首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the largest sources of global greenhouse gas emissions can be addressed through conservation of tropical forests by channeling funds to developing countries at a cost-savings for developed countries. However, questions remain to be resolved in negotiating a system for including reduced emissions from deforestation and forest degradation (REDD) in a post-Kyoto climate treaty. The approach to determine national baselines, or reference levels, for quantifying REDD has emerged as central to negotiations over a REDD mechanism in a post-Kyoto policy framework. The baseline approach is critical to the success of a REDD mechanism because it affects the quantity, credibility, and equity of credits generated from efforts to reduce forest carbon emissions. We compared outcomes of seven proposed baseline approaches as a function of country circumstances, using a retrospective analysis of FAO-FRA data on forest carbon emissions from deforestation. Depending upon the baseline approach used, the total credited emissions avoided ranged over two orders of magnitude for the same quantity of actual emissions reductions. There was also a wide range in the relative distribution of credits generated among the five country types we identified. Outcomes were especially variable for countries with high remaining forest and low rates of deforestation (HFLD). We suggest that the most credible approaches measure emissions avoided with respect to a business-as-usual baseline scenario linked to historic emissions data, and allow limited adjustments based on forest carbon stocks.  相似文献   

2.
In response to the United Nations Framework Convention on Climate Change (UNFCCC) process investigating the technical issues surrounding the ability to reduce greenhouse gas (GHG) emissions from deforestation in developing countries, this paper reviews technical capabilities for monitoring deforestation and estimating emissions. Implementation of policies to reduce emissions from deforestation require effective deforestation monitoring systems that are reproducible, provide consistent results, meet standards for mapping accuracy, and can be implemented at the national level. Remotely sensed data supported by ground observations are key to effective monitoring. Capacity in developing countries for deforestation monitoring is well-advanced in a few countries and is a feasible goal in most others. Data sources exist to determine base periods in the 1990s as historical reference points. Forest degradation (e.g. from high impact logging and fragmentation) also contribute to greenhouse gas emissions but it is more technically challenging to measure than deforestation. Data on carbon stocks, which are needed to estimate emissions, cannot currently be observed directly over large areas with remote sensing. Guidelines for carbon accounting from deforestation exist and are available in approved Intergovernmental Panel on Climate Change (IPCC) reports and can be applied at national scales in the absence of forest inventory or other data. Key constraints for implementing programs to monitor greenhouse gas emissions from deforestation are international commitment of resources to increase capacity, coordination of observations to ensure pan-tropical coverage, access to free or low-cost data, and standard and consensual protocols for data interpretation and analysis.  相似文献   

3.
Full accounting of the greenhouse gas budget in the forestry of China   总被引:1,自引:0,他引:1  
Forest management to increase carbon (C) sinks and reduce C emissions and forest resource utilization to store C and substitute for fossil fuel have been identified as attractive mitigation strategies. However, the greenhouse gas (GHG) budget of carbon pools and sinks in China are not fully understood, and the forestry net C sink must be determined. The objective of this study was to analyze potential forest management mitigation strategies by evaluating the GHG emissions from forest management and resource utilization and clarify the forestry net C sink, and its driving factors in China via constructing C accounting and net mitigation of forestry methodology. The results indicated that the GHG emissions under forest management and resource utilization were 17.7 Tg Ce/year and offset 8.5% of biomass and products C sink and GHG mitigation from substitution effects from 2000 to 2014, resulting in a net C sink of 189.8 Tg Ce/year. Forest resource utilization contributed the most to the national forestry GHG emissions, whereas the main driving factor underlying regional GHG emissions varied. Afforestation dominated the GHG emissions in the southwest and northwest, whereas resource utilization contributed the most to GHG emissions in the north, northeast, east, and south. Furthermore, decreased wood production, improved product use efficiency, and forests developed for bioenergy represented important mitigation strategies and should be targeted implementation in different regions. Our study provided a forestry C accounting in China and indicated that simulations of these activities could provide novel insights for mitigation strategies and have implications for forest management in other countries.  相似文献   

