首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To observe the tolerance limit of lead phytotoxicity in cabbage (Brassica oleracea L.) var. Golden Aker plants were grown in refined sand with complete nutrient solution for 41 days. On 42nd day, pots with plants were separated into six lots. One lot was allowed to grow as such and was treated as control, in rest of the five lots, lead was applied at 0.1, 0.2, 0.4, 0.5 and 1.0 mM as lead nitrate. At d 75 (34 days after metal exposure), the lead toxicity symptoms as restricted growth was observed on plants at 1.0 mM lead supply. Excess lead (0.5 and 1.0 mM) developed interveinal chlorosis along the margins of young leaves. The affected leaves were reduced in size giving plant a rosette like appearance. Head size was markedly reduced at these (0.5 and 1.0 mM) levels of lead. At 0.5 mM the intensity of symptoms was markedly low. With an increase in lead supply, the concentration of lead and zinc was increased whereas that of P, S, Fe, Mn and Cu were decreased in various parts of cabbage. At 1.0 mM Pb, the concentration of lead was highest in roots and lowest in head. In leaves of cabbage the threshold of toxicity and toxicity values were 150 and 320 microg g-1 dry matter, respectively.  相似文献   

2.
Gopal R  Rizvi AH 《Chemosphere》2008,70(9):1539-1544
To elucidate the deleterious effects of excess lead on radish (Raphanus sativus) cv. Jaunpuri plants were grown in refined sand in complete nutrient solution for 30 days. On the 31st day lead nitrate was superimposed at 0.1 and 0.5mM to radish for 65 days. A set of plants in complete nutrient solution was maintained as control for the same period without lead. Excess Pb at 0.5mM showed growth depression with interveinal chlorosis on young leaves at apex. Excess Pb reduced the fresh and dry weight pronouncedly at d 65. Lead accumulation reduced the concentration of chlorophyll, iron, sulphur (in tops), Hill reaction activity and catalase activity whereas increased the concentration of phosphorus, sulphur (in roots) and activity of peroxidase, acid phosphatase and ribonuclease in leaves of radish.  相似文献   

3.
Mechichi T  Mhiri N  Sayadi S 《Chemosphere》2006,64(6):998-1005
The decolourization of the recalcitrant dye RBBR by the culture filtrate of Trametes trogii and its isolated laccase was investigated. Both filtrates from Cu-induced cultures as well as purified laccase decolourized the dye RBBR. The purified laccase decolourized the dye down to 97% of 100 mg l(-1) initial concentration of RBBR when only 0.2U ml(-1) of laccase was used in the reaction mixture. The effects of different physicochemical parameters were tested and optimal decolourization rates occurred at pH 5 and at a temperature of 50 degrees C. Decolourization of RBBR occurred in the presence of metal ions which could be found in textile industry effluents. Of all the metal ions tested, FeCl2 was the most inhibiting for the decolourization. HBT was shown to have no effect on the decolourization of RBBR at low concentration, while at a concentration of 5 mM it slightly inhibited decolourization. The presence of aromatic compounds was found to be inhibiting for the decolourization at a concentration of 10 mM, but not at 0.1 mM, while at 1 mM only ortho-diphenols were inhibiting. Probing the effect of methanol it was found that higher concentrations caused a decrease in the decolourization rate of RBBR. The effect of laccase inhibitors on the decolourization of RBBR was tested with L-cysteine, SDS and EDTA. It was demonstrated that L-cysteine was the most inhibiting substrate for the decolourization while SDS was only inhibiting at 10 mM concentration and ETDA was not inhibiting at all tested concentrations.  相似文献   

4.
The toxicity of ammonia to Hyalella azteca at constant pH in artificial media was controlled by sodium and potassium, and not by calcium, magnesium, or anions. Small increases in the LC50 for total ammonia (from 0.15 to 0.5 mM) occurred as sodium was increased from 0.1 to 1 mM and above, but major increases in the LC50 (to over 10 mM total ammonia) required the addition of potassium. Potassium was, however, more effective at reducing ammonia toxicity at high (1 mM) sodium than at low (0.1 mM) sodium. Ammonia toxicity was independent of pH at low sodium and potassium concentrations, when ammonia toxicity appeared to be associated primarily with aqueous ammonium ion concentrations. At high sodium and potassium concentrations, the toxicity of ammonia was reduced to the point where un-ionized ammonia concentrations also affected toxicity, and the LC50 became pH dependent. A mathematical model was produced for predicting ammonia toxicity from sodium and potassium concentrations and pH.  相似文献   

