首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Field studies were conducted at USDA Beltsville Agricultural Research Center, Beltsville, Maryland, in 1984 and 1985 using open-top chambers to acquire information on the responses of 12 soybean (Glycine max L. Merr.) cultivars to O3 stress and to examine the interactions between maturity groups and O3 stress. Cultivars representing Groups III, IV, and V were exposed for approximately 3 months to charcoal-filtered air (CF) and nonfiltered air plus 40 nl litre(-1) O3 (NF + O3). Ozone was added 6 h d(-1), 5 d week(-1) for 13 weeks. The CF effectively reduced the accumulative oxidant exposure (AOX) to less than 1.0 microl litre(-1) h and the NF + O3 treatment approximately doubled the ambient AOX (16.7 microl litre(-1) h) to about 30 microl litre(-1) h. The AOX estimates the total O3 exposure above 30 nl litre(-1) during an entire growing season. Plant growth rates and relative growth rates were reduced by 17.0 and 14.4%, respectively, when averaged over cultivars. Based on growth rates, the Group III cultivars were the most affected by O3 stress. Averaged over cultivars, leaf expansion rates, leaf conductance, and transpiration rates were lower in the NF + O3 treatment compared to the CF control; however, wide variation was found with the stomatal results from field observations. Combined over years and cultivars, grain yield was reduced by an average of 12.5% by O3 stress with 3 of 12 cultivars showing significant reductions. Grain protein content was increased by 0.7% by O3 stress, but cultivar differences were equal to the differences caused by the O3 treatments. Grain oil content was unchanged by the O3 treatments. Group IV cultivars showed the greatest decrease in grain yield due to O3 stress. Multiple regression analyses were calculated using the difference between the CF and NF + O3 treatment as a measure of O3 stress. Significant positive relationships were found among net assimilation rates, plant growth rates, relative growth rates, and leaf expansion rates, which suggest that growth analysis characteristics would be useful in addition to yield in air pollution tolerance improvement studies with soybeans.  相似文献   

2.
Spring wheat (Triticum aestivum L., cv. Albis) was grown in the field at a site located in central Switzerland, and exposed to chronic doses of ozone (O(3)) in open-top chambers to study impacts on yield. The experiment was carried out in 1986, 1987 and 1988. The treatments used included charcoal-filtered air (CF), non-filtered air (NF) and non-filtered air to which constant amounts of O(3) (two levels, O(3)-1 and O(3)-2) were added daily from 09.00 until 17.00 local time. Mean solar radiation-weighted O(3) concentrations during the fumigation period were in the range 0.016-0.022 microl litre(-1) (CF), 0.036-0.039 microl litre(-1) (NF), 0.057-0.058 microl litre(-1) (O(3)-1, used in 1987 and 1988 only) and 0.078-0.090 microl litre(-1) (O(3)-2). Fumigation was maintained from the three-leaf stage until harvest. Ambient plots were used as a reference. Plant characteristics examined included straw yield, grain yield, number of grains per head, number of heads per surface area, weight of individual grains and harvest index (ratio of grain weight to total dry weight). Pollutant concentrations and other environmental parameters were monitored continuously inside and outside the chambers. In 1986 and 1987, enclosure mostly increased the values of different parameters, while in 1988, they were decreased. The negative enclosure effect was due to extremely turbulent winds, which caused lodging inside the chambers. In all 3 years, increasing O(3) concentrations negatively affected the parameters studied, except for the number of heads per surface area, which showed no treatment response. Grain yield showed a very sensitive response to O(3). The effect of O(3) on grain yield was due to an effect primarily on grain size and secondarily on grain number. The relative response of grain yield to O(3) was similar in all 3 years, despite year-to-year differences in climatic conditions and enclosure effects. The analysis of the data for combined years revealed an increase of about 10% in grain yield due to air filtration. The corresponding increase in straw yield was only about 3.5%. Exposure-response models were developed for individual years and combined years. It is concluded that, in the study area, ambient O(3) may affect grain yield in spring wheat.  相似文献   

