首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We investigated the influence of intracellular diffusion on muscle fiber design in several swimming and non-swimming brachyuran crabs. Species with sustained swimming behavior had aerobic dark fibers subdivided into small metabolic functional units, creating short diffusion distances necessary to support the high rates of aerobic ATP turnover associated with endurance activity. This dark fiber design was observed in all swimming species including Ovalipes ocellatus, which has apparently evolved swimming behavior independently of other Portunidae. In addition, we observed fiber and subdivision size-dependent differences in organelle distribution. Mitochondria, which rely on oxygen to function, were uniformly distributed in small fibers/subdivisions, but were clustered at the fiber periphery in larger fibers. The inverse pattern was observed for nuclei, which are not oxygen dependent, but rely on the transport of slow diffusing macromolecules. Phylogenetically independent contrast analysis revealed that these relationships were largely independent of phylogeny. Our results demonstrate cellular responses to diffusion that were necessary for the evolution of swimming and that are likely to be broadly applicable.  相似文献   

2.
Calanoid copepods typically exhibit escape reactions to hydrodynamic stimuli such as those generated by the approach of a predator. During the summers of 2000, 2001 and 2004, two small calanoid species, Temora turbinata Dana, 1849 and Paracalanus parvus Claus, 1863 were exposed to a visual predatory fish, the blenny Acanthemblemaria spinosa Metzelaar, 1919, and their predator–prey interactions were recorded using both high-speed and standard videographic techniques. Copepod escape reaction components, including swimming pattern, reactive distance, turning rate, and jump kinetics, were quantified from individual predation events using motion analysis techniques. Among the observed escape reaction components, differences were noted between the species’ swimming patterns prior to attack and their response latencies. Temora turbinata was a continuous cruiser and P. parvus exhibited a hop-and-sink swimming pattern. During periods of sinking, P. parvus stopped beating its appendages, which presumably reduced any self-generated hydrodynamic signals and increased perceptual abilities to detect an approaching predator. Response latency was determined for each copepod species using a hydrodynamic stimulus produced by a 1 ms acoustic signal. Response latencies of T. turbinata were significantly longer than those of P. parvus. Despite some apparent perceptual advantages of P. parvus, the blenny successfully captured both species by modifying its attack behavior for the targeted prey.  相似文献   

3.
The swimming behavior of the marine cyclopoid copepodOithona davisae Ferrari and Orsi, collected in Tokyo Bay, Japan, between 1980 and 1983, was studied after acclimation to various food concentrations. Males and females exhibited forward and circular swimming movements. Males search mainly for mates, not for food. Their circular swimming behavior may serve for the mate search. The spiraling movement during mate-pursuit is peculiar to males. Circular swimming in females may function as a spontaneous search behavior for rich food areas and less crowded conditions. Females acclimated to a low food concentration, with net production about zero, responded sensitively to the increased food concentration by decreasing their swimming distance per unit time. Females acclimated to higher levels also responded similarly, but less sensitively. On the other hand, females kept without food exhibited no changes in swimming behavior and exhibited a stereotyped behavior at every food level. Females, when exposed to a low food level, may prefer to search for richer areas rather than capture food. The combined effect of the degree of internal activity (DIA) and the intensity of external stimulus (IES) determines the behavior pattern ofO. davisae. The behavioral response to IES depends on DIA.  相似文献   

4.
D. Dean 《Marine Biology》1978,45(2):165-173
There have been many previous reports of the sandworm Nereis virens Sars swimming in the water column. This behavior usually has been attributed to reproductive processes. Sandworms were found swimming in surface waters at night on ebb tides during many nights of January, February and March in a Maine (USA) estuary. None of the specimens examined contained gametes or possessed other characteristic spawning or pre-spawning modifications. Several age classes were found, with worms measuring 9 to 38 cm in length, weighing 0.5 to 19.8 g, and having 82 to 187 segments. The greatest numbers of worms were observed during near-average tides on evenings in which low tides occurred a few hours after sunset but prior to moonrise. Up to 83 worms per minute were observed swimming seaward through a 20 m transect, while none were observed swimming landward at any stage of the tide. It is concluded that sandworms swimming during winter nights is unrelated to reproduction and that it is an inherent behavior pattern.Contribution No. 102 of the Ira C. Darling Center, Walpole, Maine 04573, USA.  相似文献   

