首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aerosol distributions from two aircraft lidar campaigns conducted in the California Central Valley are compared in order to identify seasonal variations. Aircraft lidar flights were conducted in June 2003 and February 2007. While the ground PM2.5 (particulate matter with diameter  2.5 μm) concentration was highest in the winter, the aerosol optical depth (AOD) measured from the MODIS and lidar instruments was highest in the summer. A multiyear seasonal comparison shows that PM2.5 in the winter can exceed summer PM2.5 by 68%, while summer AOD from MODIS exceeds winter AOD by 29%. Warmer temperatures and wildfires in the summer produce elevated aerosol layers that are detected by satellite measurements, but not necessarily by surface particulate matter monitors. Temperature inversions, especially during the winter, contribute to higher PM2.5 measurements at the surface. Measurements of the mixing layer height from lidar instruments provide valuable information needed to understand the correlation between satellite measurements of AOD and in situ measurements of PM2.5. Lidar measurements also reflect the ammonium nitrate chemistry observed in the San Joaquin Valley, which may explain the discrepancy between the MODIS AOD and PM2.5 measurements.  相似文献   

2.
Aerosol temporal and spatial distributions during wintertime temperature inversions in Gothenburg, Sweden, have been characterized by ground-based and airborne particle measurements combined with lidar measurements. Ground inversions frequently developed during evenings and nights with stable cold conditions, and the low wintertime insolation often resulted in near neutral boundary layer conditions during day-time. Under these conditions ground level aerosol concentrations peaked during morning rush hours and often remained relatively high throughout the day due to inefficient ventilation. The particle number concentrations decreased slowly with increasing altitude within the boundary layer, and measurements slightly above the boundary layer suggested limited entrainment of polluted air into the free troposphere. High concentrations of ultrafine particles were observed throughout the boundary layer up to altitudes of 1100 m, which suggested that nucleation took place within the residual layer during the night and early morning. Recently formed particles were also observed around midday when the layer near ground was ventilated by mixing into the boundary layer, which indicated that ultrafine particles were either transported down from the residual layer to ground level or formed when the polluted surface layer mixed with the cleaner air above.  相似文献   

3.
The purpose of this paper is to study the relationship between columnar aerosol optical thickness and ground-level aerosol mass. A set of Sun photometer, elastic backscattering lidar and TEOM measurements were acquired during April 2007 in Lille, France. The PM2.5 in the mixed boundary layer is estimated using the lidar signal, aerosol optical thickness, or columnar integrated Sun photometer size distribution and compared to the ground-level station measurements. The lidar signal recorded in the lowest level (240 m) is well correlated to the PM2.5 (R2 = 0.84). We also show that the correlation between AOT-derived and measured PM2.5 is significantly improved when considering the mixed boundary layer height derived from the lidar. The use of the Sun photometer aerosol fine fraction volume does not improve the correlation.  相似文献   

4.
The knowledge of aerosol properties at local and regional scale is important in understanding of the global climate change. In this study, the aerosol optical properties over Beijing have been presented from the Aerosol Robotic Network (AERONET) measurements during 2002–2007. The aerosol optical depth (AOD) showed a distinct seasonal variation with high values in spring (March–May) and summer (June–August). The magnitude of Ångström exponent (α) was found to be relatively high throughout the year and the highest values (1.27) occurred in summer and the lowest (1.0) in spring. The water vapor retrieved from AERONET was found to be highest (2.60 cm) in summer. The fine modes of aerosol volume size distributions showed the highest peak around radius 0.15 μm in spring, autumn (September–November) and winter (December–February), and radius 0.19 μm in summer. The coarse modes showed the maxima peak at radius 3.0 μm in all seasons. The asymmetry factor (g) has considered as 0.65 at 440, 675, 870 and 1020 nm over Beijing in climate and radiation models. The average values of the single scattering albedo (SSA) at the four wavelengths were taken as 0.89, 0.91, 0.87 and 0.86 in spring, summer, autumn and winter, respectively. Both real and imaginary parts of the refractive index showed low wavelength dependence. The highest averages of real (1.52) and imaginary parts (0.0165) were found in spring and winter respectively in the wavelength range of 440–1020 nm. The aerosol properties over Beijing were found to highly dependent on season, and changes in aerosol properties were mainly attributed to the presence of dust as the main component during the spring season and the dominance of anthropogenic pollutants during the winter season.  相似文献   