3.
Seasonal growth was studied in potted cuttings of hybrid poplar (one clone of Populus x euramericana) either exposed to ozone in filtered air (0 = control, 0.05, 0.10 microl litre(-1)) or in ambient air (mean = 0.03 microl litre(-1)). Only at 0.10 microl litre(-1) was biomass production reduced and related to leaf loss rather than leaf formation, since the latter was similar in all treatments. Stem length at 0.10 microl litre(-1) approached that of the control, whereas starch concentration in the green stem bark tended to be reduced, as were the ratios of stem weight/length and root/shoot biomass. The changes in carbon allocation and biomass production gradually became established during the second half of the growing season. At the altered carbon allocation at 0.10 microl litre(-1), the ratio of whole-plant production/attached foliage area resembled that of the other O(3) regimes. However, the latter ratio was strongly reduced at 0.10 microl litre(-1) when calculated on the basis of the potential foliage area, as compensated for the O(3)-induced leaf loss. Thus the carbon return/cost balance of the totally formed foliage was low, although the relative-growth rate of ozonated plants temporarily reached that of the control. The relation between leaf differentiation under ozonation (lowered stomatal density) and whole-plant production remains uncertain. The plant behavior found is discussed in terms of passive response or acclimatization to O(3) stress.  相似文献   

4.
Soybeans (Glycine max. cv. Williams) were grown to maturity in soil columns within polyvinyl pipe and placed in greenhouses with charcoal filtered (CF) and nonfiltered (NF) air. In each greenhouse plants were grown with and without soil moisture stress (SMS). Targeted soil water potentials at 0.25 m for no SMS and between 0.45 and 0.60 m for the SMS regime were -0.05 and -0.45 M Pa, respectively. The 7 h (1000-1700 h EDT) mean O(3) concentrations (June-October) were 0.039 and 0.009 ppm in NF and CF air, respectively. Ozone and SMS in combination were less than additive in their effects on growth of the plant top and bean yields. Plants in CF air had 70% greater top weight, 58% more bean yield and 43% more root dry weight than in NF air. Both the plant and the seed weight from plants without SMS weighed 35% more than with SMS. Total root length in CF air for plants with and without SMS averaged 1.84 and 1.98 km, respectively, as compared to 1.59 and 1.66 km for plants with and without SMS in NF air. The resultsare different, so far as the combined effects of O(3) and SMS on yield and root growth are concerned, than in a similar field study by Heggestad and co-workers primarily because of the presence of a water table in the field but absence of it in the columns, as planned, in this experiment. It is unique to use large soil columns to study root distribution and length as related to the effects of ambient O(3) alone, and its combination with SMS.  相似文献   

5.
Greenhouse and ambient air experiments have shown ethylene diurea (EDU) to be a strong and specific protective suppressant of ozone injury in plants. To examine how EDU affects plant responses to various ozone (O(3)) levels under controlled field conditions, Phaseolus vulgaris L. cv. Lit was treated with 150 ppm EDU every 14 days and exposed in open-top chambers to charcoal-filtered air (CF), nonfiltered air (NF) or two cf treatments with ozone added. The ozone treatments were proportional additions of one (CF1) and two (CF2) times ambient ozone levels. The mean ozone concentrations in the CF, NF, CF1 and CF2 treatments were 0.98, 14.1, 14.98 and 31.56 nl litre(-1). A two-way split plot ANOVA revealed that shoot dry weight was significantly reduced by ozone. EDU treatment was highly significant for leaf dry weight, root dry weight and shoot dry weight, but not for pod dry weight; leading to a higher biomass of EDU-treated plants. Ozone/EDU interactions were significant for root weight only, indicating that EDU reduced growth suppression by ozone. These results show that EDU action on plant biomass could be interpreted as a delay in senescence since EDU-treated plants showed a significant decreased biomass loss even in the CF treatment.  相似文献   