5.
This paper examines the development of aerobic granular sludge in the presence of a synthetic chelating agent, nitrilotriacetic acid (NTA), in sequencing batch reactors (SBR). The growth of seed sludge at 0.26 mM, 0.52 mM and 1.05 mM of NTA was found to be significantly lower as compared to that in the absence of NTA. Aerobic granulation was significantly enhanced in the three SBRs (R2, R3 and R4), which were fed with 0.26 mM, 0.52 mM and 1.05 mM of NTA as a co-substrate, in comparison to the acetate-alone fed SBR (R1). After 2 months of operation, the mean diameter of the biomass stabilized at 0.35 mm in R1 (acetate alone), as compared to 2.18 mm in R4 (1.05 mM NTA+acetate). NTA degradation was established in SBRs, with almost complete removal during the SBR cycle. Batch experiments also showed efficient degradation of NTA by the aerobic granules.  相似文献   

6.
Ozcan A  Sahin Y  Oturan MA 《Chemosphere》2008,73(5):737-744
The removal of a carbamate herbicide, propham, from aqueous solution has been carried out by the electro-Fenton process. Hydroxyl radical, a strong oxidizing agent, was generated catalytically and used for the oxidation of propham aqueous solutions. The degradation kinetics of propham evidenced a pseudo-first order degradation. The absolute rate constant of second order reaction kinetics between propham and ()OH was determined as (2.2+/-0.10)x10(9)m(-1)s(-1). The mineralization of propham was followed by the organic carbon (TOC) removal. The optimal Fe(3+) concentration was found as 0.5mM at 300mA. The 94% of initial TOC of 0.25mM propham solution was removed in 8h at the optimal conditions by using the cathode area to solution volume ratio of 3.33dm(-1). The maximum mineralization current efficiency values were obtained at 60mA in the presence of 0.5mM Fe(3+). During the electro-Fenton treatment, several degradation products were formed. These intermediates were identified by using high performance liquid chromatography, liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry and ion chromatography analysis. The identified by-products allowed proposing a pathway for the propham mineralization.  相似文献   

7.
Abstract

The biological effects of clofibrate (ethyl p‐chlorophenoxy‐isobutyric acid) on the growth and metabolism of the soil‐borne wheat pathogen Fusarium culmorum, were examined.

In mid log phase (16 hr) cultures both phenylalanine uptake and secondary spore production were stimulated at 0.1 μM concentration; the net sterol content was reduced 50% at 0.35 μM; oxygen uptake was stimulated at 0.1 mM; growth was inhibited 50% at 0.1 mM concentration. Both phenylalanine and oxygen uptake were inhibited at 1.0 mM and pyruvate dehydrogenase activity was reduced 50% at 50 mM concentration of clofibrate.

The data indicate that clofibrate affects a number of biological and enzyme systems. The inhibitory effect on the growth of the pathogen suggest a potential use of hypolipidemic agents like clofibrate as an antifungal agent for seed protection.  相似文献   

8.
A highly active electrocatalytic electrode for nitrate reduction was prepared by the electro-deposition of palladium onto a copper electrode. The capacity of nitrate reduction by a palladium-modified copper electrode has been studied using cyclic voltammetry (CV). The existence of a reduction peak at -0.605 V versus saturated calomel electrode in 0.1-M sodium nitrate + 0.1-M perchloric acid solution (pH = 0.86) can be found in the CV measurement. The influence of solution properties, such as pH, nitrate concentration, and other anions in solution, on nitrate reduction was determined in detail. Results showed that nitrate reduction was suppressed in alkaline solution, while it was beneficial to nitrate reduction in acid or neutral solution. At low nitrate concentrations (0.01 to 0.5 M), nitrate reduction current increased with increasing nitrate concentration, but was hindered by sulfate. At high nitrate concentrations (1 to 5 M), no significant difference on nitrate reduction was observed. Compared with other different electrodes prepared in our work (copper, titanium, and palladium-modified titanium electrodes), the palladium-modified copper electrode showed the highest electrocatalytic capacity and stability in the nitrate-reduction process.  相似文献   