4.
International negotiations on the inclusion of land use activities into an emissions reduction system for the UN Framework Convention on Climate Change (UNFCCC) have been partially hindered by the technical challenges of measuring, reporting, and verifying greenhouse gas (GHG) emissions and the policy issues of leakage, additionality, and permanence. This paper outlines a five-part plan for estimating forest carbon stocks and emissions with the accuracy and certainty needed to support a policy for Reducing Emissions from Deforestation and forest Degradation, forest conservation, sustainable management of forests, and enhancement of forest carbon stocks (the REDD-plus framework considered at the UNFCCC COP-15) in developing countries. The plan is aimed at UNFCCC non-Annex 1 developing countries, but the principles outlined are also applicable to developed (Annex 1) countries. The parts of the plan are: (1) Expand the number of national forest carbon Measuring, Reporting, and Verification (MRV) systems with a priority on tropical developing countries; (2) Implement continuous global forest carbon assessments through the network of national systems; (3) Achieve commitments from national space agencies for the necessary satellite data; (4) Establish agreed-on standards and independent verification processes to ensure robust reporting; and (5) Enhance coordination among international and multilateral organizations.  相似文献   

5.
Using a map overlay procedure in a Geographical Information System environment, we quantify and map major land use and land cover (LULC) change patterns in Uganda period 1990–2005 and determine whether the transitions were random or systematic. The analysis reveals that the most dominant systematic land use change processes were deforestation (woodland to subsistence farmland—3.32%); forest degradation (woodland to bushland (4.01%) and grassland (4.08%) and bush/grassland conversion to cropland (5.5%) all resulting in a net reduction in forests (6.1%). Applying an inductive approach based on logistic regression and trend analyses of observed changes we analyzed key drivers of LULC change. Significant predictors of forest land use change included protection status, market access, poverty, slope, soil quality and presence/absence of a stream network. Market access, poverty and population all decreased the log odds of retaining forests. In addition, poverty also increased the likelihood of degradation. An increase in slope decreased the likelihood of deforestation. Using the stock change and gain/loss approaches we estimated the change in forest carbon stocks and emissions from deforestation and forest degradation. Results indicate a negligible increase in forest carbon stocks (3,260 t C yr-1) in the period 1990–2005 when compared to the emissions due to deforestation and forest degradation (2.67 million t C yr-1). In light of the dominant forest land use change patterns, the drivers and change in carbon stocks, we discuss options which could be pursued to implement a future national REDD plus strategy which considers livelihood, biodiversity and climate change mitigation objectives.  相似文献   

6.
Accounting the changes in the net carbon (C) sink-source balance is an important component for greenhouse gas emissions (GHG) inventories. However, carbon emission due to the vegetation biomass extraction for household purposes is generally not accounted in forest carbon budget analysis due to miniscule volume and non-availability of data. However, if vegetation remains in the forests, then vegetation biomass decomposes after natural death and decay and fixes some carbon to soil and releases some directly to the atmosphere. The study attempts to quantify the carbon removal against the biomass extraction for livestock feed by collecting primary data on feed from 316 randomly selected households engaged in livestock rearing in the lower Himalayas, Uttarakhand, India and carbon flow components due to livestock production. The analysis results that average daily forest fodder consumption was 13 kg per Adult Cattle Unit (ACU) and total of 20.31 Million tonnes (Mt) consumption of forest biomass by total livestock of Uttarakhand. This results into absolute annual carbon removal of 3.25 Mt from Uttarakhand forests against the livestock fodder. However, overall carbon flow including the enteric fermentation and manure management system of livestock estimated as per IPCC guidelines, results into emissions of 9.42 Mt CO2 eq. Therefore, biomass extraction for household purposes should be accounted in regional carbon flow analysis and properly addressed in the GHG inventories of the forests and livestock sector. Suitable measures should be taken for emissions reduction generated due to forest based livestock production.  相似文献   