6.
This study was conducted to determine the physiological and growth responses of cotton (Gossypium hirsutum L.) to the interaction of ozonee (O3) and drought stress. Cotton (cv SJ-2) was grown in open-top chambers in the field at three levels of soil water and exposed to charcoal-filtered air (CF), nonfiltered air (NF), and NF x 1.25, and NF x 1.5 ambient O3 concentrations in Riverside, CA, from June to October 1986. Ozone reduced carbon fixation an average of 74.6% in optimally watered (OW) plots, 63.4% in suboptimal (SO) plots, but only 19.3% in severely water-stressed (SS) plots. Leaf and stem biomass in OW and SO plots showed similar linear reductions in mass response to increased O3 concentrations, but SS plots showed no response to O3 except at the highest O3 treatment (seasonal 12-h O3 mean of 0.111 ppm 218 microm(-3)). These results showed that moderately water-stressed cotton had similar physiological and growth responses to O3 as well-watered plants, but severely water-stressed cotton showed little response to O3 at ambient O3 concentrations.  相似文献   

7.
Growth and yield were reduced but (14)C translocation velocity was not affected by increasing levels of ozone in spring wheat exposed in open top chambers to the following treatments: charcoal filtered air (CF), non-filtered ambient air (NF), or NF with addition of 30 microl litre(-1) ozone, 8 h daily (NFO). Destructive harvests were performed at anthesis and at maturity. Parts of the flag leaf or the second leaf were exposed to (14)CO(2) in small cuvettes for 5 min before, during and after anthesis. The translocation velocity was followed by autoradiography and scintillation counting of the plants frozen and lyophilized at different times after labelling. The label was transported at the same velocity in all the treatments. Ozone induced changes in carbon allocation or partitioning should probably be explained as amounts of carbon transported (mg s(-1)), rather than as transportation velocity (mm s(-1)). The amount translocated may be governed by source conditions under O(3) stress: reduced healthy green biomass and photosynthesis, but perhaps also by impairment of phloem loading because of membrane damage.  相似文献   

8.
Managed pasture composed of grasses, clover and weeds was exposed in open-top chambers to different levels of ozone (O(3)) during two consecutive seasons to study changes in yield, species composition, canopy structure, and forage quality. The pasture was established in 1990 and exposed in 1991 and 1992. Ozone treatments included charcoal-filtered air (CF), non-filtered air (NF), and two treatments with O(3) added to NF air during periods with global radiation >/= 400 W m(-2) (NF(+), NF(++)). The ratio between the 2-year cumulative, radiation-weighted O(3) concentration in ambient air (= 365 microl litre(-1) h) and in the different treatments was 0.50 (CF), 0.85 (NF), 1.11 (NF(+)), and 1.64 (NF(++)). Plots were harvested four times in 1991, and five times in 1992. The total forage yield for both seasons was modified little by O(3). The yield reduction in NF(++) was only 10% as compared to the CF treatment. Also, only marginal changes were observed in forage quality (Ca, crude protein, crude fibre), and in leaf area index and fractional light penetration. Ozone strongly reduced the yield of clover (Trifolium repens L. and Trifolium pratense L.). The O(3)-effect on clover growth was small after the first harvest and increased with each growth period. In NF, the 2-year cumulative clover yield was reduced by 24% relative to CF. In NF(++), clover growth almost ceased near the end of the second season. The reduction in clover yield with increasing O(3) was associated with a slight increase in the yield of grasses (mainly Dacytlis glomerata L). The increase in the proportion of invading species (weeds or herbs) (Taraxacum officinale L.) during the experiment was not significantly affected by O(3). A second order polynomial function was fitted to the data to establish an exposure-response model for the cumulative clover yield and the cumulative, radiation-weighted O(3) dose, and linear models were developed for total forage mass, grass yield and yield of weeds. Reducing O(3) from elevated levels (NF(+) and NF(++)) during the first season to near-ambient levels (NF) during the second season resulted in a significant recovery of clover yield after two re-growth periods. It is concluded that continuous exposure to ambient levels of O(3) negatively affects the yield of clover in frequently cut, managed pasture, but because of the relatively small proportion of clover, the shift in species composition only marginally affects total forage yield and forage quality. It is emphasised, however, that limitations of the experimental system must be taken into account before extrapolations to real field situations can be made.  相似文献   