5.
Multi-year records of MODIS, micro-pulse lidar (MPL), and aerosol robotic network (AERONET) Sun/sky radiometer measurements were analyzed to investigate the seasonal, monthly and geographical variations of columnar aerosol optical properties over east Asia. Similar features of monthly and seasonal variations were found among the measurements, though the observational methodology and periods are not coincident. Seasonal and monthly cycles of MODIS-derived aerosol optical depth (AOD) over east Asia showed a maximum in spring and a minimum in autumn and winter. Aerosol vertical extinction profiles measured by MPL also showed elevated aerosol loads in the middle troposphere during the spring season. Seasonal and spatial distributions were related to the dust and anthropogenic emissions in spring, but modified by precipitation in July–August and regional atmospheric dispersion in September–February. All of the AERONET Sun/sky radiometers utilized in this study showed the same seasonal and monthly variations of MODIS-derived AOD. Interestingly, we found a peak of monthly mean AOD over industrialized coastal regions of China and the Yellow Sea, the Korean Peninsula, and Japan, in June from both MODIS and AERONET Sun/sky radiometer measurements. Especially, the maximum monthly mean AOD in June is more evident at the AERONET urban sites (Beijing and Gwangju). This AOD June maximum is attributable to the relative contribution of various processes such as stagnant synoptic meteorological patterns, secondary aerosol formation, hygroscopic growth of hydrophilic aerosols due to enhanced relative humidity, and smoke aerosols by regional biomass burning.  相似文献   

6.
In order to investigate the influence of the atmospheric aerosol on the ultraviolet radiation on earth, the measurement campaign Photochemical Activity and Ultraviolet Radiation (PAUR II) Modulation was carried out in the central Mediterranean Sea during the period May–June 1999. Two sites were chosen for measurements: the island of Crete (Greece), and the island of Lampedusa (Italy). The aerosol features over the Lampedusa island, as well as the dust coming from Sahara desert, were investigated by measurements of direct and diffuse solar irradiance carried out with an aureolemeter. The columnar volume size distributions of the aerosol showed a four-modal shape in a less turbid atmosphere when the aerosol optical depth was less than 0.2 at λ=500 nm, and a tri-modal shape in a turbid atmosphere when the aerosol optical depth at the same wavelength was greater than 0.5; the background aerosol turned out to be mainly composed of sea salt. The increase of the aerosol optical depth and of the particles density with radius about 1 μm has been found to be strictly related to the passage of Saharan dust in the time periods 14–22 May and 1–3 June, 1999. The columnar volume of particles obtained by the aureolemeter has been compared with the columnar volume of particles retrieved by in situ measurements carried out with a forward scattering spectrometer probe (FSSP) aboard a light aircraft flying over the island. Although the above two techniques refer to aerosol columns of different height and operate with different resolutions, their relevant results are in good agreement, especially during days with lower aerosol content. The two volume radius distributions have been also compared and their behaviours show a satisfactory agreement, mainly for particles with radius greater than 1 μm.  相似文献   

7.
Mobile lidar observations were made downwind of TVA’s Cumberland (Tennessee) power plant as part of the STATE (Sulfur Transport and Transformation in the Environment) program. Vertical profiles of aerosol backscatter have been processed and displayed to show plume structure as an intensity-modulated TV presentation. Available meteorological data, especially the pilot balloon and radiosonde measurements collected during the STATE experiment, have been used to aid in the interpretation of the lidar display. The data show: ? Well defined nighttime plumes, which often tilt or display a layered structure in the shape of a “>”.