9.
Simultaneous nitrification and denitrification (SND or SNdN) may occur at low dissolved oxygen concentrations. In this study, bench-scale (approximately 6 L) bioreactors treating a continuous feed of synthetic wastewater were used to evaluate the effects of solids retention time and low dissolved oxygen concentration, under cyclic aeration, on the removal of organics, nitrogen, and phosphorus. The cyclic aeration was carried out with repeated cycles of 1 hour at a higher dissolved oxygen concentration (HDO) and 30 minutes at a lower (or zero) dissolved oxygen concentration (LDO). Compared with aeration at constant dissolved oxygen concentrations, the cyclic aeration, when operated with proper combinations of HDO and LDO, produced better-settling sludge and more complete nitrogen and phosphorus removal. For nitrogen removal, the advantage resulted from the more readily available nitrate and nitrite (generated by nitrification during the HDO period) for denitrification (during the LDO period). For phosphorus removal, the advantage of cyclic aeration came from the development of a higher population of polyphosphate-accumulating organisms, as indicated by the higher phosphorus contents in the sludge solids of the cyclically aerated systems. Nitrite shunt was also observed to occur in the LDO systems. Higher ratios of nitrite to nitrate were found in the systems of lower HDO (and, to less dependency, higher LDO), suggesting that the nitrite shunt took place mainly because of the disrupted nitrification at lower HDO. The study results indicated that the HDO used should be kept reasonably high (approximately 0.8 mg/L) or the HDO period prolonged, to promote adequate nitrification, and the LDO kept low (< or =0.2 mg/L), to achieve more complete denitrification and higher phosphorus removal. The above findings in the laboratory systems find strong support from the results obtained in full-scale plant implementation. Two plant case studies using the cyclic low-dissolved-oxygen aeration for creating and maintaining SND are also presented.  相似文献   

10.
The effect of cadmium and of zinc on the rate of uptake of a pentose sugar xylose and an aminoacid tryptophan by the intestine of a teleost fish, Heteropneustesfossilis was studied under two experimental conditions. In the first, four concentrations of cadmium or zinc (1.0 mM, 0.1 mM, 0.01 mM and 0.001 mM) mixed with the nutrient solution were filled in the intestinal sacs, and the rate of absorption was recorded after 1 h at 23°C. In the second experiment fish were exposed by bath to a sublethal concentration of cadmium (0.26 mg/1) or zinc (4 mg/1) for 15 and 30 days and the rate of absorption of the two nutrients was measured. The activity of intestinal Na+, K+ activated adenosine triphosphatase was also assayed. The two heavy metals at all the four concentrations decreased the rate of intestinal transport of nutrients. Increase in the concentration of each of the heavy metals decreased the uptake of nutrients, but the decreases were not linear. The rate of intestinal absorption of the two nutrients was also reduced by exposure of fish to the heavy metals invivo. The activity of Na+, K+ ATPase decreased invitro with all four concentrations of cadmium and zinc and was diminished in fish exposed for 15 and 30 days. Of the two heavy metals, cadmium was more effective in reducing the rate of transport of xylose and tryptophan.  相似文献   

