首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
采用铁碳微电解-Fenton氧化联合工艺处理甲苯硝化废水,探讨了溶液pH值、铁炭投加量、铁炭比例、H2O2投加量和反应时间等因素对微电解-Fenton氧化处理硝化废水的影响规律,获得微电解-Fenton氧化处理硝化废水的最佳工艺条件:废水pH在3左右,铁炭投加量为0.6 g/L,Fe/C质量比为4∶1,反应时间为1.5h,微电解后H2O2投加量为20 ml/L,反应时间为1 h。硝化废水经微电解-Fenton氧化处理后,COD由29 146mg/L降至6 477 mg/L,COD去除率达77.8%,BOD5/COD由0提高到0.37左右,废水可生化性显著增强。  相似文献   

2.
采用电Fenton法预处理染料废水,对影响COD及色度去除率的各种因素,包括内电解反应的初始pH值、铁的投加量、铁炭投加比,Fenton试剂氧化处理过程中初始pH值、H2O2的投加量及投加方式、反应时间等进行了研究。结果表明,内电解反应的最佳条件为:pH值为3.0,铁的投加量为25g/L,Fe/C为1:1.3;Fenton试剂氧化处理染料废水的最佳条件为:H2O2投加量为30mmol/L,pH值为内电解出水pH值(pH值为4.0左右),反应时间为50min。COD去除率可达58%,色度去除率可达95%以上。  相似文献   

3.
Fenton试剂预处理实际印染废水的实验研究   总被引:1,自引:0,他引:1  
通过单因素影响实验和正交实验,以COD去除率和可生化性能两个指标作为筛选依据,全面研究了Fenton试剂作为预处理工艺,在常温下对实际印染废水的处理规律和最佳操作条件。首先研究了COD去除率随H2O2投加量和投加方式、FeSO4·7H2O投加量、初始pH值、反应时间等的变化规律,最后正交实验结果确定了最佳操作条件为:30%H202投加量5mL/L,FeSO4·7H2O投加量800mg/L,pH值为3.45,此时H2O2:Fe^2+摩尔比为15.5。COD去除率为33.4%,BOD/COD值从0.139增加到0.321,可生化性能的提高为后续生物处理阶段提供了良好条件。  相似文献   

4.
Fenton试剂法处理青霉素废水   总被引:3,自引:0,他引:3  
利用Fenton试剂处理青霉素废水,研究了pH、H2O2投加量、Fe2 投加量、反应时间和H2O2投加次数对废水COD去除效果的影响.结果表明,通过Fenton试剂氧化可使废水COD去除率达到83%.  相似文献   

5.
印钞废水属高浓度难降解有机废水,对环境污染严重。鉴于现有处理工艺出水普遍不达标的情况,通过对比实验确定了改进方案:超滤浓缩液离心出水在进入接触氧化池前,增加新的处理单元(Fenton氧化-混凝)。Fenton氧化最佳条件:FeSO4.7H2O投加量14 g/L,H2O2的投加量34 mL/L,初始pH值6.0,氧化反应时间1.5h,温度18.8℃;混凝过程最佳条件:PAC投加量4 g/L,PAM(5‰)投加量10 mg/L,pH值7。新增单元对废水中COD去除率接近80%,可生化性提高1.6倍,色度降低36%。  相似文献   

6.
采用铁碳微电解/Fenton试剂组合工艺对炼油碱渣废水混凝沉淀处理后出水,进行降解研究。实验结果表明:pH值为3,废水与铁碳填料的体积比为2∶1,微电解反应时间2 h,曝气的条件下,废水的处理效果最好,COD的去除率超过42.5%。Fenton试剂处理微电解反应出水的最佳操作条件是:pH值在2~3之间、反应时间2.5 h、Fe2+浓度为800 mg/L左右、H2O2浓度为0.25 mol/L,在此条件下,Fenton试剂处理微电解处理后的炼油碱渣废水COD平均去除率为63.8%以上,微电解/Fenton工艺对COD的总去除率在79.2%左右,可生化性由0.16提高到0.56。  相似文献   

7.
采用Fenton法氧化处理中年垃圾渗滤液生化出水,对影响双氧水利用率及COD去除率的各种因素,包括初始pH,H2O2/Fe^2+比率,双氧水投加量、催化剂类型及反应时间等进行了研究。结果表明:Fenton法氧化处理中年垃圾渗滤液生化出水的最佳条件是:初始pH值为7,H2O2/Fe^2+比率为4:1,双氧水的经济投加量为0.05mol/L,反应时间为3.5h。此时,混合催化剂可提高双氧水的利用率,双氧水利用率为153.9%,COD去除率可达80.5%,处理出水可达到GB16689—1997((生活垃圾填埋污染控制标准》二级标准(COD≤300mg/L)。  相似文献   