9.
The effects of CO(2) enrichment and O(3) induced stress on wheat (Triticum aestivum L.) and corn (Zea mays L.) were studied in field experiments using open-top chambers to simulate the atmospheric concentrations of these two gases that are predicted to occur during the coming century. The experiments were conducted at Beltsville, MD, during 1991 (wheat and corn) and 1992 (wheat). Crops were grown under charcoal filtered (CF) air or ambient air + 40 nl liter(-1) O(3) (7 h per day, 5 days per week) having ambient CO(2) concentration (350 microl liter(-1) CO(2)) or + 150 microl liter(-1) CO(2) (12 h per day.). Averaged over O(3) treatments, the CO(2)-enriched environment had a positive effect on wheat grain yield (26% in 1991 and 15% in 1992) and dry biomass (15% in 1991 and 9% in 1992). Averaged over CO(2) treatments, high O(3) exposure had a negative impact on wheat grain yield (-15% in 1991 and -11% in 1992) and dry biomass (-11% in 1991 and -9% in 1992). Averaged over CO(2) treatments, high O(3) exposure decreased corn grain yield by 9%. No significant interactive effects were observed for either crop. The results indicated that CO(2) enrichment had a beneficial effect in wheat (C(3) crop) but not in corn (C(4) crop). It is likely that the O(3)-induced stress will be diminished under increased atmospheric CO(2) concentrations; however, maximal benefits in crop production in wheat in response to CO(2) enrichment will not be materialized under concomitant increases in tropospheric O(3) concentration.  相似文献   

10.
Effects of increased ozone (O3) and carbon dioxide (CO2) on polyamine levels were determined in soybean (Glycine max L. Merr. cv. Clark) grown in open-top field chambers. The chamber treatments consisted of three O3 regimes equal to charcoal filtered (CF), non-filtered (NF), and non-filtered plus 40 nl litre(-1) O3 and CO2 treatments equal to 350, 400 and 500 microl litre(-1) for a total of nine treatments. Leaf samples were taken at three different times during the growing season. Examination of growth and physiological characteristics, such as photosynthesis, stomatal resistance, and shoot weight, revealed that increasing CO2 ameliorated the deleterious effects of increased O3. Results from the initial harvest, at the pre-flowering growth stage (23 days of treatment), showed that increasing O3 at ambient CO2 caused increases in putrescine (Put) and spermidine (Spd) of up to six-fold. These effects were lessened with increased CO2. Elevated CO2 increased polyamines in plants treated with CF air, but had no effect in the presence of ambient or enhanced O3 levels. Leaves harvested during peak flowering (37 days of treatment) showed O3-induced increases in Put and Spd at ambient CO2 concentrations. However, increased CO2 levels inhibited this response by blocking the O3-induced polyamine increase. Leaves harvested during the pod fill stage (57 days of treatment) showed no significant O3 or CO2 effects on polyamine levels. Our results demonstrate that current ambient O3 levels induce the accumulation of Put and Spd early in the growing season and that further increases in O3 could result in even greater polyamine increases. These results are consistent with a possible antiozonant function for polyamines. The ability of increased CO2 to protect soybeans from O3 damage, however, does not appear to involve polyamine accumulation.  相似文献   

11.
Chronic exposure to ozone (O(3)) air pollution can reduce yield in wheat; however, little is known concerning the effects of O(3) stress on kernel development. A field study was conducted to investigate the effects of chronic O(3) exposure on kernel-growth components of two soft red winter-wheat genotypes (Seven and MD5518308). Five air-quality treatments, including charcoal-filtered air (CF), non-filtered air (NF), NF + 20, and NF + 40 and NF + 80 nl O(3) liter(-1) air were applied 4 h d(-1), 5 d wk(-1) through maturity. In the case of the NF + treatments, O(3) was added to existing ambient O(3) levels. Spike samples were collected 16, 20, 24, 28, and 32 days after anthesis (DAA). Linear and quadratic equations were fitted to kernel-weight data to estimate kernel-growth rate (KGR) and kernel-fill duration (KFD). Effective filling period (EFP) and assimilate utilization (AU) were also determined. Rates of growth for individual kernels were 0.74 mg d(-1) and 1.07 mg d(-1) for the NF + 80 and CF treatments, respectively. The NF + 80 nL litter(-1) O(3) treatment significantly reduced KGR and AU compared with the CF treatment. Severn had a significantly loger KFD than MD5518308, but O(3) had no significant effect on KFD of either genotype. Each genotype had similar EFP values, and O(3) had no significant effect on EFP. Linear relationships between O(3) exposure and kernel weight suggests that O(3) effects on kernel weight begin soon after anthesis in MD5518308, but, in Severn, O(3) has a greater effect on kernel weight during the later stages of kernel development. These data suggest that decreased economic yield associated with chronic O(3) exposure is primarily the result of decreased KGR.  相似文献   