5.
Feeding and swimming of lysianassid amphipods in a shallow cold-water bay   总被引:4,自引:0,他引:4  
The potential for dispersal by lysianassid amphipods and their localization to carrion in a shallow cold-water bay in the Middle Saint Lawrence Estuary were assessed by means of endobenthic sampling, SCUBA observations, measures of swimming speeds, and by exposure of bait (50–100 g of fish) in traps. Seventy-five to 99.9% of animals attracted to traps were lysianassid amphipods belonging to five species. Lysianassid species were spatially segregated in the Bay at low tide but all were more or less dispersed at high tide. Second cohortAnonyx sarsi Steele and Brunel,Boeckosimus edwardsi andOnisimus littoralis (Krøyer) were more dispersed than the small first cohort individuals. Second cohortA. sarsi were crawlers or low (0–0.5 m off the bottom) suprabenthic swimmers in the day, but upper (0.5–2 m) suprabenthic swimmers at night. In contrast, first cohortA. sarsi were crawlers or low suprabenthic swimmers day-and-night, whileOrchomenella pinguis (Boeck) followed this swimming pattern at night but were generally akinetic in the day. Mean swimming speeds ofA. sarsi (13.6 cm s-1) andOn. littoralis (12.1 cm s-1) were 2 to 3 times greater than those ofOr. pinguis (7.4 cm s-1) andPsammonyx nobilis (Stimpson) (4.4 cm s-1). Catchability coefficients (i.e. ratio number of individuals per trap:endobenthic abundance) were 74 (A. sarsi), 8 (On. littoralis), 7 (Or. pinguis), and 0.7 (P. nobolis) m2 of bottom. Gut content analysis indicated thatA. sarsi fed mostly on large carrion, whileOn. littoralis were markedly opportunistic, andOr. pinguis andP. nobilis relied on detritus, algae, and small crustaceans.  相似文献   

6.
Scyphomedusae are ubiquitous in marine and estuarine systems, where they frequently play an important role in trophodynamics. Many scyphomedusae are cruising predators, and feeding rates depend, in part, on swimming behavior. Yet, no model of medusa swimming exists. An individual-based correlated random walk (CRW) model of medusa swimming behavior in three dimensions was developed. The model was validated using a previously published dataset of the swimming of 19 Chrysaora quinquecirrha (Desor, 1848) medusae that were observed in the presence or absence of zooplankton prey in laboratory mesocosms in August–October 1998 (Matanoski et al. in Mar Biol 139:191–200, 2001). In the presence of prey, medusae swam at a constant moderate rate in looping trajectories. In the absence of prey, medusae alternated periods of slow and fast swimming in more linear trajectories. In the model, looping trajectories were reproduced only when changes in movement by a medusa were oriented to its current position and orientation; more linear trajectories were reproduced by movement oriented to a fixed framework. This suggests that medusae change from swimming behavior oriented to local stimuli (e.g., contact with prey) to long-range stimuli (e.g., gravity) depending on the availability of prey. The model reproduced cyclical changes in swimming speeds by medusae in the absence of prey by simulating switching in the behavior controlling the strength of swimming bell pulsations using a probabilistic function. Model results also demonstrated that medusae tend to swim toward the surface, avoid contact with the bottom, increase time spent in prey patches if they alter swimming patterns in the presence of prey, and exhibit significant periodicities in swimming patterns that are the result of deterministic behavior. The model will permit the simulation of the complex behavior of medusae.  相似文献   

