首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用玻璃纤维滤膜采集PM_(2.5)样品,乙腈超声提取-高效液相色谱法分析测量多环芳烃浓度。结果表明:PAHs的浓度变化受到大气降水的影响,夏季浓度最低,冬季浓度最高,PM_(2.5)中PAHs总量月平均变化趋势呈"凹"形变化;PAHs的结构以2~3环、5~6环为主;比值法显示PAHs来源与稳定的排放源相关,机动车排放不容忽视,与北方城市燃煤污染有着较大区别。  相似文献   

2.
对贵阳市不同功能区在不同季节大气PM_(2.5)中多环芳烃(PAHs)进行了采样观测,利用UVD和FLD双检测器串联HPLC法分析了16种优控PAHs。结果显示,在贵阳市主城区PM_(2.5)中PAHs有检出,5个采样点全年ρ(∑PAHs)为4. 44~114 ng/m~3,平均值为24. 96 ng/m~3,其值呈现出夏季最低冬季最高的特征,各个功能区在不同季节ρ(PAHs)不同,大小趋势也不同;四季PAHs单体中均以4-6环为主,占ρ(∑PAHs)的68%以上; PAHs来源解析结果显示,贵阳市大气PM_(2.5)中PAHs来源具有明显的季节特征,春、夏和秋季主要来源是石油燃烧排放,兼有少量的生物质燃烧排放,冬季PAHs主要来源是燃煤和石油燃烧排放。PM_(2.5)中PAHs毒性评价结果表明,贵阳市大气中PAHs的春季、夏季和秋季健康风险较小,冬季健康风险较大。四季各功能区ρ(Ba P)大部分均低于《环境空气质量标准》(GB 3095—2012)规定限值(2. 50 ng/m~3),但冬季除背景点外,其他监测点均超标,最大超标倍数为3. 80倍。  相似文献   

3.
东北地区城市大气颗粒物中多环芳烃的污染特征   总被引:10,自引:5,他引:5  
2008年4月至2009年1月期间,在东北三省(辽宁、吉林、黑龙江)设立30个观测点位,研究了东北城市大气颗粒物中PAHs的浓度水平、分布及来源.结果表明,不同季节14种PAHs总浓度的变化范围是16.3 ~712.1 ng/m3,呈冬季高、夏季低的季节变化特征;PAHs组成以4~5环化合物为主,3~4环化合物受温度的影响较大,表现出较强的季节波动;8个城市中抚顺和吉林PAHs污染最重,城市不同功能区中以工业区污染较重;燃煤和机动车尾气是区域PAHs的主要来源.  相似文献   

4.
于非采暖季和采暖季分别采集某石化化工行业聚集城市中心城区室内外PM_(2.5)样品,采用高效液相色谱法分析PM_(2.5)上载带的16种PAHs,对其分布特征、来源以及室外PAHs污染对室内污染的贡献进行了初步探讨。结果表明,研究区域非采暖季和采暖季室外PM_(2.5)中ΣPAHs浓度日均值分别为36.3、294 ng/m~3,室内PM_(2.5)中ΣPAHs浓度分别为14.8、84.6 ng/m~3,均以4、5环PAHs为主;室内PAHs主要来自室外渗透污染,但同时明显存在室内排放源贡献;PAHs来源分析进一步证实研究区域PAHs主要来自煤炭、石油等不完全燃烧,采暖季煤炭燃烧源贡献更突出。  相似文献   

5.
利用SPAMS 0515于2015年1月在盘锦市兴隆台空气质量自动监测点位采集PM_(2.5)样品,并分析其污染特征和来源。研究结果表明,盘锦市冬季PM_(2.5)的颗粒类型主要以OC颗粒、富钾颗粒、EC颗粒组成。其中,OC颗粒占比最高,为52.5%;PM_(2.5)污染的主要贡献源为燃煤、生物质燃烧、机动车尾气排放,占比分别为33.2%、25.7%、17.5%,特别是在PM_(2.5)质量浓度较高时段,燃煤和机动车尾气排放对污染的贡献较大。  相似文献   

6.
在克拉玛依市中心城区布设4个采样点,在供暖期和非供暖期分别同步采集4个点位大气中不同粒径的颗粒物,采用HPLC进行分析并计算2个采样期内PM_(10)和PM_(2.5)中多环芳烃(PAHs)的浓度和种类。结果表明:中心城区供暖期PM_(10)中PAHs浓度为56.19 ng/m3,PM_(2.5)中PAHs浓度为48.85 ng/m3;中心城区非供暖期PM_(10)中PAHs浓度为18.86 ng/m~3,PM_(2.5)中PAHs浓度为14.53 ng/m~3。不同采样期PM_(10)和PM_(2.5)中PAHs浓度变化趋势相同,均为供暖期明显大于非供暖期。中心城区供暖期大气颗粒物吸附的PAHs以4环以下的组份为主,非供暖期则是5~6环的高环数组份偏多。分析结果表明克拉玛依市中心城区供暖期颗粒物中PAHs来源于燃煤排放叠加机动车排放,与中心城区集中供热锅炉关系密切;非供暖期则是以机动车排放污染为主。  相似文献   