? Late morning convective breakup of the plume.

? Well mixed convective plumes during the day.

? Reformation of the layered nighttime plume during the late afternoon.

It appears that the nighttime plume behavior can be related qualitatively to the strong directional shear of the wind with height that often accompanies the stable nighttime atmosphere. The nighttime plume shapes frequently differ markedly from the oval shape one expects of a gaussian plume. Daytime plumes are in better conformance to the expected shape except when constricted by the surface or the top of the mixing layer  相似文献   

8.
Radical chemistry in the nocturnal urban boundary layer is dominated by the nitrate radical, NO3, which oxidizes hydrocarbons and, through the aerosol uptake of N2O5, indirectly influences the nitrogen budget. The impact of NO3 chemistry on polluted atmospheres and urban air quality is, however, not well understood, due to a lack of observations and the strong impact of vertical stability of the boundary layer, which makes nocturnal chemistry highly altitude dependent.Here we present long-path DOAS observations of the vertical distribution of the key nocturnal species O3, NO2, and NO3 during the TRAMP experiment in Summer 2006 in Houston, TX. Our observations confirm the altitude dependence of nocturnal chemistry, which is reflected in the concentration profiles of all trace gases at night. In contrast to other study locations, NO3 chemistry in Houston is dominated by industrial emissions of alkenes, in particular of isoprene, isobutene, and sporadically 1,3-butadiene, which are responsible for more than 70% of the nocturnal NO3 loss. The nocturnally averaged loss of NOx in the lowest 300 m of the Houston atmosphere is ~0.9 ppb h?1, with little day-to-day variability. A comparison with the daytime NOx loss shows that NO3 chemistry is responsible for 16–50% of the NOx loss in a 24-h period in the lowest 300 m of the atmosphere. The importance of the NO3 + isoprene/1,3-butadiene reactions implies the efficient formation of organic nitrates and secondary organic aerosol at night in Houston.  相似文献   

9.
The soil/plant/atmosphere exchange of carbonyl sulfide (COS) was investigated in an open oak woodland ecosystem at a rural site in northern California. Measurements of atmospheric concentrations of COS were made in June and in December 1994. We found a significant diel cycle with a drop of COS levels by approximately 150 ppt during the night in both seasons. The mean COS daytime background mixing ratios showed a distinct seasonal difference with 465±77 ppt in summer and 375±56 ppt in winter. The nighttime bulk COS flux into the ecosystem was estimated using a micrometeorological model. To address the observed depletion of COS during stable nocturnal boundary layer conditions, the potential of various ecosystem compartments to act as a sink for COS was investigated. Studies using dynamic enclosures flushed with ambient air excluded vegetation as an important sink during nighttime due to high stomatal resistance. Results from soil chamber measurements indicate that the soil can act as a dominant sink for atmospheric COS.  相似文献   

10.
The concentration of polycyclic aromatic hydrocarbons (PAHs) in atmospheric precipitation and aerosol samples was monitored in a rural site by Lake Balaton, Hungary to examine the seasonal variation. The seasonal mean concentration of individual 3-6-ring PAHs in precipitation varied from 1 to 54 ng l-1 and from 3 to 350 ng l-1 in summer and winter, respectively. In the atmospheric aerosol samples the seasonal mean concentration of PAHs varied from 4 to 880 pg m-3, from 4 to 300 pg m-3, from 11 to 1050 pg m-3 and from 36 to 5000 pg m-3 in spring, summer, autumn and winter, respectively. Wet (412 micrograms m-2 year-1) and aerosol (190-300 micrograms m2 year-1) deposition rates were also estimated indicating that the two processes are of comparable importance in the removal of 3-6-ring PAHs from the atmosphere.  相似文献   