7.
The ontogeny of behaviour relevant to dispersal was studied in situ with reared pelagic larvae of three warm temperate, marine, demersal fishes: Argyrosomus japonicus (Sciaenidae), Acanthopagrus australis and Pagrus auratus (both Sparidae). Larvae of 5–14 mm SL were released in the sea, and their swimming speed, depth and direction were observed by divers. Behaviour differed among species, and to some extent, among locations. Swimming speed increased linearly at 0.4–2.0 cm s−1 per mm size, depending on species. The sciaenid was slower than the sparids by 2–6 cm s−1 at any size, but uniquely, it swam faster in a sheltered bay than in the ocean. Mean speeds were 4–10 body lengths s−1. At settlement size, mean speed was 5–10 cm s−1, and the best performing individuals swam up to twice the mean speed. In situ swimming speed was linearly correlated (R 2=0.72) with a laboratory measure of swimming speed (critical speed): the slope of the relationship was 0.32, but due to a non-zero intercept, overall, in situ speed was 25% of critical speed. Ontogenetic vertical migrations of several metres were found in all three species: the sciaenid and one sparid descended, whereas the other sparid ascended to the surface. Overall, 74–84% of individual larvae swam in a non-random way, and the frequency of directional individuals did not change ontogenetically. Indications of ontogenetic change in orientated swimming (i.e. the direction of non-random swimming) were found in all three species, with orientated swimming having developed in the sparids by about 8 mm. One sparid swam W (towards shore) when <10 mm, and changed direction towards NE (parallel to shore) when >10 mm. These results are consistent with limited in situ observations of settlement-stage wild larvae of the two sparids. In situ, larvae of these three species have swimming, depth determination and orientation behaviour sufficiently well developed to substantially influence dispersal trajectories for most of their pelagic period.  相似文献   

8.
Summary Seothyra henscheli (Eresidae) is a burrowing spider that lives in the dune sea of the southern Namib Desert, Namibia. Prey capture by these spiders involves a foray from a cool subterranean retreat to the undersurface of a capture web that can be lethally hot. Striking, disentangling and retrieving prey from the capture web typically involves several short trips to the capture web, alternating with retreats to the cool burrow. It has been suggested that this behavior limits the increase of body temperature a spider must experience while working at the hot capture web. We used biophysical models in conjunction with direct observations of prey-capture behavior and distributions of sand temperature to estimate body temperatures experienced by S. henscheli during prey capture. In the circumstances we observed, only the relatively long post-strike retreat from the capture web is important in keeping spiders' body temperatures from exceeding their lethal limits. After the post-strike retreat, shuttling appreciably limits the increase in body temperature of small individuals, but may have little effect on body temperature increase in larger spiders. Correspondence to: J.S. Turner at the present address  相似文献   

9.
Seasonally breeding predators, which are limited in the time available for provisioning young at a central location, and by the fasting abilities of the young, are likely to maximize energy delivery to the young by maximizing the rate of energy delivery averaged over the whole period of investment. Reduction in food availability or increased foraging costs will alter the optimal behavior of individuals. This study examined the behavioral adaptations of a diving predator, the Antarctic fur seal, to increased foraging costs during lactation. One group of mothers (n=5, treatment) was fitted with additional drag to increase the cost of transport in comparison with a control group (n=8). At the scales of the individual dives, the treatment group made more shorter, shallower (< 30 m) dives. Compensation for slower swimming speeds was achieved by diving at a steeper angle. Overall, diving behavior conformed to several specific theoretical predictions but there were also departures from theory, particularly concerning swimming speed during diving. Diving behavior appears to be adjusted to maximize the proportion of time spent at the bottom of dives. At the scale of diving bouts, no difference was observed between the treatment and control groups in terms of the frequency and duration of bouts and there was also no difference between the two groups in terms of the proportion of time spent diving. At the scale of complete foraging cycles, time taken to return to the pup was significantly longer in the treatment group but there was no difference in the rate of delivery of energy (measured from pup growth rate) to the pups in each group. Since mothers in the treatment group did not use significantly more body reserves, we conclude that behavioral adjustments at the scale of individual dives allowed mothers in the treatment group to compensate for the additional foraging costs. Pup growth rate appears to be less sensitive to the foraging conditions experienced by mothers than foraging trip duration. Received: 14 June 1996 / Accepted after revision: 16 November 1996  相似文献   

10.
Grouping behavior has various types of antipredator functions. Some of these functions require social transmission of information, such as the many-eyes effect, whereas others do not, such as the dilution and confusion effects. Functions of grouping behavior would enhance with social transmission among group members. We investigated and compared the onsets of schooling behavior and social transmission of information in chub mackerel Scomber japonicus. Onset of schooling behavior was observed in rearing tanks by calculating the degree of parallel swimming. Onset of social transmission was examined by using visual cues from conspecifics. A group of five individuals was put in each of three experimental chambers from which they could see a group of conspecifics in the neighboring chamber. A weak electric stimulus was given to one of these chambers, and information transfer among individuals was observed. We found that social transmission by visual cues started on 30 days posthatching (25.1 mm in standard length), which was 2 weeks after the onset of schooling behavior. The late onset of social transmission relative to schooling behavior might be attributed to different predation pressure with development, or by underdevelopment of optic tectum, as the volume of the optic tectum did not increase just after the onset of schooling behavior.  相似文献   