7.
While bioenergy plays a key role in strategies for increasing renewable energy deployment, studies assessing greenhouse gas (GHG) emissions from forest bioenergy systems have identified a potential trade-off of the system with forest carbon stocks. Of particular importance to national GHG inventories is how trade-offs between forest carbon stocks and bioenergy production are accounted for within the Agriculture, Forestry and Other Land Use (AFOLU) sector under current and future international climate change mitigation agreements. Through a case study of electricity produced using wood pellets from harvested forest stands in Ontario, Canada, this study assesses the implications of forest carbon accounting approaches on net emissions attributable to pellets produced for domestic use or export. Particular emphasis is placed on the forest management reference level (FMRL) method, as it will be employed by most Annex I nations in the next Kyoto Protocol Commitment Period. While bioenergy production is found to reduce forest carbon sequestration, under the FMRL approach this trade-off may not be accounted for and thus not incur an accountable AFOLU-related emission, provided that total forest harvest remains at or below that defined under the FMRL baseline. In contrast, accounting for forest carbon trade-offs associated with harvest for bioenergy results in an increase in net GHG emissions (AFOLU and life cycle emissions) lasting 37 or 90 years (if displacing coal or natural gas combined cycle generation, respectively). AFOLU emissions calculated using the Gross-Net approach are dominated by legacy effects of past management and natural disturbance, indicating near-term net forest carbon increase but longer-term reduction in forest carbon stocks. Export of wood pellets to EU markets does not greatly affect the total life cycle GHG emissions of wood pellets. However, pellet exporting countries risk creating a considerable GHG emissions burden, as they are responsible for AFOLU and bioenergy production emissions but do not receive credit for pellets displacing fossil fuel-related GHG emissions. Countries producing bioenergy from forest biomass, whether for domestic use or for export, should carefully consider potential implications of alternate forest carbon accounting methods to ensure that potential bioenergy pathways can contribute to GHG emissions reduction targets.  相似文献   

8.
The REDD-ALERT (Reducing Emissions from Deforestation and Degradation from Alternative Land Uses in the Rainforests of the Tropics) project started in 2009 and finished in 2012, and had the aim of evaluating mechanisms that translate international-level agreements into instruments that would help change the behaviour of land users while minimising adverse repercussions on their livelihoods. Findings showed that some developing tropical countries have recently been through a forest transition, thus shifting from declining to expanding forests at a national scale. However, in most of these (e.g. Vietnam), a significant part of the recent increase in national forest cover is associated with an increase in importation of food and timber products from abroad, representing leakage of carbon stocks across international borders. Avoiding deforestation and restoring forests will require a mixture of regulatory approaches, emerging market-based instruments, suasive options, and hybrid management measures. Policy analysis and modelling work showed the high degree of complexity at local levels and highlighted the need to take this heterogeneity into account—it is unlikely that there will be a one size fits all approach to make Reducing Emissions from Deforestation and Degradation (REDD+) work. Significant progress was made in the quantification of carbon and greenhouse gas (GHG) fluxes following land-use change in the tropics, contributing to narrower confidence intervals on peat-based emissions and their reporting standards. There are indications that there is only a short and relatively small window of opportunity of making REDD+ work—these included the fact that forest-related emissions as a fraction of total global GHG emissions have been decreasing over time due to the increase in fossil fuel emissions, and that the cost efficiency of REDD+ may be much less than originally thought due to the need to factor in safeguard costs, transaction costs and monitoring costs. Nevertheless, REDD+ has raised global awareness of the world’s forests and the factors affecting them, and future developments should contribute to the emergence of new landscape-based approaches to protecting a wider range of ecosystem services.  相似文献   