11.
Norway spruce seedlings colonized with Hebeloma crustuliniforme were grown in growth pouches. After formation of ectomycorrhizas, the seedlings were exposed to Al or the heavy metals Cd, Cu, Ni, or Zn at various concentrations for 5 weeks to estimate the detection limits of metals with X-ray microanalysis in the cryo-scanning electron microscope. When the lowest metal concentrations (1 mM Al(3+), 0.1 mM Cd(2+), 0.2 mM Cu(2+), 0.5 mM Ni(2+), 2 mM Zn(2+)) were applied, only Al and Zn were detected at low X-ray counts in the ectomycorrhizas. After application of 10-fold higher metal concentrations, distinct metal accumulation patterns were observed. Cd was detected predominantly in the Hartig net, Al and Ni in the Hartig net and in the cell walls of the cortex, and Zn in the Hartig net, the cortical cell walls and the fungal mantle. Cu was not detected at all. By combining X-ray microanalysis with absolute metal concentrations found in the roots, the estimated detection limits of X-ray microanalysis were: Al> or =0.86 mg g(-1), Cd> or =0.26 mg g(-1), Ni> or =1.30 mg g(-1), and Zn> or =0.54 mg g(-1), whereas Cu was not detectable even at root concentrations of 0.47 mg g(-1). Treatments with the highest metal concentrations showed high X-ray counts of metals in cells of the stele but reduced concentrations of the macronutrients K, Mg, and P in roots, indicating a possible disturbance of root and ectomycorrhizal function.  相似文献   

12.
The effect of five concentrations (10 mM, 1 mM, 0.1 mM, 0.01 mM and 0.001 mM) of mercury on the rate of absorption of glucose, fructose, glycine and tryptophan by the intestine of the fresh water murrel Channapunctatus has been studied. Intestinal absorption of these nutrients was also examined in fish exposed to a sublethal concentration (3 μg/l) of mercury for 15 and 30 days. Significant decrease was recorded in the rate of intestinal absorption of all the four nutrients with higher concentrations (10 mM, 1 mM and 0.1 mM) of mercury. 0.01 mM and 0.001 mM of mercury also reduced the transport rate but it was insignificant, except in case of tryptophan, where 0.01 mM of mercury also produced significant decrease. Exposure of fish by bath to mercury also resulted in significant decrease in the intestinal transport rate of all the four nutrients after 30 days.  相似文献   

13.
Citrullus plants were grown in refined sand with varying levels of chromium to determine their tolerance limit to excess chromium. The plants were maintained in control nutrient solution for 24 days and on the 25th day chromium as dichromate was added at 0.05, 0.1, 0.2, 0.3 and 0.4 mM. A control set of plants was grown in the same nutrient solution without chromium. At chromium levels >0.2 mM plants showed growth depression, with chlorosis and loss of turgor of middle leaves. Affected leaves had narrow lamina; tendrils were thin, short and did not have coiling property. Later chlorosis became severe and changed to necrosis in patches. Petiole along with lamina became wilted, rugged and hung down due to complete loss of water. At lower chromium concentration, (0.05, 0.1 and 0.2 mM) only depression in growth was observed. With increase in chromium concentration of nutrient solution accumulation of chromium in different parts of Citrullus was increased. Increase in concentrations of phosphorus, manganese and decrease in iron, copper, zinc and sulphur were observed in leaves. Toxicity of chromium was greater at 0.2-0.4 mM, compared to lower concentrations. Threshold of toxicity and toxicity of Cr in old leaves were, respectively, 0.9 and 3.9 microg g(-1) dry matter of citrullus.  相似文献   