7.
南京市大气颗粒物中多环芳烃变化特征   总被引:4,自引:2,他引:2  
逐月采集南京市大气中不同粒径的颗粒物,采用HPLC分析了2010年每个月PM_(10)和PM_(2.5)颗粒物样品中的多环芳烃(PAHs)的种类和浓度水平。结果表明:PM_(10)中PAHs年均值为25.07 ng/m~3,范围为11.03~53.56 ng/m3;PM_(2.5)中PAHs年均值为19.04 ng/m~3,范围为10.82~36.43 ng/m~3。PM_(10)和PM_(2.5)中PAHs总体浓度有着相似的变化趋势,呈现凹形变化曲线;在南京市大气颗粒物中吸附的PAHs大部分以5~6环的高环数组分为主,大部分PAHs和∑PAHs的相关性较好,年度变化幅度不大,分析结果表明,颗粒物中PAHs的来源与稳定的排放源相关,机动车排放不容忽视,与北方城市燃煤污染有着较大的区别。  相似文献   

8.
通过对浦东新区9个点位PM_(2.5)中的多环芳烃为期1 a的采样分析,获得浦东新区PM_(2.5)中PAHs的时空变化特征。监测表明,冬季PAHs的浓度为夏季的7.9倍,空间上南部偏高;虽然不同季节不同环数的PAHs浓度变化存在一定差异,但均为5~6环占比最大,其次为4环,2~3环占比最少。结合PAHs呼吸致癌风险评估,浦东新区PAHs致癌风险值分布与实际肺癌发病率分布在冬季具有相关性。  相似文献   

9.
乌鲁木齐土壤中多环芳烃的污染特征及生态风险评价   总被引:3,自引:1,他引:2  
在乌鲁木齐地区不同功能区采集28个表层土壤样品,对土壤中多环芳烃(PAHs)的污染特征进行研究,并运用正定矩阵因子分析法对其来源进行分析,采用苯并[a]芘的毒性当量浓度(TEQBa P)对PAHs的生态风险进行评价。研究显示,土壤中∑16 PAHs含量为331~15 799μg/kg,其平均值为(5 018±4 896)μg/kg(n=28),以3环、4环为主。∑16PAHs的浓度呈现出交通区工业区公园区农业区居民商业区的变化趋势;正定矩阵因子分析法表明,乌鲁木齐表层土壤中PAHs的主要来源及贡献分别为煤的燃烧(51.19%),汽油车燃烧(19.02%),柴油车燃烧(18.35%),机动车石油的泄漏(11.42%);53%的采样点TEQBa P值超过荷兰土壤标准目标参考值,主要集中在交通区和工业区。  相似文献   

10.
在冬季采暖期采集北京大气中的PM_(2.5)样品,利用自动称重系统AWS-1和热/光碳分析仪测定样品中PM_(2.5)和OC/EC,研究碳组分的变化特征,并通过OC/EC的值和单颗粒气溶胶质谱仪(SPAMS 0515)分析大气颗粒物中碳气溶胶的可能来源。结果表明:PM_(2.5)污染天气的OC、EC在PM_(2.5)中的占比要比清洁天气时低,其中SOC在PM_(2.5)中的占比由清洁天气时的22.9%减少到了重污染天气的15.4%,这是因为大气中的PM_(2.5)有较强的消光作用,导致气溶胶的氧化能力降低,造成了SOC的生成量减少;通过分析OC/EC值表明,冬季采暖期北京大气碳气溶胶的主要来源为机动车尾气和燃煤,这与SPAMS 0515在线解析的结果一致。采用SPAMS 0515进行在线OC、EC分析,在PM_(2.5)质量浓度≤250μg/m3时同手工方法有较好的相关性。解析结果表明,燃煤和机动车尾气是北京冬季采暖期的首要污染物来源,占比分别为34.0%和26.4%。  相似文献   

11.
对2008年05至11月淮南市5个采样点大气可吸入颗粒物(PM10)样品进行分析,总结了研究区内PM10及其中16种PAHs的浓度特征、季节变化规律和来源解析。研究区内16种PAHs浓度总和的范围在15.20~111.58ng.m-3之间,平均值为40.40ng.m-3,中位数为33.34ng.m-3。PAHs总量的季节变化与采样时环境温度显示出较好的负相关性,即秋季>春季>夏季;运用多环芳烃比值综合判断,淮南市大气PM10中PAHs主要以燃煤和机动车尾气混合来源为主,石油源和木材燃烧来源的贡献较小。  相似文献   