9.
Carbon emissions from tropical deforestation account for about 25% of all anthropogenic carbon dioxide emissions but cannot be credited under current climate change agreements. In the discussions around the architecture of the post-2012 climate regime, the possibility of including credits for reduced emissions from deforestation arises. The paper reviews two approaches for this, compensated reductions (CR) as proposed by Santilli et al. and the Joint Research Centre proposal that combine voluntary commitments by non-Annex I countries to reduce emissions from deforestation with carbon market financing. Both approaches have the clear advantages of simplicity and the possibility of fitting to an evolving greenhouse gas emission reduction regime. The authors consider the strengths and limitations of each proposal and build upon them to address several implementation challenges and options for improvement. Given the urgency of avoiding dangerous climate change, the timely development of technically sound, politically acceptable, cost-effective and practicable measures to reduce emissions from deforestation and forest degradation is essential. These two approaches take us a step closer to this goal, but they need to be refined rapidly to enable this goal to be realised.  相似文献   

10.
Preventing dangerous climate change requires actions on several sectors. Mitigation strategies have focused primarily on energy, because fossil fuels are the main source of global anthropogenic greenhouse gas emissions. Another important sector recently gaining more attention is the forest sector. Deforestation is responsible for approximately one fifth of the global emissions, while growing forests sequester and store significant amounts of carbon. Because energy and forest sectors and climate change are highly interlinked, their interactions need to be analysed in an integrated framework in order to better understand the consequences of different actions and policies, and find the most effective means to reduce emissions. This paper presents a model, which integrates energy use, forests and greenhouse gas emissions and describes the most important linkages between them. The model is applied for the case of Finland, where integrated analyses are of particular importance due to the abundant forest resources, major forest carbon sink and strong linkage with the energy sector. However, the results and their implications are discussed in a broader perspective. The results demonstrate how full integration of all net emissions into climate policy could increase the economic efficiency of climate change mitigation. Our numerical scenarios showed that enhancing forest carbon sinks would be a more cost-efficient mitigation strategy than using forests for bioenergy production, which would imply a lower sink. However, as forest carbon stock projections involve large uncertainties, their full integration to emission targets can introduce new and notable risks for mitigation strategies.  相似文献   

11.
Within national greenhouse gas inventories, many countries now use widely-accepted methodologies to track carbon that continues to be stored in wood products and landfills after its removal from the forest. Beyond simply tracking post-harvest wood carbon, expansion of this pool has further been suggested as a potential climate change mitigation strategy. This paper summarizes data on the fate of carbon through the wood processing chain and on greenhouse gas emissions generated by processing, transport, use and disposal of wood. As a result of wood waste and decomposition, the carbon stored long-term in harvested wood products may be a small proportion of that originally stored in the standing trees—across the United States approximately 1% may remain in products in-use and 13% in landfills at 100 years post-harvest. Related processing and transport emissions may in some cases approach the amount of CO2e stored in long-lived solid wood products. Policies that promote wood product carbon storage as a climate mitigation strategy must assess full life-cycle impacts, address accounting uncertainties, and balance multiple public values derived from forests.  相似文献   

12.
Agriculture is one of the major sources of greenhouse gas (GHG) emission. It accounts for approximately 15% of the total global anthropogenic emissions of GHGs. Emissions could be twice as much if indirect emissions are also taken into the consideration. However, unlike other high emitting sectors such as transport or energy, agriculture is potentially a significant carbon “sink”. It has high technical potential as a carbon sink and if tapped, can substantially enhance global sequestration efforts. The technical potential, however, may not translate into actual GHG reduction because of the capital assets and institutional constraints faced by the smallholder farmers in the developing countries. In this paper we develop a capital assets based framework of physical, financial, social, human and natural barriers to agricultural carbon mitigation initiatives and through analysis of current initiatives, we set out policy based options to reduce each of these barriers. Fundamentally, barrier removal will entail designing agricultural carbon mitigation initiatives in collaboration with farmer communities, through strengthening local institutions, understanding land tenure and natural resource cultures, ensuring legitimacy and equity in payments and fast tracking training and information. We provide a framework that simultaneously aids the dual objectives of alleviating poverty in the poor farming communities of developing countries and lowering global greenhouse gas emissions.  相似文献   

