30% in this fraction in white light. The relative importance of the various components within this fraction was independent of light quality. Although less14C was assimilated into the ethanol-soluble fraction in blue or green light, there was a relative increase in some amino acids and organic acids in this fraction and a decrease in sugars and sugar phosphates relative to white light of the same intensity. These differences were independent of light intensity, photosynthetic rate and cell density in the cultures.  相似文献   

5.
Photosynthetic and optical properties of the marine chlorophyte Dunaliella tertiolecta Butcher were studied in response to irradiance fluctuations caused by surface-wave focusing. The experimental conditions simulated the prominent features of the light field (high average irradiance, spectral composition and statistical properties) in the uppermost few meters of the water column under sunny surface conditions. The properties of algae grown under high-frequency fluctuations were compared with control cells grown under constant light at the same average irradiance (800 mol quantam-2s-1). No significant differences were found for a number of parameters, including growth rate, cellular chlorophyll a and pigment ratios, photosynthetic unit size and density of Photosystem I reaction centers, the rate of photosynthesis at the growth irradiance, dark respiration, and in vivo fluorescence of chlorophyll a per cell. Photosynthetic parameters were not affected by whether the incident light for oxygen exchange measurements was fluctuating or constant. This was the case whether the cells had been previously acclimated to either fluctuating or constant irradiance. Such a photosynthetic response indicates that cells are accomplishing a time integration of the fluctuating light. In addition, although D. tertiolecta is capable of dramatically changing its optical properties in response to low or high growth irradiance levels, the refractive index of the cells, the efficiency factors for light absorption and scattering by individual cells, and chlorophyll-specific absorption and scattering coefficients of cell suspensions, were all very similar under high irradiance, whether or not wave focusing was present.Contribution to the program of GIROQ (Groupe Interuniversitaire de Recherches Océanographiques du Québec)  相似文献   

6.
The light-saturated photosynthetic capacity of cultures of Phaeodactylum tricornutum Bohlin grown under different conditions has been measured. In batch cultures grown in a regime of alternating light and dark periods, the photosynthetic capacity reaches a maximum before the end of the exponential phase of growth, and declines thereafter. In cultures illuminated at 0.7 mW (milliwatt)/cm2, there is a 75% falloff in photosynthetic capacity per cell over an 8 day period following the time of maximum photosynthetic capacity. At 1.75 mW/cm2, the corresponding fall-off is 85% over a 4 day period. Cultures exposed to a prolonged period of darkness (up to 16 days at 18°C) maintain a high photosynthetic capacity. Incubation in darkness also protects the cells from the deleterious effects of high temperature (28°C) upon photosynthetic capacity. The various fluctuations of photosynthetic capacity occur without any accompanying major changes in the concentration of chlorophyll a. Evidence from estimations of total protein and of the gross pattern of photosynthetic assimilation under different conditions suggests that the changes in photosynthetic capacity are largely controlled by the enzymic component of the photosynthetic machinery. By carefully controlling the conditions of dark incubation, the photosynthetic capacity can be reduced to a very low level without significantly affecting chlorophyll a concentration. Since the effect on photosynthetic capacity is reversible, it is possible to study aspects of chloroplast development without the complication of an associated synthesis of chlorophyll.  相似文献   

7.
We investigated the effects of ethyl 2-methyl acetoacetate (EMA) on growth of the marine diatom algae Phaeodactylum tricornutum (P. tricornutum) and Skeletonema costatum (S. costatum). Growth of P. tricornutum was significantly inhibited by the minimum concentration (3.5 mmol·L ?1) of EMA at lower initial algal densities (IADs) (3.6×104 and 3.3×105 cells·mL ?1). However, at the highest IAD, significant growth inhibition was found at above 7 mmol·L ?1 of EMA exposure. In S. costatum, EMA concentrations of 10.5 mmol·L ?1 or more significantly inhibited growth at lower IAD (3×104 and 1.8×105 cells·mL ?1); at the highest IAD, only EMA concentrations above 14 mmol·L ?1 obviously inhibited the growth of S. costatum. Changes in specific growth rates and pigment were consistent with algal growth, but only at higher EMA concentrations or lower IAD values was the ratio of chlorophyll a (Chla) to carotenoid significantly lower than the control. Medium effective concentration (EC 50) values were in the order 4.07, 8.03 and 12.27 mmol·L ?1 for P. tricornutum and 7.48, 11.92 and 17.22 mmol·L ?1 for S. costatum. All these results show that the effect of EMA on the growth of algae was species specific and mainly depended on IAD, which might be an important factor to influence algal growth.  相似文献   