12.
应用化学质量平衡模型解析西宁大气PM2.5的来源   总被引:2,自引:2,他引:0  
为研究影响西宁市大气环境PM_(2.5)污染水平的主要来源,于2014年采暖季、风沙季和非采暖季依托西宁市大气地面观测网络在11个监测点采集大气PM_(2.5)样品,对其化学组分(元素、离子和碳)进行分析。研究同步采集了4类固定源、14类移动源和4类开放源的PM_(2.5)样品,并构建源排放成分谱。应用化学质量平衡受体模型(CMB)开展源解析研究。源解析结果表明,观测期间西宁市PM_(2.5)主要来源包括城市扬尘(分担率为26.4%)、燃煤尘(14.5%)、机动车尾气(12.8%)、二次硫酸盐(9.0%)、生物质燃烧(6.6%)、二次硝酸盐(5.7%)、钢铁尘(4.7%)、锌冶炼尘(3.4%)、建筑尘(4.4%)、土壤尘(4.4%)、餐饮排放(2.9%)和其他未识别的来源(5.2%)。大力开展城市扬尘为主的开放源污染控制,严格控制本地燃煤、机动车等污染源的PM_(2.5)排放,是改善西宁市空气质量的重要途径。  相似文献   

13.
为研究重庆市大气PM_(2.5)中二次有机气溶胶污染特征,于2013年1—12月运用URG-3000ABC型中流量颗粒物采样仪连续同步采集重庆市主城区大气PM_(2.5)样品,选取OC/EC比值对PM_(2.5)中的SOC污染进行估算,结果表明,该市主城区PM_(2.5)中SOC年平均质量浓度为12.5μg/m3,占OC质量浓度的50.0%,占PM_(2.5)质量浓度的10.1%,SOC质量浓度为冬季秋季夏季春季。机动车排放是SOC前体物的主要来源。  相似文献   

14.
基于硫碳同位素研究南京北郊冬季霾事件中PM2.5来源   总被引:1,自引:0,他引:1  
2015年12月27日—2016年1月6日,针对南京北郊地区一次霾事件所采PM_(2.5)样品,测定样品中水溶性离子、硫同位素与碳同位素组分含量。水溶性离子研究结果表明:该次霾事件以二次污染为主且移动源占主要地位。硫同位素分析结果表明:硫酸盐的δ~(34)S(SO_4~(2-))值的范围为4.4‰~6.8‰,平均值为5.7‰±0.7‰(n=11),结合该地潜在硫源可知,此次霾事件中硫酸盐气溶胶主要来源为机动车尾气及煤炭燃烧。PM_(2.5)中的δ~(13)C值变化范围为-28.43‰~-24.94‰,平均值为-26.62‰±1.11‰,说明碳质污染物来源主要为机动车尾气、燃煤。此外,硫、碳同位素具有较好的负相关性,结合潜在硫源、碳源可知,2016年1月1日之前,南京北郊地区大气污染源以汽油车尾气排放为主;1月1日之后大气污染源以柴油车尾气和燃煤排放为主。  相似文献   

15.
为了解蚌埠市环境空气中PM_(2.5)的来源,于2017年8月18日—9月18日,在百货大楼和高新区站点,利用单颗粒物气溶胶飞行时间质谱仪开展PM_(2.5)在线源解析。结果表明,百货大楼点位ρ(PM_(2.5))高于高新区点位,轻度污染比例(4.2%)明显高于高新区点位(0.8%),出现了中度污染(0.3%);SPAMS的PM_(2.5)质谱图显示百货大楼点位PM_(2.5)中K~+、Na~+特征明显,高新区点位HSO_4~-、NO_3~-、NO_2~-等无机信号较为明显;2个点位NO_3~-、NO_2~-、NH_4~+离子颗粒数占总颗粒数的百分比明显较高,且高新区点位NO_3~-、HSO_4~-离子数占比要明显高于百货大楼点位,燃料燃烧、工业工艺源、农田氮肥施用是其主要的人为污染源;2个点位PM_(2.5)成分主要为元素碳,分别占比42.4%,40.6%;污染时段,ρ(PM_(2.5))快速上升,除受本地机动车尾气源和燃煤源累积影响外,百货大楼点位扬尘源排放增加,高新区点位扬尘源和工业工艺排放源增加;2个点位机动车尾气源均为首要污染源,分别占比29.5%和30.9%,其次为燃煤源(24.3%和24.7%),扬尘源占比分别为22.9%和20.8%。  相似文献   