11.
The roles of copepod sensory systems in the recognition of food were investigated using the Bugwatcher, a video-computer system designed to track and describe quantitatively the swimming patterns of aquatic organisms. The swimming behavior of the copepodPseudocalanus minutus in the presence of phytoplankton is characterized by a decrease in average swimming speed and an increase in pause behaviors compared to its swimming behavior in filtered seawater. Copepods exposed to chemosensory stimulation alone (filtered phytoplankton exudate) exhibited an increase in average swimming speed and an increase in the number of burst swimming behaviors. When exposed to a novel, non-food chemosensory stimulus (morpholine), no change in swimming behavior was observed unless the copepods had been conditioned to this odor in the presence of phytoplankton. Copepods exposed to mechanosensory stimulation alone (plastic spheres) exhibited a decrease in swimming speed and an increase in pause behaviors. When exposed to both forms of stimulation simultaneously (phytoplankton exudate and plastic spheres), a further decrease in swimming speed and increase in pause behaviors occurs, yielding a swimming pattern similar to that found in the presence of phytoplankton. This analysis of swimming pattern indicates that both chemoreception and mechanoreception contribute to the recognition of food inP. minutus.Contribution No. 406 of the US EPA Environmental Research Laboratory; Narragansett, Rhode Island 02882, USA  相似文献   

12.
In the absence of direct measurement, costs of locomotion to small swimming Crustacea (<10 mm) have been derived exclusively through application of the fluid dynamic theory. Results indicate very low swimming costs, and contradict experimental data on larger Crustacea (15 to 100 mm) that suggest a three-fold increase in metabolic rate with increasing swimming speed. This paper introduces a swimming model that analyzes the hydrodynamic forces acting on a crustacean swimming at non-steady velocity. The model treats separately the hydrodynamic forces acting on the body and the swimming appendages, approximating the simultaneous solution of equations quantifying the drag and added-mass forces on each by stepwise integration. Input to the model is a time-series of instantaneous swimming-appendage velocities. The model output predicts a corresponding time-series of body velocities as well as the mechanical energy required to move the swimming appendages, dissipated kinetic energy, and metabolic cost of swimming. Swimming of the calanoid copepod Pleuromamma xiphias (Calanoida) was analyzed by extrapolating model parameters from data available in the literature. The model predictions agree well with empirical observations reported for larger crustaceans, in that swimming for copepods is relatively costly. The ratio of active to standard metabolism for P. xiphias was >3. Net cost of transport was intermediate to the values found experimentally for fish and larger crustaceans. This was a consequence of the predicted mechanical efficiency (34%) of the copepod's paddle propulsion, and of increased parasitic resistance resulting from non-steady velocity swimming.  相似文献   

13.
Determining the scale of larval dispersal and population connectivity in demersal fishes is a major challenge in marine ecology. Historically, considerations of larval dispersal have ignored the possible contributions of larval behaviour, but we show here that even young, small larvae have swimming, orientation and vertical positioning capabilities that can strongly influence dispersal outcomes. Using young (11–15 days), relatively poorly developed (8–10 mm), larvae of the pomacentrid damselfish, Amblyglyphidodon curacao (identified using mitochondrial DNA), we studied behaviour relevant to dispersal in the laboratory and sea on windward and leeward sides of Lizard Island, Great Barrier Reef. Behaviour varied little with size over the narrow size range examined. Critical speed was 27.5 ± 1.0 cm s−1 (30.9 BL s−1), and in situ speed was 13.6 ± 0.6 cm s−1. Fastest individuals were 44.6 and 25.0 cm s−1, for critical and in situ speeds, respectively. In situ speed was about 50% of critical speed and equalled mean current speed. Unfed larvae swam 172 ± 29 h at 8–10 cm s−1 (52.0 ± 8.6 km), and lost 25% wet weight over that time. Vertical distribution differed between locations: modal depth was 2.5–5.0 and 10.0–12.5 m at leeward and windward sites, respectively. Over 80% of 71 larvae observed in situ had directional swimming trajectories. Larvae avoided NW bearings, with an overall mean SE swimming direction, regardless of the direction to nearest settlement habitat. Larvae made smaller changes between sequential bearings of swimming direction when swimming SE than in other directions, making it more likely they would continue to swim SE. When swimming NW, 62% of turns were left (more than in other directions), which would quickly result in swimming direction changing away from NW. This demonstrates the larvae knew the direction in which they were swimming and provides insight into how they achieved SE swimming direction. Although the cues used for orientation are unclear, some possibilities seemingly can be eliminated. Thus, A. curacao larvae near Lizard Island, on average swam into the average current at a speed equivalent to it, could do this for many hours, and chose different depths in different locations. These behaviours will strongly influence dispersal, and are similar to behaviour of other settlement-stage pomacentrid larvae that are older and larger.  相似文献   