8.
Six species of marine phytoplankton of different sizes and taxonomic categories were grown in microcosms under identical experimental conditions; the species cultured were: Pavlova lutheri (Prymnesiophyceae), Dunaliella tertiolecta (Chlorophyceae), Phaeodactylum tricornutum (Baciollariophyceae), Eutreptiella sp. (Euglenophyceae), Alexandrium tamarense (Dinophyceae), and Phaeocystis pouchetii (Prymnesiophyceae). The photosynthetic carbon metabolism of these phytoplankton was studied throughout the exponential and lag phases of growth after nutrient depletion. The relative incorporation of carbon into protein was positively correlated with phytoplankton growth, while carbon assimilation into low molecular weight metabolites (LMWM) and storage products, i.e., lipid and polysaccharides, generally increased under nutrient-limiting conditions. Clear taxonspecific differences were observed in the proportions of carbon incorporated into cell constituents. A significant linear relationship was consistently found between the relative synthesis of protein to LMWM, and both the production normalised to chlorophyll (P:B) and the phytoplankton growth rate. However, ANCOVA revealed significant, interspecific differences in these relationships.  相似文献   

9.
Gracilaria verrucosa (Hudson) Papenfuss exposed to nutrient enriched media (0.1 mM PO4; 1.0 mM NH 4 + ) by pulse feeding 2 h every third day for a period of 5 wk at 20°C and 25–30 salinity showed significantly higher rates of photosynthesis regardless of photon flux density correlated with increased pigment levels. Algae in nonenriched media showed significantly higher levels of soluble carbohydrates and decreased levels of phycoerythrin and chlorophyll a. Photosynthetic and respiratory responses to temperature 15°, 25°, 30°C and salinity (15, 25, 30 S) combinations indicate broad tolerances by both nutrient enriched and non-nutrient enriched algae. Photosynthetic and respiratory rates were highest at the high temperatures. Pulse-fed algae had significantly higher photosynthetic rates than non-nutrient enriched plants at all temperature and salinity combinations. Non-nutrient enriched algae had significantly higher respiratory rates than nutrient enriched algae at only 30°C and 15. The respiratory rates of both nutrient enriched and non-nutrient algae decreased under combinations of higher temperatures and salinities. G. verrucosa, grown without nutrients, has lower tolerances to environmental stresses.  相似文献   

10.
Mechanism of toxicity of ionic copper and copper complexes to algae   总被引:6,自引:0,他引:6  
The mechanism of toxicity of ionic copper and copper complexes to growth, photosynthesis, respiration, ATP levels and mitochondrial electron-transport chain-activity in two marine diatoms, Nitzschia closterium (Ehrenberg) W. Smith (Hasle, 1964) and Asterionella glacialis Castracane, and one freshwater green alga, Chlorella pyrenoidosa Chick was investigated. Copper ions depressed both cell division and photosynthesis in A. glacialis and C. pyrenoidosa, whereas ionic copper concentrations which were inhibitory to cell division in N. closterium had no effect on photosynthesis, respiration, ATP production, electron transport or membrane ultrastructure. This suggests that in N. closterium, copper does not act on the chloroplast, the mitochondrion, or the cell membrane, since if it did, the above parameters should be affected. Copper-ethylxanthogenate was exceptional amongst the copper complexes in that it stimulated respiration, mitochondrial electrontransport and ATP formation in N. closterium under conditions of strongly inhibited cell division and slightly stimulated photosynthesis. Ionic copper toxicity may result from an intracellular reaction between copper and reduced glutathione (GSH), leading to a lowering of the GSH:GSSG ratio and suppression of mitosis. In addition, copper inhibits the enzyme catalase and reduces cell defence mechanisms against H2O2 and oxygen-free radicals. Lipid-soluble copper complexes are more toxic than ionic copper because both the metal and the ligand are introduced into the cell. Toxicity of ionic copper is ameliorated by trivalent metal ions in the growth medium, including those of Mn, Co, Al, Fe and Cr which form a layer of metal (III) hydroxide around the algal cell, adsorb copper and reduce its penetration into the cell. The degree of insolubility of the metal (III) hydroxide is related to its ability to protect against copper toxicity. In addition, manganese and cobalt catalytically scavenge damaging H2O2 and superoxide radicals, respectively, produced by the cell.  相似文献   