13.
Tropical forests in countries like thePhilippines are important sources and sinks of carbon(C). The paper analyzes the contribution of Philippineforests in climate change mitigation. Since the 1500s,deforestation of 20.9 M ha (106 ha) of Philippineforests contributed 3.7 Pg (1015 g) of C to theatmosphere of which 2.6 Pg were released this century. At present, forest land uses store 1091 Tg(1012 g) of C and sequester 30.5 Tg C/yr whilereleasing 11.4 Tg C/yr through deforestation andharvesting. In the year 2015, it is expected that thetotal C storage will decline by 8% (1005 Tg) andtotal rate of C sequestration will increase by 17%(35.5 Tg/yr). This trend is due to the decline innatural forest area accompanied by an increase intree plantation area. We have shown that uncertaintyin national C estimates still exists because they arereadily affected by the source of biomass and Cdensity data. Philippine forests can act as C sink by:conserving existing C sinks, expanding C stocks, andsubstituting wood products for fossil fuels. Here weanalyze the possible implications of the provisions ofthe Kyoto Protocol to Philippine forests. Finally, wepresent current research and development efforts ontropical forests and climate change in the Philippinesto improve assessments of their role in the nations Cbudgets.  相似文献   

14.
Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, the United States and other countries are implementing, by themselves or in cooperation with one or more other nations, climate change projects. These projects will reduce greenhouse gas (GHG) emissions or sequester carbon, and will also result in non-GHG benefits (i.e., environmental, economic, and social benefits). Monitoring, evaluating, reporting, and verifying (MERV) guidelines are needed for these projects to accurately determine their net GHG, and other, benefits. Implementation of MERV guidelines is also intended to: (1) increase the reliability of data for estimating GHG benefits; (2) provide real-time data so that mid-course corrections can be made; (3) introduce consistency and transparency across project types and reporters; and (4) enhance the credibility of the projects with stakeholders. In this paper, we review the issues involved in MERV activities. We identify several topics that future protocols and guidelines need to address, such as: (1) establishing a credible baseline; (2) accounting for impacts outside project boundaries through leakage; (3) net GHG reductions and other benefits; (4) precision of measurement; (5) MERV frequency and the persistence (sustainability) of savings, emissions reduction, and carbon sequestration; (6) reporting by multiple project participants; (7) verification of GHG reduction credits; (8) uncertainty and risk; (9) institutional capacity in conducting MERV; and (10) the cost of MERV.  相似文献   

15.
An increased use of wood products and an adequate management of forests can help to mitigate climate change. However, planning horizons and response time to changes in forest management are usually long and the respective GHG effects related to the use of wood depend on the availability of harvested wood. Therefore, an integral long-term strategic approach is required to formulate the most effective forest and wood management strategies for mitigating climate change.The greenhouse gas (GHG) dynamics related to the production, use and disposal of wood products are manifold and show a complex time pattern. On the one hand, wood products can be considered as a carbon pool, as is the forest itself. On the other hand, an increased use of wood can lead to the substitution of usually more energy-intense materials and to the substitution of fossil fuels when the thermal energy of wood is recovered. Country-specific import/export flows of wood products and their alternative products as well as their processing stage have to be considered if substitution effects are assessed on a national basis.We present an integral model-based approach to evaluate the GHG impacts of various forest management and wood use scenarios. Our approach allows us to analyse the complex temporal and spatial patterns of GHG emissions and removals including trade-offs of different forest management and wood use strategies. This study shows that the contributions of the forestry and timber sector to mitigate climate change can be optimized with the following key recommendations: (1) the maximum possible, sustainable increment should be generated in the forest, taking into account biodiversity conservation as well as the long-term preservation of soil quality and growth performance; (2) this increment should be harvested continuously; (3) the harvested wood should be processed in accordance with the principle of cascade use, i.e. first be used as a material as long as possible, preferably in structural components; (4) waste wood that is not suitable for further use should be used to generate energy. Political strategies to solely increase the use of wood as a biofuel cannot be considered efficient from a climate perspective; (5) forest management strategies to enhance carbon sinks in forests via reduced harvesting are not only ineffective because of a compensatory increase in fossil fuel consumption for the production of non-wooden products and thermal energy but also because of the Kyoto-“cap” that limits the accountability of GHG removals by sinks under Article 3.3 and 3.4, at least for the first commitment period; (6) the effect of substitution through the material and energy use of wood is more significant and sustained as compared with the stock effects in wood products, which tend towards new steady-state flow equilibria with no further increase of C stocks; (7) from a global perspective, the effect of material substitution exceeds that of energy recovery from wood. In the Swiss context, however, the energy recovery from wood generates a greater substitution effect than material substitution.  相似文献   