14.
Maas Pv  Brink Pv  Klapwijk B  Lens P 《Chemosphere》2009,75(2):243-249
BioDeNO(x), a novel technique to remove NO(x) from industrial flue gases, is based on absorption of gaseous nitric oxide into an aqueous Fe(II)EDTA(2-) solution, followed by the biological reduction of Fe(II)EDTA(2-) complexed NO to N(2). Besides NO reduction, high rate biological Fe(III)EDTA(-) reduction is a crucial factor for a succesful application of the BioDeNO(x) technology, as it determines the Fe(II)EDTA(2-) concentration in the scrubber liquor and thus the efficiency of NO removal from the gas phase. This paper investigates the mechanism and kinetics of biological Fe(III)EDTA(-) reduction by unadapted anaerobic methanogenic sludge and BioDeNO(x) reactor mixed liquor. The influence of different electron donors, electron mediating compounds and CaSO(3) on the Fe(III)EDTA(-) reduction rate was determined in batch experiments (21mM Fe(III)EDTA(-), 55 degrees C, pH 7.2+/-0.2). The Fe(III)EDTA(-) reduction rate depended on the type of electron donor, the highest rate (13.9mMh(-1)) was observed with glucose, followed by ethanol, acetate and hydrogen. Fe(III)EDTA(-) reduction occurred at a relatively slow (4.1mMh(-1)) rate with methanol as the electron donor. Small amounts (0.5mM) of sulfide, cysteine or elemental sulfur accelerated the Fe(III)EDTA(-) reduction. The amount of iron reduced significantly exceeded the amount that can be formed by the chemical reaction of sulfide with Fe(III)EDTA(-), suggesting that the Fe(III)EDTA(-) reduction was accelerated via an auto-catalytic process with an unidentified electron mediating compound, presumably polysulfides, formed out of the sulfur additives. Using ethanol as electron donor, the specific Fe(III)EDTA(-) reduction rate was linearly related to the amount of sulfide supplied. CaSO(3) (0.5-100mM) inhibited Fe(III)EDTA(-) reduction, probably because SO(3)(2-) scavenged the electron mediating compound.  相似文献   

15.
Biofiltration of periodically fluctuating concentrations of an alpha-pinene-laden waste gas was investigated to treat both high-frequency and low-frequency fluctuations. The effects of periodic concentration fluctuations on biofilter performance were measured. Controlled variables of periodic operation included cycle period and amplitude. The cycle period ranged from 10 min to 6 days, with the inlet alpha-pinene concentration fluctuating between 0 and 100 parts per million volume. At high-frequency concentration cycling (i.e., on the order of minutes), both cyclic and constant concentration biofilters maintained similar long-term performance with an average removal efficiency of 77% at an averaged loading rate of 29 g alpha-pinene/m3 bed/hr. A first approximation suggests kinetics that are time-independent, indicating that steady-state data can be used to predict transient behavior at this time scale. Cyclic biofilter operation with a cycle period of 24 hr (with equal on/off time) was achievable for biofilters without a significant loss in performance. At longer time scales, cyclic biofilter performance decreased at the restart of the ON cycle. The recovery time to previous levels of performance increased with increasing cycle period; the recovery time was less than 1 hr for a cycle period of 24 hr and between 6 and 8 hr for a cycle period of 6 days.  相似文献   

16.
Comparison of the ability of Pseudomonas sp. to degrade 2,4-dichlorophenol and 4-Cl-m-cresol in separate cultures in the presence of glucose, as a conventional carbon source, is reported. The specific growth rates at 0.1 mM 2,4-dichlorophenol and 4-Cl-m-cresol were estimated to be 0.181 and 0.154 h(-1), respectively, showing that Pseudomonas sp. is mainly inhibited by 4-Cl-m-cresol. The percentage of consumption ranges between 65% and 11% for 2,4-dichlorophenol and between 37% and 8% for 4-Cl-m-cresol, respectively, depending on its initial concentration. The dechlorination of the two compounds was investigated in the growth media and it was found that chloride liberation in the case of 2,4-dichlorophenol took place during the exponential phase of growth, followed by pH decrease from 6.1 to 5.8 at 0.1 mM. In contrast, in the case of 4-Cl-m-cresol chloride ion release was observed to a lesser extent, indicating the different metabolic pathway of 4-Cl-m-cresol. 2,4-Dichlorophenol and 4-Cl-m-cresol degradation followed a first-order kinetics model, whereas glucose consumption fitted well a zero-order kinetics model.  相似文献   

17.
Laboratory analyses of 137Cs uptake by sunflower, reed and poplar   总被引:2,自引:0,他引:2  
Soudek P  Tykva R  Vanek T 《Chemosphere》2004,55(7):1081-1087
The 137Cs uptake by three plant species (Phragmites australis L., Heliantus annus L., Populus simonii L.) was analyzed in a hydroponic medium (14 MBql(-1); 0.5 mM CsCl) during cultivation. The radioactivity disappearance from the medium was measured after 2, 4, 8, 16 and 32 days of cultivation. Radioactivity distribution within the plant was determined by autoradiography. We did not find differences between uptake of radioactive and stable caesium isotopes. Relations between the uptake of 137Cs and concentration of potassium and ammonium ions in medium were also tested. The highest uptake of radiocaesium by sunflower was obtained for medium with 1 mM K2SO4 (14.2%) and in case of ammonium ions for concentration ratio 6 mM NH4Cl : 3 mM NH4NO3 (13.2%). The obtained results make it possible to compare the capability and rate of 137Cs phytoremediation of different plant species.  相似文献   