11.
Continuous monitoring of atmospheric aerosol properties is very much essential in view of their wide variability in space and time. Both active as well as passive remote-sensing techniques are available apart from direct (in situ) methods to carry out such measurements. An attempt has been made in this paper to inter-compare aerosol features derived from the lidar (active sensor), multi-channel solar radiometer (passive sensor) and Andersen sampler (direct technique). The ground-level concentrations derived from the bistatic argon-ion lidar has been compared with those derived from the Andersen sampler. The results are found to be in fair agreement. The number-size distribution of aerosols retrieved from the multi-channel solar radiometer has been compared with the mass-size distribution derived from the Andersen sampler. The size spectra showed bi-modal distribution with accumulation mode around 0.08 μm and the coarse mode around 4.0 μm during the study period. Thus, the study reveals a good correspondence between the properties of aerosol particulates measured with different measurement techniques.  相似文献   

12.
The first measurements of the energy balance fluxes of a dry, densely built-up, central city site are presented. Direct observation of the net radiation, sensible and latent heat flux densities above roof-top in the old city district of Mexico City allow the heat storage flux density to be found by residual. The most important finding is that during daytime, when evaporation is very small (<4% of net radiation), and therefore sensible heat uses dominate (Bowen ratio >8), the uptake of heat by the buildings and substrate is so large (58%) that convective heating of the atmosphere is reduced to a smaller role than expected (38%). The nocturnal release of heat from storage is equal to or larger than the net radiation and sufficient to maintain an upward convective heat flux throughout most nights. It is important to see if this pattern is repeated at other central city, or dry urban sites, or whether it is only found in districts dominated by massive stone structures. These findings have implications for the height of the urban mixing layer and the magnitude of the urban heat island.  相似文献   

13.
Sulphate size distributions were measured at the coastal station of Mumbai (formerly Bombay) through 1998, during the Indian ocean experiment (INDOEX) first field phase (FFP), to fill current gaps in size-resolved aerosol chemical composition data. The paper examines meteorological, seasonal and source-contribution effects on sulphate aerosol and discusses potential effects of sulphate on regional climate. Sulphate size-distributions were largely trimodal with a condensation mode (mass median aerodynamic diameter or MMAD 0.6 μm), a droplet mode (MMAD 1.9–2.4 μm) and a coarse mode (MMAD 5 μm). Condensation mode sulphate mass-fractions were highest in winter, consistent with the high meteorological potential for gas-to-particle conversion along with low relative humidity (RH). The droplet mode concentrations and MMADs were larger in the pre-monsoon and winter than in monsoon, implying sulphate predominance in larger sized particles within this mode. In these seasons the high RH, and consequently greater aerosol water in the droplet mode, would favour aerosol-phase partitioning and reactions of SO2. Coarse mode sulphate concentrations were lowest in the monsoon, when continental contribution to sulphate was low and washout was efficient. In winter and pre-monsoon, coarse mode sulphate concentrations were somewhat higher, likely from SO2 gas-to-particle conversion. Low daytime sulphate concentrations with a large coarse fraction, along with largely onshore winds, indicated marine aerosol predominance. High nighttime sulphate concentrations and a coincident large fine fraction indicated contributions from anthropogenic/industrial sources or from gas-to-particle conversion. Monthly mean sulphate concentrations increased with increasing SO2 concentrations, RH and easterly wind direction, indicating the importance of gas-to-particle conversion and industrial sources located to the east. Atmospheric chemistry effects on sulphate size distributions in Mumbai, indicated by this data, must be further examined.  相似文献   