12.
Psidium guajava 'Paluma' saplings were exposed to carbon filtered air (CF), ambient non-filtered air (NF), and ambient non-filtered air+40ppb ozone (NF+O(3)) 8h per day during two months. The AOT40 values at the end of the experiment were 48, 910 and 12 895ppbh(-1), respectively for the three treatments. After 5 days of exposure (AOT40=1497ppbh(-1)), interveinal red stippling appeared in plants in the NF+O(3) chamber. In the NF chamber, symptoms were observed only after 40 days of exposure (AOT40=880ppbh(-1)). After 60 days, injured leaves per plant corresponded to 86% in NF+O(3) and 25% in the NF treatment, and the average leaf area injured was 45% in NF+O(3) and 5% in the NF treatment. The extent of leaf area injured (leaf injury index) was explained mainly by the accumulated exposure of ozone (r(2)=0.91; p<0.05).  相似文献   

13.
Tibouchina pulchra saplings were exposed to carbon filtered air (CF), ambient non-filtered air (NF) and ambient non-filtered air+40 ppb ozone (NF+O3) 8 h per day during two months. The AOT40 values at the end of the experiment were 48, 910 and 12,895 ppb h(-1), respectively, for the three treatments. After 25 days of exposure (AOT40=3871 ppb h(-1)), interveinal red stippling appeared in plants in the NF+O3 chamber. In the NF chamber, symptoms were observed only after 60 days of exposure (AOT40=910 ppb h(-1)). After 60 days, injured leaves per plant corresponded to 19% in NF+O3 and 1% in the NF treatment; and the average leaf area injured was 7% within the NF+O3 and 0.2% within the NF treatment. The extent of leaf area injured (leaf injury index) was mostly explained by the accumulated exposure of ozone (r2=0.89; p<0.05).  相似文献   

14.
Open pollinated families of loblolly pine differing in resistance to fusiform rust disease were screened in laboratory studies for responses to gaseous air pollutants. Twenty families were given acute exposures (2 fumigations for 4 h each) to SO(2) (0.4-1.0 ppm), O(3) (0.25 ppm), SO(2) (0.4-1.0 ppm) + O(3) (0.25 ppm) and control. Analyses of variance were performed to evaluate the treatment effects of these air pollutants on percent foliar injury, and to determine whether the families responded differentially to the air pollution treatments. Treatment effects were significant, with the combination treatment of SO(2) + O(3) producing a higher percentage of foliar injury than the controls; however, injury levels were very low and may not be of biological significance. Subsequently, twelve families were grown in two soil types for exposure to chronic levels of SO(2) (0.06 ppm), O(3) (0.07 ppm), SO(2) (0.06 ppm) + O(3) (0.07 ppm) and control. The families were then ranked for decreased primary shoot growth, shoot dry weight, root dry weight, total plant dry weight and root/shoot ratio after exposure to air pollution treatments. Air pollution treatments as a main effect were significant for only one of five growth parameters measured, that of primary shoot growth. The main effect of family, and the interaction of family and air pollution treatments, were significant for most growth parameters measured. In general, O(3) alone and in combination with SO(2) reduced growth more than SO(2) alone. Fumigation with O(3) reduced growth of two families in comparison with control groups, whereas SO(2) alone produced decreased growth in one family and stimulated growth in three families. Treatment with O(3) alone produced higher root/shoot ratios than fumigation with charcoal-filtered air in two families. Overall, families which were fast growers under control conditions maintained their ranking after exposure to air pollution. Families producing less growth in charcoal-filtered air also produced less growth under various air pollution regimes. Results indicated that these families exhibited a high degree of resistance to air pollution injury. Growth responses of seedlings may not reflect family differences in long-term productivity. No relationship was apparent between fusiform rust resistance and growth reductions due to air pollutants.  相似文献   