11.
Photosynthesis in whole plants of the salt-marsh algae Fucus vesiculosus and Ulva lactuca was evaluated by 14C-uptake under a variety of light intensities at approximately mately monthly intervals during a 15-month study. Photosynthetic capacity in both species was closely related to seasonal irradiation patterns and changes in field biomass. Maximum photosynthesis occurred in the spring and summer months. Photosynthesis on a dry weight basis was higher in U. lactuca, while photosynthesis on a chlorophyll a basis was equal in both species. Photosynthetic capacity was inversely related to pigment content. Maximum chlorophyll a concentrations occurred during the winter. Frond profile studies in F. vesiculosus indicated that apices always exhibited greatest photosynthetic capacity. Uptake of 14C into ethanol-soluble and insoluble fractions was different in each species. F. vesiculosus showed greater activity in the ethanol-soluble fraction while U. lactuca exhibited greater activity in ethanol-insoluble fractions.This research was supported by Research Grant AG-375 from the National Science Foundation and, in part, by the State University of New York Research Foundation and the Energy Research and Development Administration (ERDA).  相似文献   

12.
The turnover time of photosynthetic oxygen production was the same, near 0.5 msec, for the seaweeds Ulva lactuca, Codium fragile, Porphyryaumbilicalis, Chondrus crispus, Champia parvula and Fucus vesiculosis. This turnover time did not change for sun- and shade-adapted U. lactuca and P. umbilicalis. The similarity of these turnover times to those of other algae, higher plants, and cyanobacteria is strong evidence for similarity in the kinetics, and thus for a universal mechanism of photosynthesis. Evolution in the light-gathering apparatus responsible for the color of seaweeds has occurred without variation in the mechanism of photosynthesis. The size of the Emerson-Arnold photosynthetic unit (the ratio of chlorophyll to oxygen formed in a single tumover light flash) in the green seaweeds is about the same as that in algae, i.e., 2000. It is about half this number for the red and brown seaweeds. The different accessory pigments in the latter two groups compensate for the smaller amount of chlorophyll. The size of the unit was independent of sun- and shade-adaptation in U. lactuca, but did increase in shade-adapted P. umbilicalis.  相似文献   

13.
The effects of mercury (HgCl2) on cell population, chlorophyll a concentration and rates of photosynthesis and excretion were investigated in the phytoplanktonic species Dunaliella minuta in laboratory cultures. Mercury, above 25ppb inhibited both cell population and chlorophyll a concentration approximately to the same extent, whereas the photosynthetic rate was inhibited to a significantly lesser degree. Although, the total photosynthetic rate of the tested organism was reduced, above a threshold concentration, the photosynthetic activity was not reduced under these conditions, but it was in fact significantly greater than that in the control culture. This may suggest that in D. minuta the inhibitory effect of mercury is primarily on cell division rather than cellular photosynthesis, which is enhanced by the fact mercury caused a significant increase of the mean cell volume. Mercury, also, decreased the growth rate and final cell yield. The excretory rate was markedly increased at concentrations ≥ 250 ppb of mercury, but at lower concentrations it tended to depend more on the physiological state of cells than on mercury concentration. In the different cultures, the photosynthetic activity showed variations which occurred without major changes in the chlorophyll a content per cell, which remained almost constant and independent of variations in cell size and growth conditions.  相似文献   