16.
Worldwide, paper production is a major industry that contributes about 3 percent of Gross World Product. The paper cycle involves a broad range of natural resource and environmental impacts because fiber supply relies on trees, paper manufacturing requires fuel inputs, and paper waste disposal can contribute to emissions of the potent greenhouse gas (GHG), methane (CH4). In some countries, the paper cycle may be seen as a net sink for GHG because of reliance on renewable wood by-products and the maintenance of forest plantations. On a worldwide basis, however, this study demonstrates that the paper cycle is a significant contributor to GHG emissions, adding emissions at least comparable in magnitude to that of Australia each year. The estimated global warming contribution of paper in landfills is estimated to be similar to that of paper manufacturing processes, on a heating-equivalent basis. In some temperate regions, original old-growth forests are still harvested to supply pulpwood, resulting in a significant loss of carbon (C) storage. In theory, the paper cycle holds the promise of achieving zero net emissions if pulpwood production, consumption and disposal are carefully managed. In practice, even stabilization of emissions at current levels would be challenging and entail changes comparable to a 20 percent reduction in CH4 generation from landfilled paper, and a 2.5 percent annual increase in plantation establishment would be needed to offset the projected increase in emissions from paper manufacturing.  相似文献   

17.
A recent assessment of agricultural greenhouse gas (GHG) emissions has demonstrated significant potential for mitigation, but suggests that the full mitigation will not be realized due to significant barriers to implementation. In this paper, we explore the constraints and barriers to implementation important for GHG mitigation in agriculture. We also examine how climate and non-climate policy in different regions of the world has affected agricultural GHG emissions in the recent past, and how it may affect emissions and mitigation implementation in the future. We examine the links between mitigation and adaptation and drives for sustainable development and the potential for agricultural GHG mitigation in the future.We describe how some countries have initiated climate and non-climate policies believed to have direct effects or synergistic effects on mitigating GHG emissions from agriculture. Global sharing of innovative technologies for efficient use of land resources and agricultural chemicals, to eliminate poverty and malnutrition, will significantly mitigate GHG emissions from agriculture.Previous studies have shown that as less than 30% of the total biophysical potential for agricultural GHG mitigation might be achieved by 2030, due to price- and non-price-related barriers to implementation. The challenge for successful agricultural GHG mitigation will be to remove these barriers by implementing creative policies. Identifying policies that provide benefits for climate, as well as for aspects of economic, social and environmental sustainability, will be critical for ensuring that effective GHG mitigation options are widely implemented in the future.  相似文献   