15.
To study the impact of ozone (O3) and O3 plus CO2 on aspen growth, we planted two trembling aspen clones, differing in sensitivity to O3 in the ground in open-top chambers and exposed them to different concentrations of O3 and O3 plus CO, for 98 days. Ozone exposure (58 to 97 microl l(-1)-h. total exposure) decreased growth and modified crown architecture of both aspen clones. Ozone exposure decreased leaf, stem, branch, and root dry weight particularly in the O3 sensitive clone (clone 259). The addition of CO2 (150 microl l(-1) over ambient) to the O3 exposure counteracted the negative impact of O3 only in the O3 tolerant clone (clone 216). Ozone had relatively little effect on allometric ratios such as, shoot/root ratio, leaf weight ratio, or root weight ratio. In both clones, however, O3 decreased the shoot dry weight, shoot length ratio and shoot diameter. This decrease in wood strength caused both current terminals and long shoots to droop and increased the branch angle of termination. These results show that aspen growth is highly sensitive to O3 and that O3 can also significantly affect crown architecture. Aspen plants with drooping terminals and lateral branches would be at a competitive disadvantage in dense stands with limited light.  相似文献   

16.
Seedlings of a sorghum x sudangrass hybrid in pots of non-sterile soil-sand mix were exposed to ozone (O(3)) at 0, 0.15, or 0.30 microl litre(-1) (7 h day(-1), 3 days week(-1)) and simulated rain (SR) adjusted with H(2)SO(4) + HNO(3) to pH 5.5, 4.0, or 2.5 (2 cm in 1.5 h per event; 2 events week(-1)) over 3 weeks in a greenhouse. Ozone suppressed shoot and root growth, but increased acid content (i.e. pH < 5.5) of SR stimulated shoot growth and had inconsistent effects on root growth. Ozone x SR chemistry interactions significantly affected plant growth. Data for 'total' bacterial populations in the rhizosphere (number of colony-forming units per gram of rhizosphere soil) exhibited a curvilinear relationship with O(3) (maximum at 0.15 microl liter(-1)). Increased acid content of SR stimulated numbers of 'total' bacteria but suppressed populations of amylolytic bacteria. Ozone and acid content of SR tended to stimulate numbers of fungal propagules in the rhizosphere, but this effect was not significant. Numbers of rhizosphere bacteria capable of phosphatase activity increased linearly with O(3), but only when SR chemistry was characterised by pH 4.0. Data for other populations of rhizosphere microorganisms did not exhibit significant relationships to O3 x SR chemistry interactions.  相似文献   

17.
In a three-year study carried out at a rural site in Switzerland, spring wheat (Triticum aestivum L. cv. Albis) was exposed to different levels of ozone (O(3)) in open-top-field chambers from the two-leaf stage until harvest. Field plots in ambient air (AA) were used for comparison. Grain recovered from the different treatments was analyzed for minerals (Ca, Mg, K, P), starch, protein, amino acids and alpha-tocopherol, in order to investigate the effect of O(3) on grain composition. Chamber-enclosure had small effects on some parameters (K, protein), but not on others (starch), as shown by the comparison of data from the AA and non-filtered-air treatment (NF). Differences between NF and charcoal-filtered air (CF) were very small. At O(3) concentrations higher than in the NF treatment (O(3)-1 = 1.5xNF and O(3)-2 = 2.5xNF), mineral contents were higher than in the NF and CF treatments. Protein content was increased only in the O(3)-2 treatment. Starch contents decreased from about 63% in the CF treatment to 54% in the O(3)-2 tratment. No effect of O(3) on the content of alpha-tocopherol and on the essential amino acid index of the protein was observed. It is concluded that compositional changes in wheat grain in response to O(3) are minor, and that ambient O(3) is not likely to cause important changes.  相似文献   