18.
Yang B  Yu G  Shuai D 《Chemosphere》2007,67(7):1361-1367
The electrocatalytic hydrodechlorination of 4-chlorobiphenyl on palladized nickel foam with high porous structure in an aqueous solution containing MeOH, bromide of hexadecyltrimethylammonium (CTAB), sodium acetate, and acetic acid were investigated in a membrane-separated flow-through cell. The Pd/Ni foam electrode was prepared by electroless deposition method, on which the Pd particles dispersed finely over Ni foam surface indicated by SEM-EDX analysis. The effects of current density, organic cosolvent, initial concentration, temperature, and flow rate on the hydrodechlorination of 4-chlorobiphenyl were examined. Methanol was among the best cosolvents and was used in preferential concentration of 50 vol%. Moderate current density (e.g., 2.23 mA cm(-2)), relatively high initial concentration, temperature, and flow rate were beneficial to improve the hydrodechlorination of 4-chlorobiphenyl. The current efficiencies for the conversion of 1mM 4-MCB decreased with increasing current density and range from 37.2% at 0.74 mA cm(-2) to 14.1% at 5.21 mA cm(-2) after 20 min electrolysis cut. Under the optimized conditions, 1mM of 4-MCB could be removed rapidly with the rate of 94.6% after 2h electrolysis, which gave current efficiencies and energy consumptions in range of 8.1-24.6% and 1.7-5.2 kW h kg(-1), respectively.  相似文献   

19.
The effect of six glyphosate concentrations on growth rate and aflatoxin B1 (AFB1) production by Aspergillus section Flavi strains under different water activity (aW) on maize-based medium was investigated. In general, the lag phase decreased as glyphosate concentration increased and all the strains showed the same behavior at the different conditions tested. The glyphosate increased significantly the growth of all Aspergillus section Flavi strains in different percentages with respect to control depending on pesticide concentration. At 5.0 and 10 mM this fact was more evident; however significant differences between both concentrations were not observed in most strains. Aflatoxin B1 production did not show noticeable differences among different pesticide concentrations assayed at all aW in both strains. This study has shown that these Aspergillus flavus and A. parasiticus strains are able to grow effectively and produce aflatoxins in high nutrient status media over a range of glyphosate concentrations under different water activity conditions.  相似文献   

20.
The kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE) in aqueous solutions at various pH, temperature, oxidant concentration and ionic strength levels was studied. The MTBE degradation was found to follow a pseudo-first-order decay model. The pseudo-first-order rate constants of MTBE degradation by persulfate (31.5 mM) at pH 7.0 and ionic strength 0.11 M are approximately 0.13 x 10(-4), 0.48 x 10(-4), 2.4 x 10(-4) and 5.8 x 10(-4) S(-1) at 20, 30, 40 and 50 degrees C, respectively. Under the above reaction conditions, the reaction has an activation energy of 24.5 +/- 1.6 kcal/ mol and is influenced by temperature, oxidant concentration, pH and ionic strength. Raising the reaction temperature and persulfate concentration may significantly accelerate the MTBE degradation. However, increasing both pH (over the range of 2.5-11) and ionic strength (over the range of 0.11-0.53 M) will decrease the reaction rate. Reaction intermediates including tert-butyl formate, tert-butyl alcohol, acetone and methyl acetate were observed. These intermediate compounds were also degraded by persulfate under the experimental conditions. Additionally, MTBE degradation by persulfate in a groundwater was much slower than in phosphate-buffer solutions, most likely due to the presence of bicarbonate ions (radical scavengers) in the groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号