14.
A combination of in-situ PM2.5, sunphotometers, upward pointing lidar and satellite aerosol optical depth (AOD) instruments have been employed to better understand variability in the correlation between AOD and PM2.5 at the surface. Previous studies have shown good correlation between these measures, especially in the US east, and encouraged the use of satellite data for spatially interpolating between ground sensors. This work shows that cases of weak correlation can be better understood with knowledge of whether the aerosol is confined to the surface planetary boundary layer (PBL) or aloft. Lidar apportionment of the fraction of aerosol optical depth that is within the PBL can be scaled to give better agreement with surface PM2.5 than does the total column amount. The study has shown that lidar combined with surface and remotely sensed data might be strategically used to improve our understanding of long-range or regionally transported pollutants in multiple dimensions.  相似文献   

15.
In this article, numerical simulations and observational analyses have been made for the aerosol episode that occurred over the Pearl River Delta (PRD) region in China during 1–3 November 2003. An air quality modeling system that consisted of the mesoscale model MM5, chemical transport model MODELS-3/CMAQ, and air pollutant emission model SMOKE, was employed. Studies have shown that this particulate matter (PM) pollution episode was apparently associated with the activity of tropical cyclone (TC) Melor. Model simulations revealed that Melor spawned this PM episode through dynamic and thermodynamic processes. The strong compensating subsidence induced by Melor's peripheral circulations created favorable meteorological conditions that enhanced local aerosol pollution. This strong downward motion produced significant adiabatic warming (2–4 °C daily) and dramatic drying in the low-level troposphere over the PRD. As a result, the PRD region was blanketed with a dry and warm air layer that strengthened the static stability of the lower troposphere. The descending motion also tended to dramatically lower the heights of the planetary boundary layer (PBL) through its dynamic effect. The fair weather created by this synoptic pattern further intensified the nocturnal temperature inversions through enhanced radiative cooling. All of these factors promoted a stagnant local atmosphere with very light winds near the surface. The horizontal and vertical dispersions of locally emitted aerosol particles were largely suppressed, leading to the accumulation of large amounts of PMs near local emission sources in the PRD region. As Melor drew near, changes in surface winds strengthened the horizontal transport of aerosol particles from inland sources to the area of Hong Kong downstream. This horizontal advection greatly contributed to the high PM10 (particulate matters less than 10 μm in diameters) concentrations in Hong Kong.  相似文献   

16.
Biomass burning, in the form of savanna fires and firewood for cooking and warmth, is widespread during the dry winter months in Southern Africa. This study was carried out to investigate its impact on the environment in Gaborone, Botswana, which is a small-sized city with very little pollution from industrial sources. Measurements of aerosol size and number concentrations were carried out at the University of Botswana campus in Gaborone from September 1999 to July 2000 using two automatic laser scattering particle counters. Particles were monitored in eight size ranges from 0.1 to 5.0 μm. The mean daily particle concentrations were found to vary from about 200 cm−3 on clear visibility days during the summer to a high of over 9000 cm−3 on cold winter evenings, when there was a significant smoke haze over the city. Particle concentrations were noticeably higher during the winter than in the summer. During a typical winter day, the total particle concentration peaked between 18 and 23 h, often showing an increase of over four-fold from mid-morning minimum values. The aerosol number size distributions under various conditions were investigated and the corresponding surface area and volume distributions were derived. In general, both the surface and volume distributions were bimodal with peaks close to 0.2 μm and at 5.0 μm or greater. A hand-held counter with a minimum detectable particle size of 0.3 μm was used to monitor the size and number concentrations of aerosols across the city. The results indicate a consistent pattern of maximum concentration in the highly populated areas close to the city centre, falling significantly in the sparsely populated outlying areas by up to an order of magnitude during peak biomass burning, suggesting that much of the smoke particles in the city are removed by wind.  相似文献   