14.
Most marine fishes undergo a pelagic larval phase, the early life history stage that is often associated with a high rate of mortality due to starvation and predation. We present the first study that examines the effects of prey swimming behavior on prey-capture kinematics in marine fish larvae. Using a digital high-speed video camera, we recorded the swimming velocity of zooplankton prey (Artemia franciscana, Brachionus rotundiformis, a ciliate species, and two species of copepods) and the feeding behavior of red drum (Sciaenops ocellatus) larvae. From the video recordings we measured: (1) zooplankton swimming velocity in the absence of a red drum larva; (2) zooplankton swimming velocity in the presence of a red drum larva; and (3) the excursion and timing of key kinematic events during prey capture in red drum larvae. Two-way ANOVA revealed that: (1) swimming velocity varied among zooplankton prey; and (2) all zooplankton prey, except rotifers and ciliates, increased their swimming velocity in the presence of a red drum larva. The kinematics of prey capture differed between two developmental stages in S. ocellatus larvae. Hyoid-stage larvae (3–14 days old) fed on slow swimming B. rotundiformis (rotifers) while hyoid-opercular stage larvae (15 days and older) ate fast moving A. franciscana. Hyoid-opercular stage red drum larvae had a larger gape, hyoid depression and lower jaw angle, and a longer gape cycle duration relative to their hyoid-stage conspecifics. Interestingly, the feeding repertoire within either stage of red drum development was not affected by prey type. Knowledge of the direct relationship between fish larvae and their prey aids in our understanding of optimal foraging strategies and of the sources of mortality in marine fish larvae.  相似文献   

15.
We describe aspects of the anatomy and suspension-feeding mechanism of a single Planctosphaera pelagica captured from the plankton in June 1992 off Bermuda in the western Atlantic. We also describe several unusual features of the larva, including its occurrence in surface waters, unusually large size, and limited swimming ability. Our account of the form and feeding behavior of P. pelagica is the first based on observations of a specimen captured and observed alive. Our limited observations suggest that the planctosphaera may use a suspension-feeding mechanism much like that of the other feeding deuterostome larvae (the pluteus and bipinnaria larvae of echinoderms and the tornaria larva of enteropneust hemichordates) known to capture food particles using a single ciliated band. Although we could not observe cilia directly, the movement of dye streams and food particles and the structure of the ciliated band suggest that some particles may be captured at the ciliated band by the reversal of ciliary beat. The planctosphaera possesses many prominent mucous glands near the food grooves. This suggests an important role of mucus in the biology of the larva, but we were not able to observe directly any role of mucus in particle capture.  相似文献   

16.
The degree to which white sharks, Carcharodon carcharias, are social while hunting is unclear. Our aim was to describe the behavior and interactions among white sharks hunting seals near a seal colony. We attached ultrasonic beacons to five adult white sharks, 4.5–5.2?m long, and recorded their movements and behavior toward each other over a 15-day period in October 1997 at Año Nuevo Island, California. This site is home to colonies of four species of seals and sea lions. Two additional sharks, females 5.5 and 4.7?m in length, were later tracked intensively during periods of 12 and 3?days during October 1998 and November 1999, respectively. We recorded stomach temperature (indicative of feeding on warm-bodied seals) and swimming depths from the 5.5-m female, swimming speed and depth from the 4.7-m female. We monitored the movements and behavior of these sharks using an array of sonobuoys moored near the island; the receptive field measured 1?km2. Our principal findings were: (1) the sharks spent a mean time of 39.5% of each day patrolling within the receptive field; (2) no shark ever moved far out of it; (3) the sharks spent an equal amount of time and activity in the receptive field at all times of the day, daytime, twilight, and nighttime; (4) movements with respect to the island rookery were most often back and forth parallel to the shoreline, (5) tracks of three sharks, tagged at the same time and place, overlapped more often than those of the other two sharks; and (6) some sharks patrolled certain areas in the field preferentially, but there was no conclusive evidence that they defended these areas as territories. Feeding appeared to be infrequent: only two likely feeding bouts occurred during a cumulative 78-day/shark period that individuals were monitored at Año Nuevo Island. The behavior and movements of the sharks were consistent with a hunting strategy, in which individuals search for prey independently but, at the same time, remain close enough to each other to “sense” and exploit a kill by any one of them by joining in on the kill to feed.  相似文献   