14.
The prokaryotic green alga Prochloron sp. (Prochlorophyta) is found in symbiotic association with colonial didemnid ascidians that inhabit warm tropical waters in a broad range of light environments. We sought to determine the light-adaptation features of this alga in relation to the natural light environments in which the symbioses are found, and to characterize the temperature sensitivity of photosynthesis and respiration of Prochloron sp. in order to assess its physiological role in the productivity and distribution of the symbiosis. Colonies of the host ascidian Lissoclinum patella were collected from exposed and shaded habitats in a shallow lagoon in Palau, West Caroline Islands, during February and March, 1983. Some colonies from the two light habitats were maintained under conditions of high light (2 200 E m–2 s–1) and low light (400 E m–2 s–1) in running seawater tanks. The environments were characterized in terms of daily light quantum fluxes, daily periods of light-saturated photosynthesis (Hsat), and photon flux density levels. Prochloron sp. cells were isolated from the hosts and examined for their photosynthesis vs irradiance relationships, respiration, pigment content and photosynthetic unit features. In addition, daily P:R ratios, photosynthetic quotients, carbon balances and photosynthetic carbon release were also characterized. It was found that Prochloron sp. cells from low-light colonies possessed lower chlorophyll a/b ratios, larger photosynthetic units sizes based on both reaction I and reaction II, similar numbers of reaction center I and reaction center II per cell, lower respiration levels, and lower Pmax values than cells from high-light colonies. Cells isolated from low-light colonies showed photoinhibition of Pmax at photon flux densities above 800 E m–2 s–1. However, because the host tissue attenuates about 60 to 80% of the incident irradiance, it is unlikely that these cells are normally photoinhibited in hospite. Collectively, the light-adaptation features of Prochloron sp. were more similar to those of eukaryotic algae and vascular plant chloroplasts than to those of cyanobacteria, and the responses were more sensitive to the daily flux of photosynthetic quantum than to photon flux density per se. Calculation of daily minimum carbon balances indicated that, though high-light cells had daily P:R ratios of 1.0 compared to 4.6 for low-light cells, the cells from the two different light environments showed nearly identical daily carbon gains. Cells isolated from high-light colonies released between 15 and 20% of their photosynthetically-fixed carbon, levels sufficient to be important in the nutrition of the host. Q10 responses of photosynthesis and respiration in Prochloron sp. cells exposed briefly (15–45 min) to temperatures between 15° and 45°C revealed a discontinuity in the photosynthetic response at the ambient growth temperatures. The photosynthetic rates were found to be more than twice as sensitive to temperatures below ambient (Q10=3.47) than to temperatures above ambient (Q10=1.47). The Q10 for respiration was constant (Q10=1.66) over the temperature range examined. It appears that the photosynthetic temperature sensitivity of Prochloron sp. may restrict its distribution to warmer tropical waters. The ecological implications of these findings are discussed in relation to published data on other symbiotic systems and free-living algae.  相似文献   

15.
Five species of unicellular algae of the same age, cultured bacteria-free under standard growth conditions, were analyzed for chemical composition and fed to different size classes of Artemia salina. The green algae Chlamydomonas sphagnicolo, Dunaliella viridis, Platymonas elliptica and Chlorella conductrix had significantly higher percentages of protein and lipid than did the diatom Nitzschia closterium. Total ash value was highest in populations of N. closterium. Shrimp fed Chlamydomonas sphagnicolo cells assimilated highest percentages of organic matter, while those fed Chlorella conductrix had lowest assimilation rate. Respiration rates were inversely proportional to animal size (weight) and algal cell volume. Growth, survival, rate of sexual maturtion, and sex ratio were dependent on the growth and assimilation efficiencies obtained from each respective algal food. Shrimp fed Chlamydomonas sphagnicolo, D. viridis, or P. elliptica cells displayed highest growth and assimilation efficiencies.  相似文献   

16.
More experimental evidence is needed to understand the role of propagules in macroalgal biology. There are no reports in the literature on the comparative physiology (e.g. photosynthesis) of sporelings and adults. In this paper we report on the␣variation␣in␣photosynthetic parameters (maximum photosynthesis, P max , and efficiency, alpha, and dark respiration (R d ) of cultivated young sporelings of the red alga␣Grateloupia␣doryphora (Montagne) Howe under normal conditions and after a short-term incubation at different salinities and temperatures. The results are compared to those␣for␣adult Stage III thalli obtained in laboratory culture from the same population of sporelings. The pigment composition of sporelings (more chlorophyll a and less phycoerthryn and phycocyanin than adults) promotes a better photosynthetic performance (higher P max and alpha and lower R d ) under chlorophyll a excitation. The younger sporelings were also more tolerant to variations in salinity and temperature than Stage III, in which the highest variation in maximum photosynthesis and dark respiration was observed. Received: 21 October 1996 / Accepted: 5 February 1997  相似文献   

17.
A method is presented by which the gross pattern of photosynthetic carbon-dioxide fixation in marine phytoplankton can be determined. It depends on differential solvent extraction yielding an ethanol-soluble, a hot TCA-soluble (polysaccharide) and a residue (protein) fraction. Using this fractionation technique, the effects of various environmental factors on the pattern of photosynthesis by the marine diatom Phaeodactylum tricornutum (Bohlin) have been investigated. Low light intensities and increasing degrees of nitrogen limitation in a chemostat increase markedly the relative rates of protein synthesis. Growth of the alga at lower temperatures also increases the proportion of carbon incorporated into the protein fraction. This increased protein syntheses is generally at the expense of the polysaccharide fraction. Preliminary experiments have established the suitability of this fractionation method for natural populations of phytoplankton and have shown similar effects of light intensity on the relative rates of protein synthesis.  相似文献   