18.
Seedlings from ten half-sib families of loblolly pine (Pinus taeda) were exposed in open-top chambers to carbon-filtered air (CF), non-filtered air (NF), or air amended with ozone to 1.7 or 2.5 times ambient. After 105 days of exposure, half the seedlings within each family were wounded but not inoculated and half were wounded and inoculated with the pitch canker fungus, Fusarium subglutinans, to which five families were relatively resistant. After an additional 50 days of ozone treatment, seedling growth and canker development were recorded. Cankers were significantly (sigma < or = 0.05) smaller among resistant compared to susceptible families, and were significantly larger among seedlings receiving the highest (2.5) compared to the ambient (NF) ozone treatment. The wound scars of non-inoculated seedlings were also significantly larger among seedlings receiving the 2.5 compared to the NF treatment, but these dimensions did not differ significantly with seedling family or resistance. The weights of needles and large roots were significantly smaller at the 2.5 compared to the 1.7 ozone treatment for inoculated but not for non-inoculated seedlings; this resulted in a significant interaction for ozone and inoculation effects. Among resistant families, root weights were significantly smaller for inoculated seedlings. Diameter growth and dry weights of needles were significantly smaller among inoculated compared to non-inoculated seedlings, but did not differ between NF and 2.5 ozone treatments.  相似文献   

19.
During two consecutive growing seasons, the same potted individuals of European aspen (Populus tremula), grown from root cuttings of one clone, were fumigated with either ambient air or ozone concentrations of 0 (control), 0.05 or 0.1 microlitre litre(-1). Structure and biomass of the annually formed branches were analysed after excision at the end of each season. Only at 0.1 microlitre litre(-1) was branch weight reduced, and crooked axes occurred in each season. During the second season, branch length and leaf sizes were strongly reduced, while many leaves displayed yellowish deficiency symptoms and lowered cation concentrations. Such leaves contrasted to those showing characteristic O3-bronzing. Although foliage density was enhanced due to reduced branch length, the area of attached foliage was limited by the small leaf sizes, necrotic leaves and premature leaf loss. During mid-summer of the second fumigation period, photosynthetic capacity, carboxylation efficiency and water-use efficiency (WUE) declined in (attached) yellowish and bronze leaves at 0.1 microlitre litre(-1), whereas green leaves at 0.05 microlitre litre(-1) displayed accelerated senescence in late summer while maintaining WUE. It is concluded that the differences in branch growth between the two growing seasons were caused in part by internal changes in those plant organs (root and basal stem), which had experienced both fumigation periods.  相似文献   

20.
Thirty-five cultivars of pot plants of 20 families were exposed for 50-64 days in a greenhouse facility to either 1 microl litre(-1) NO with 0.5 microl litre(-1) NO2, or 1 microl litre(-1) NO2 with 0.1 microl litre(-1) NO for 15 h each day, with air which was free from these gases as the reference. A sensitivity ranking of the pot plants was compiled, with the highest priority on visible injuries, followed by growth reductions, primarily as a response to the NO-dominated exposures, simulating the NOx-polluted environment in direct-fired, CO2-enriched greenhouses. This treatment reduced the leaf dry weight more than the number and area of the leaves. Twenty-two cultivars were significantly injured, while two (Hibicus sp, Epipremnum pinnatum, green) were significantly improved. The NOx-sensitivity of pot plants was highest in cultivars with variegated, small or narrow leaves, and in the Moraceae family. Nine cultivars (Ficus elastica 'Robusta', F. benjamina, F. pumila 'Sonny', Dieffenbachia maculata 'Camilla', F. elastica 'Tineke', Epipremnum pinnatum 'Marble Queen', Begonia elatior 'Nelson', Cyclamen persica, Poinsettia 'Mini') were specifically sensitive to the NO-containing exposure; six were specifically sensitive to the NO2-containing exposure (F. elastica 'Robusta', Asparagus den. 'Sprengeri', Hedera helix 'Shamrock', Aspledium nidus, Aster novo-belgii, Hypoestes phyl. 'Betina'); and 12 (Soleirolia soleirolii, Asparagus den. 'Sprengeri', H. helix 'Ester', Codiaeum 'Pictum', Rosa 'Minimo Red', F. benjamina 'Starlight', Saintpaulia ionantha 'light blue', F. pumila, Rhododendron simsii, H. helix 'Shamrock', Hibiscus sp., E. pinnatum) were equally sensitive to mixtures dominated by either gas, as measured by at least one response parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号