8.
采用Fenton氧化和混凝法对某制药厂的噻烷和噻唑生产废水进行预处理,结果表明噻烷废水宜采用先芬顿后混凝,而噻唑废水宜采用先混凝后芬顿。噻烷废水和噻唑废水H2O2投加量均为100 m L/L,反应时间均为6 h,最佳pH为2~3,FeSO4·7H2O与H2O2的最佳物质的量比分别为1∶5和1∶6,FeSO4·7H2O的投加量为49.06 g/L和40.88 g/L。噻唑废水预混凝处理的液态聚合氯化铝铁最佳投加量为40 m L/L;噻烷废水芬顿氧化后的混凝剂Ca(OH)2投加量为20 g/L,该药剂在混凝处理的同时调节系统的pH至7左右。2种组合技术对进水COD在15 000 mg/L左右的噻烷/噻唑制药废水的去除率均在85%以上。  相似文献   

9.
采用O3/Fenton组合工艺对苯甲醇模拟废水进行氧化处理,主要考察pH值,O3通入量,H2O2投加量,FeSO4加入量,反应时间对氧化效果的影响。比较了污染物苯甲醇在氧化过程中可能经历的特征分子作为污染物时废水的BOD5/COD值,确定顺丁烯二酸为最终氧化产物。结果表明:O3投加量为0.93 g/h,H2O2投加量为5 g/L,FeSO4加入量为1 g/L,pH为8,反应时间为60 min,在此条件下,顺丁烯二酸的质量分数达到42.19%。O3/Fenton组合工艺能够有效的将生化可降解性差的苯甲醇废水转化为可生化性较好有机废水,其中的特征污染物由苯甲醇转化为顺丁烯二酸,可生化指数大大提高。  相似文献   

10.
Fenton化学氧化法深度处理精细化工废水   总被引:14,自引:1,他引:13  
根据某精细化工厂的废水经过长时间的厌氧-好氧生化处理,难以进一步生物降解的特点,采用Fenton试剂进行高级氧化处理。通过实验探讨了不同的H2O2和Fe2+浓度、反应时间、pH等因素对二级生化出水COD去除率的影响。在H2O2投加量为18mmol/L,FeSO·47H2O投加量为12mmol/L,反应时间1.5h,废水的pH=4的条件下,二级生化出水的COD去除率达到82.61%,降到100mg/L以内,达到国家一级排放标准。  相似文献   

11.
研究"混凝沉淀-Fenton试剂氧化"工艺处理印染行业退煮漂废水,结果表明,在选用的四种混凝剂中,最佳混凝药剂是聚硅酸硫酸铝(PASS),最佳投药量为3 g/L,适宜反应pH值为4~5;用Fenton试剂处理混凝沉淀后的上清液,最佳氧化工艺条件:反应时间为1.5 h、pH为3~5、H2O2投加量为0.2 mol/L、n(H2O2)∶n(Fe2+)值为1.5;经过"混凝沉淀-Fenton试剂氧化"全流程处理后,废水COD cr、BOD5、色度、SS均有较高的处理效果,COD cr去除率达93.55%、BOD5去除率达89.77%、色度去除率达85.71%、SS去除率达95.9%。  相似文献   

12.
UV-Fenton氧化高浓度木糖生产废水的研究   总被引:2,自引:0,他引:2  
采用UV-Fenton技术光催化氧化高浓度木糖生产废水,确定最佳操作条件为:pH=2.5,H2O2=46.62g/L,H2O2/Fe2+摩尔配比为50∶1,光照反应60min。此条件下废水COD去除率最高可达91.2%。经正交试验确定影响处理效果各因素的重要性顺序为:pH>H2O2浓度>光照反应时间>H2O2/Fe2+摩尔配比。UV的加入与单独的Fenton体系存在正相关的协同作用。经UV-Fenton处理后的木糖废水,可生化性大大改善,B/C指标从0.21升高到0.49。  相似文献   

13.
Fenton氧化/混凝协同处理焦化废水生物出水的研究   总被引:32,自引:5,他引:27  
左晨燕  何苗  张彭义  黄霞  赵文涛 《环境科学》2006,27(11):2201-2205
对Fenton氧化/混凝协同处理焦化废水生物出水的方法进行了研究,在综合考虑经济性和去除效果的前提下,提出了反应的最佳条件:H2O2投加量为220 mg/L,Fe2+投加量为180 mg/L,聚丙烯酰胺投加量为4.5 mg/L,反应时间为0.5h,pH=7.最终COD去除率可达44.5%,色度可以降为35倍,出水符合国家污水排放二级标准.同时,通过分析分子量分布和小分子有机物组成,揭示了Fenton氧化/混凝协同处理焦化废水生物出水的污染物变化规律.结果表明焦化废水经过Fenton氧化/混凝协同处理后,其出水可达到国家二级排放标准,并且处理成本相对较低,具有实际应用的前景.  相似文献   