18.
In recent studies, we developed a combined nutrient removal-marine aquaculture process for the tertiary treatment of wastewater and the production of commercially important shellfish. Part of this process consists of an outdoor mass cultivation system for marine algae. During our previous experiments we observed that marine diatoms almost exclusively are the dominant algal species in our outdoor cultures. To better understand this phenomenon of diatom dominance we grew 16 species of marine algae in continuous monoculture under laboratory conditions simulating to some degree the conditions prevailing in our outdoor experiments. Species such as Skeletonema costatum, Monochrysis lutheri and Tetraselmis sp., which were never dominant in our outdoor cultures, grew as well in monoculture, as Phaeodactylum tricornutum, frequently, the prevalent species outdoors. However, when monocultures of Dunaliella tertiolecta and Thalassiosira pseudonana (3H) were purposely contaminated with P. tricornutum, the latter species quickly became dominant. It is suggested that a complex interaction of environmental factors is usually responsible for the dominance of a particular species; one such factor may be the nitrogen source in the growth media. Under conditions of virtually, complete nitrogen assimilation, the carbon: nitrogen ratio in the algae was high (7 to 8) when NO 3 - –N was the source of nitrogen, and low (4 to 6) when NH 4 + –N was the prime form of nitrogen. When algal growth was low, resulting in a large inorganic nitrogen residue, the carbon:nitrogen ratio was low regardless of whether NO 3 - –N or NH 4 + –N was the main nitrogen source.Contribution No. 3297 from the Woods Hole Oceanographic Institution.  相似文献   

19.
Current aquaculture practices have a detrimental impact on the environment, in particular due to the release of high concentration of nitrogen and phosphorus that can induce eutrophication. This study investigates and compares the capacity of three microalgae species Tetraselmis suecica, Isochrysis galbana and Dunaliella tertiolecta, in the bioremediation of grey mullet Mugil cephalus wastewater. The experiment was conducted in batch conditions for 7 days using completely mixed bubble column photobioreactors. After two days, T. suecica and D. tertiolecta were able to remove more than 90% of dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorous (DIP), whereas I. galbana removed only 32% and 79% of DIN and DIP, respectively. A higher biomass yield resulted for T. suecica (603?±?34?mg/L, mean?±?SE). This study confirms the potential to employ T. suecica in an Integrated Multi-Trophic Aquaculture system for bioremediation of wastewater and identifies D. tertiolecta as another valid candidate species. Moreover, these species can growth in unsterilized culture media, and this reduces energy consumption, costs and efforts.  相似文献   

20.
Photoadaptation of photosynthesis in Gonyaulax polyedra   总被引:1,自引:0,他引:1  
Gonyaulax polyedra Stein exhibited a combination of photoadaptive strategies of photosynthesis when only a single environmental variable, the light intensity during growth, was altered. Which of several biochemical/physiological adjustments to the light environment were employed depended on the level of growth irradiance. The photoadaptive strategies employed over any small range of light levels appeared to be those best suited for optimizing photosynthetic performance and not photosynthetic capacity. (Photosynthetic performance, P i, is defined as the rate of photosynthesis occurring at the level of growth irradiance.) Among all photosynthetic parameters examined, only photosynthetic performance showed a consistent correspondence to growth rates of G. polyedra. Above 3500 to 4000 W cm-2, where photosynthetic performance was equal to photosynthetic capacity, cells were not considered light-limited in either photosynthesis or growth. At these higher light levels, photosynthetic perfomance, cell volume, growth rates and respiration rates remained maximal; photosynthetic pigment content varied only slightly, while the photosynthetic capacity of the cells declined. At intermediate light levels (3000 to 1500 W cm-2), photosynthesis, not growth, was light-limited, and photoadaptive strategies were induced which enhance absorption capabilities and energy transfer efficiencies of chlorophyll a to the reaction centers of G. polyedra. Photosynthetic capacity remained constant at about 280 mol O2 cm-3 h-1, while photosynthetic performance ranged from 100 to 130 mol O2 cm-3 h-1. Major increases in photosynthetic pigments, especially peridinin-chlorophyll a-proteins and an unidentified chlorophyll c component, accompanied photoadaptation to low irradiances. Maximal growth rates of 0.3 divisions day-1 were maintained, as were respiration rates of about-80 mol O2 cm-3 h-1 and cell volumes of about 5.4×10-8 cm-3 cell-1. Below about 1250 W cm-2, photosynthesis in G. polyedra was so light-limited that photosynthetic performance was unable to support maximal growth rates. Under these conditions, G. polyedra displayed photostress responses rather than photoadaptive strategies. Photostress was manifested as reduced cell volumes, slower growth, and drastic reductions in pigmentation, photosynthetic capacity, and rates of dark respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号