17.
Oxygen consumption of tagged (plastic opercular tag) and untagged mullet Liza macrolepis (Smith), forced to swim up to 22 cm/sec (fish size: 10 cm), increased proportionately to increase in swimming velocity above 5 cm/sec. The tag did not appear to cause any marked metabolic disturbance. The mean routine metabolic rate and the rate at 5 cm/sec were higher than the rates obtained for several higher levels of forced activity, possibly due to excitement and inefficient swimming at lower swimming speeds, as suggested by earlier workers. The interpretation of the elevation of a line drawn through the mean rates of metabolism at various swimming speeds, in relation to the standard metabolic rate, may be of value in quantitative expression of excitability of individual species.  相似文献   

18.
Larval behaviors are increasingly recognized as determining factors in the water column distribution and subsequent settlement patterns of marine invertebrates. In particular, larvae within one or two body lengths of the seafloor (= interaction zone) may be better able to control their settlement location or respond to settlement cues. Here we examine temporal changes the behavior of larval oysters (Crassostrea virginica) swimming in the bottom 1 cm of a flume boundary layer. In addition, we present a novel behavior, called "dive-bombing", that consists of an abrupt downward acceleration and subsequent contact with the bottom. Larvae were divided into two arbitrarily chosen size classes (those retained on a 153 m screen and those retained on a 202 m screen) to separate those that developed eyespots from those that did not develop eyespots. Behavior in a flume boundary layer was monitored from day 15 to day 21 post-fertilization. In the larger size class, the percentage of oyster larvae within close proximity (1 to 2 body lengths) of the flume bed steadily increased from 6% to 28% with larval age. In contrast, if larvae were restricted from reaching larger sizes through sieving this proportion remained constant at 12%. Dive-bombing was exhibited by a constant 4% of the larval population regardless of age or size. Kinematic analysis of swimming paths shows dive-bombing to be distinct from other swimming behaviors and from the passive sinking of dead larvae. For example, vertical acceleration at the initiation of dive-bombing is some 30–400 times that measured for other live or dead larvae. Our results indicate that larvae are capable of rapid acceleration and that they may be able to control their approach to the bottom under a much wider range of conditions than had previously been suspected.Communicated by P.W. Sammarco, Chauvin  相似文献   

19.
Prey capture is a fundamental process for the success of copepods in food-diluted environments. This process is influenced by several factors, including swimming and predatory habits. This work is aimed at characterising the kinematic and fractal properties of the swimming trajectories and reconstructing the predatory horizon of the small calanoid copepod Clausocalanus furcatus. Results indicate that the motion of C. furcatus resembles a random process, mainly evolving in one direction, whereas its predatory horizon is confined to a small region frontal to the anterior end of the copepod. These outcomes are discussed in terms of specific adaptation taking into account the natural conditions experienced by C. furcatus in its environment.  相似文献   

20.
Summary Males of the desert grasshopper Ligurotettix coquilletti typically eclose 3–5 weeks prior to females. Early-eclosed males experience more female encounters than the later-eclosed individuals. Evidence suggests that the number of encounters may be proportional to male lifetime mating success. Early-eclosed males enjoyed greater adult lifespans, occupied and defended higher quality territories (Larrea shrubs), and tended to be dominant on these shrubs if several males were present. The elevated number of female encounters were not conferred on early-eclosed males by their extended survivorship, but rather by the high quality of their territories, which retained numerous females, and their dominant behavior. We evaluate several female-benefit and male-benefit hypotheses for the evolution of protandry and propose that in L. coquilletti, the phenomenon arose due to male-male competition for female-encounter sites, a mechanism not considered in earlier models. Finally, we discuss several reasons for the high variance in the date of male eclosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号