17.
In the troposphere anthropogenic aerosol emissions are increasing in recent decades, which can influence the earth's climate. The present study addresses the characterization of aerosols and their radiative impacts over urban (Hyderabad) and rural (Srisailam) environments by using aerosol optical depth (AOD) measurements from MICROTOPS-II sunphotometer. AOD measurements over the urban site showed high values compared to the rural site. Over the urban environment aerosol forcing at the surface is as high as -42 W m(-2) and at the top of the atmosphere (TOA) is +10 W m(-2) whereas at the rural environment aerosol forcing at the surface has been observed to be -11 W m(-2) and at TOA it is observed to be +5.7 W m(-2). The difference between TOA and the surface forcing over the urban environment is +32 W m(-2) and over the rural environment is +5.3 W m(-2), which shows the absorption capacity of the respective atmospheres.  相似文献   

18.
Indian aerosols: present status   总被引:2,自引:0,他引:2  
Mitra AP  Sharma C 《Chemosphere》2002,49(9):1175-1190
This article presents the status of aerosols in India based on the research activities undertaken during last few decades in this region. Programs, like International Geophysical Year (IGY), Monsoon Experiment (MONEX), Indian Middle Atmospheric Program (IMAP) and recently conducted Indian Ocean Experiment (INDOEX), have thrown new lights on the role of aerosols in global change. INDOEX has proved that the effects of aerosols are no longer confined to the local levels but extend at regional as well as global scales due to occurrence of long range transportation of aerosols from source regions along with wind trajectories. The loading of aerosols in the atmosphere is on rising due to energy intensive activities for developmental processes and other anthropogenic activities. One of the significant observation of INDOEX is the presence of high concentrations of carbonaceous aerosols in the near persistent winter time haze layer over tropical Indian Ocean which have probably been emitted from the burning of fossil-fuels and biofuels in the source region. These have significant bearing on the radiative forcing in the region and, therefore, have potential to alter monsoon and hydrological cycles. In general, the SPM concentrations have been found to be on higher sides in ambient atmosphere in many Indian cities but the NOx concentrations have been found to be on lower side. Even in the haze layer over Indian Ocean and surrounding areas, the NOx concentrations have been reported to be low which is not conducive of O3 formation in the haze/smog layer. The acid rain problem does not seem to exist at the moment in India because of the presence of neutralizing soil dust in the atmosphere. But the high particulate concentrations in most of the cities' atmosphere in India are of concern as it can cause deteriorated health conditions.  相似文献   

19.
Multiyear lidar measurements of characteristics of stratospheric aerosol layer, made at midlatitude observatories in Tomsk (56.5°N, 85.0°E) and Minsk (53.9°N, 27.5°E), are analyzed and used to study the processes of long-term relaxation of the aerosol-perturbed stratosphere after powerful volcanic eruptions to background state. The absence of significant seasonal variations of vertical stratification of stratospheric aerosol and exponential altitudinal decrease of aerosol backscattering coefficient are proposed as criteria of background state of stratospheric aerosol layer for Northern Hemisphere midlatitudes.  相似文献   

20.
The aerosol samples were collected from a high elevation mountain site, Nainital, in India (1958 m asl) during September 2006 to June 2007 and were analyzed for water-soluble inorganic species, total carbon, nitrogen, and their isotopic composition (δ13C and δ15N, respectively). The chemical and isotopic composition of aerosols revealed significant anthropogenic influence over this remote free-troposphere site. The amount of total carbon and nitrogen and their isotopic composition suggest a considerable contribution of biomass burning to the aerosols during winter. On the other hand, fossil fuel combustion sources are found to be dominant during summer. The carbon aerosol in winter is characterized by greater isotope ratios (av. ?24.0?‰), mostly originated from biomass burning of C4 plants. On the contrary, the aerosols in summer showed smaller δ13C values (?26.0?‰), indicating that they are originated from vascular plants (mostly of C3 plants). The secondary ions (i.e., SO4 2?, NH4 +, and NO3 ?) were abundant due to the atmospheric reactions during long-range transport in both seasons. The water-soluble organic and inorganic compositions revealed that they are aged in winter but comparatively fresh in summer. This study validates that the pollutants generated from far distant sources could reach high altitudes over the Himalayan region under favorable meteorological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号