16.
为明确青岛市环境受体中PM_(2.5)的化学组分特征及来源,该研究于2016年在青岛市7个点位采集了PM_(2.5)样品,分析了PM_(2.5)中的无机元素、水溶性离子、碳等组分的质量浓度,采用CMB模型估算法,估算了青岛市的一次源类、二次源类对PM_(2.5)的贡献,并结合排放源清单及系数分配得到综合的PM_(2.5)源解析结果。结果表明:青岛市环境受体中PM_(2.5)平均质量浓度为62μg/m~3。PM_(2.5)中占比较高的组分是OC(16.44%)、SO_4~(2-)(15.07%)、NO_3~-(11.27%)、NH_4~+(8.86%)和EC(5.21%)。OC/EC的年平均值为3.62,说明存在二次有机气溶胶污染;SO2-4/NO-3的年平均值为2.71,夏季明显高于其他季节。冬季重污染过程中主要离子呈现出累积的现象。夏季二次硫酸盐的贡献上升为第一位(24.7%);机动车尘四季的贡献均较高(17.5%~20.5%),燃煤在冬季(15.1%)、秋季(13.3%)贡献高,扬尘在春季(16.5%)、冬季(15.6%)贡献高。  相似文献   

17.
为研究焦作市大气污染特征及其相关性,对2015—2017年焦作市4个国控空气监测点位的监测数据进行统计分析。结果表明:2015—2017年城区环境空气污染SO_2、NO_2、CO、PM_(10)、PM_(2.5)浓度均呈逐年下降趋势;大气污染浓度季节变化特征明显,PM_(10)、PM_(2.5)、SO_2、NO_2、CO的浓度均为冬季最高、夏季最低,空气质量指数也在冬季达到最高值; O_3浓度则为夏季最高、冬季最低。2017年焦作市沙尘天气共计36 d,严重影响了环境空气中颗粒物的浓度。由PM_(2.5)与PM_(10)的比值说明大气颗粒物污染以PM_(2.5)为主。通过SPSS软件分析,SO_2、NO_2、CO、PM_(10)、PM_(2.5)浓度间呈两两正相关,O_3浓度与NO_2、CO呈负相关。  相似文献   

18.
广州市冬季PM_(2.5)污染过程二次水溶性无机离子组分特征   总被引:1,自引:0,他引:1  
为了解广州地区灰霾天气成因,基于城市超级站,对2013年12月1日—12月8日期间2次灰霾天气过程的水溶性无机离子污染特征进行研究。结果表明:监测期间二次离子(SNA)SO_4~(2-)、NO_3~-、NH_4~+分别占PM_(2.5)质量浓度的15.8%、7.4%、7.0%;2次污染过程SNA对PM_(2.5)贡献显著,机动车排放和燃煤是PM_(2.5)的主要污染来源。广州冬季属于富氨区,2次污染过程都伴随着NH_4~+显著增加,NH_4~+主要以(NH_4)_2SO_4和NH_4NO_3形式存在。  相似文献   

19.
运用不同类型的PM_(1.0)自动监测仪,于2017年11月至2018年11月对兰州城市大气PM_(1.0)开展了为期一年的观测,分析了兰州PM_(1.0)污染特征及来源,以及气象条件和SO_2、NO_2等污染物对PM_(1.0)浓度特征的影响,重点分析了重污染天气过程PM_(1.0)的演变情况。结果表明:研究期内,兰州城市PM_(1.0)日均最大浓度为117.5μg/m~3,最小浓度为8.3μg/m~3,平均浓度为33.7μg/m~3;4个季节的PM_(1.0)平均浓度排序为冬季秋季春季夏季,冬季PM_(2.5)中PM_(1.0)的占比超过70%。从全年来看,PM_(1.0)主要来源于内蒙古西北部地区污染气团输入。PM_(2.5)与PM_(1.0)的来源区域具有一致性,但PM_(1.0)的来源范围更广泛,而PM_(2.5)的来源更集中。重污染阶段,PM_(1.0)与PM_(2.5)、PM_(10)污染演变趋势呈现负相关,PM_(2.5)与PM_(10)呈现正相关,且秋冬季PM_(1.0)和PM_(2.5)的潜在污染来源距离兰州较近,范围更集中。  相似文献   

20.
基于东莞市大气复合污染超级监测站的监测数据,选取2017年12月一次典型空气污染过程,对污染期间气象要素、大气颗粒物组分特征和污染物来源进行综合研究。结果表明,在污染期间,首要污染物为PM_(2.5),日均值为86μg/m3,其主要化学组分依次是OC、NO_3~-和SO_4~(2-),分别占PM_(2.5)的19.7%,16.1%和14.9%;在不利的气象条件下,本地污染排放和外源输入的一次污染物快速生成二次有机物、硝酸盐和硫酸盐,是造成该次空气污染的主要原因; PM_(2.5)污染主要来源为机动车尾气(27.7%)及二次无机源(19.0%)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号