18.
A sustainable forestry scenario aimed at meeting the projected biomassdemands, halting deforestation and regenerating degraded forests wasdeveloped and analyzed for additionality of mitigation and cost-effectivenessfor India. Similarly, mitigation potential of a commercial forestry scenarioaimed at meeting the biomass demands from forestry activities on privateland was assessed. India has a significant scale baseline scenario afforestationand effective forest conservation activities. India is afforesting at an averagegross rate of 1.55 × 106 ha yr-1 over the past 10 years, while the gross deforestation rate was 0.272 × 106 ha yr-1 during the same period. The sustainable forestry scenario could lead to an additional carbon (C) stock of 237 × 106 Mg C during 2000 to 2012, while the commercial forestry scenario apart from meeting all the incremental biomass demands (estimated for 2000 to 2015) could potentially lead to an additional carbon stock of 78 × 106Mg C during 2000 to 2012. Short- and Long-rotation forestry activities arecommercially viable. With appropriate policies and financial incentives allthe industrial wood, sawnwood and commercial fuelwood requirementcould be met through commercial forestry, so that government funds couldbe dedicated for conserving state owned forests and meeting subsistencebiomass demands. The commercial forestry activities could receive financialsupport under greenhouse gas (GHG) abatement programmes. The government, however, needs to develop institutions and guidelines to process, evaluate, approve and monitor forestry sector mitigation projects.  相似文献   

19.
The possibility of adopting national targets for carbon dioxide (CO2) emissions from tropical deforestation in a future international climate treaty has received increasing attention recently. This attention has been prompted by proposals to this end and more intensified talks on possible commitments for developing countries beyond the United Nations Framework Convention on Climate Change Kyoto Protocol. We analyze four main scientific and political challenges associated with national targets for emissions from tropical deforestation: (1) reducing the uncertainties in emission inventories, (2) preserving the environmental integrity of the treaty, (3) promoting political acceptance and participation in the regime, and (4) providing economic incentives for reduced deforestation. We draw the following conclusions. (1) Although there are large uncertainties in carbon flux from deforestation, these are in the same range as for other emissions included in the current Kyoto protocol (i.e., non-CO2 GHGs), and they can be reduced. However, for forest degradation processes the uncertainties are larger. A large challenge lies in building competence and institutions for monitoring the full spectrum of land use changes in developing countries. (2 and 3) Setting targets for deforestation is difficult, and uncertainties in future emissions imply a risk of creating ‘tropical hot air’. However, there are proposals that may sufficiently deal with this, and these proposals may also have the advantage of making the targets more attractive, politically speaking. Moreover, we conclude that while a full carbon accounting system will likely be politically unacceptable for tropical countries, the current carbon accounting system should be broadened to include forest degradation in order to safeguard environmental integrity. (4) Doubts can be cast over the possible effect a climate regime alone will have on deforestation rates, though little thorough analysis of this issue has been made.
U. Martin PerssonEmail:
  相似文献   

20.
REDD+ (reducing emissions from deforestation and forest degradation and related forest activities) is a climate change mitigation mechanism currently being negotiated under the United Nations Framework Convention on Climate Change (UNFCCC). It calls for developed countries to financially support developing countries for their actions to reduce forest-sector carbon emissions. In this paper, we undertake a meta-analysis of the links, if any, between multiple and diverse drivers of deforestation operating at different levels and the benefits accruing from and being shared through REDD+ projects. We do so by assessing the nature of this link in (a) scholarly analysis, through an in-depth analysis of the posited relationship between drivers and REDD+ benefit-sharing, as examined in the peer-reviewed literature; and (b) in policy practice, through analysing how this link is being conceptualised and operationalised, if at all, in REDD+ project design documents. Our meta-analysis suggests that while some local, direct drivers and a few regional indirect drivers of deforestation and forest degradation are being targeted by specific REDD+ interventions and associated benefit-sharing mechanisms at the project-level, most national and international indirect drivers are not. We conclude that the growing academic analyses of REDD+ projects do not (as yet) advance viable theories of change, i.e. there is currently little focus on how REDD+ benefits could play a transformative role in catalysing action on drivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号