14.
Fenton试剂处理苯酚废水的研究   总被引:4,自引:0,他引:4  
利用Fenton试剂对吉林某化工厂产生的苯酚废水进行试验研究,探讨了H2O2、FeSO4·7H2O、pH值、反应时间等因素对苯酚废水中COD去除效果的影响。结果表明:Fenton试剂处理苯酚废水时,受到影响因素的作用大小顺序为H2O2〉FeSO4·7H2O〉pH〉反应时间。并确定Fenton处理此类苯酚废水时最佳的运行条件为:H2O2=8mL/L,FeSO4·7H2O=1.5g/L,pH=3.5,反应时间为40min,且此条件下COD去除率为79%。  相似文献   

15.
针对东北某石化企业炼油污水深度处理过程中产生的反渗透浓水的组成及特点,采用Fenton试剂对含难降解有机物的反渗透浓水进行了处理,系统地研究了VH2O2/VFe2+、反应时间、浓水初始pH、H2 O2投加量等因素对浓水中COD去除率的影响.研究结果表明,H2 O2投加量是主要影响因素,其次是浓水初始pH、反应时间以及VH2O2/VFe2+;在各因素较佳水平条件下,Fenton试剂可以有效去除反渗透浓水中的有机物,COD的去除率可以达到87.42%.大幅度降低其中难降解有机物含量,研究结果对企业废水达标排放及水资源的有效利用具有重要意义.  相似文献   

16.
Fenton试剂是一种氧化能力较强的氧化剂,广泛应用于废水处理中。生物合成技术的迅猛发展导致发酵废水量不断增大;发酵产生的水溶性中间体和产物以及后期产品分离过程中有机溶剂的使用为废水处理提出了新的挑战。本文利用Fenton试剂处理高浓度间苯三酚发酵液废水,考察了Fenton反应对COD去除率的最佳条件。通过实验得出的最佳条件为∶双氧水与COD的浓度比为1.5∶1,Fe2+与H2O2的最佳摩尔比为1∶12,最佳初始pH值为3.0,反应时间为5h。在此最佳条件下,废水COD的最大去除率为90.62%。通过多次Fenton反应得出,Fenton试剂对高浓度工业废水COD具有更好的去除率。  相似文献   

17.
采用Fenton试剂对含分散红E-4B和活性艳兰KN-R染料组成的模拟印染废水进行氧化处理,考察了H2O2和Fe2+浓度、pH、反应时间等因素对去除效果的影响。在H2O2投加量为5.0ml/L,Fe-SO4.7H2O投量为1.1g/L,pH为3,反应25min后静置5min的条件下,初始COD为700mg/L,色度为1200倍的废水的COD去除率可达到95%,脱色率达97%。结果表明,Fenton试剂对该废水可以起到很好的处理效果。  相似文献   

18.
针对电镀有机废水COD浓度高、可生化性差等特点,选取广东深圳某工业园区电镀厂的除油废水(ρ(COD)为2 000~2 500 mg/L,pH=13.1~13.5),采用Fenton法进行预处理,探索了H_2O_2投加量、n(H_2O_2)/n(Fe~(2+))、pH及反应时间对COD和BOD_5的去除效果,得到的最佳Fenton工艺参数为:H_2O_2投加量=15 00 mg/L,n(H_2O_2)/n(Fe~(2+))=4∶1,pH=3,反应时间=30 min。在此条件下,COD去除率可达到89.76%,同时B/C从0.19提高到0.31,有机废水的可生化性大幅提高,能达到可生化处理的基本要求。采用Fenton法对电镀有机废水进行预处理是可行的。  相似文献   

19.
混凝-Fenton法预处理模拟电脱盐废水   总被引:2,自引:0,他引:2  
程斌  周觅  莫建松 《环境工程》2010,28(6):31-35
采用混凝-Fenton法对模拟电脱盐废水进行预处理,筛选出最佳混凝和氧化条件。结果表明:FeSO4.7H2O和聚丙烯酰胺投加量分别为1000 mg/L和7 mg/L,Fenton反应初始pH值为7,H2O2投加量为0.06 mL/mL(分两次投加),n(H2O2)∶n(Fe2+)=10∶1,反应2 h的条件下,经此法处理后硫化物和COD去除率分别达99%和90%以上,废水中较低浓度的Fe3+和Mn2+有利于Fenton氧化反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号