首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural filler/poly(lactic acid)-Based composites have been prepared by melt blending in order to investigate the resulting thermal, mechanical, and oxygen permeability properties. To this aim, several wastes or by-products (namely, cellulose fibers, wood sawdust, hazelnut shells, flax fibers, corn cob and starch) have been used, ranging from 10 to 30 wt%. The presence of these fillers is responsible of a slight reduction of the polymer degradation temperature in nitrogen as well as of a significant increase of the storage modulus as a function of the filler content. The experimental data obtained by dynamic mechanical analysis have been mathematically fitted, employing three micromechanical models (namely, Voigt, Reuss and Halpin–Tsai). Furthermore, the presence of cellulose or starch has turned out to significantly reduce the polymer oxygen permeability. Finally, in order to fully assess the feasibility of such materials, an economic analysis has been carried out and discussed.  相似文献   

2.
Evaluation of Poly(lactic acid) and Sugar Beet Pulp Green Composites   总被引:1,自引:0,他引:1  
Poly(lactic acid) (PLA) and sugar beet pulp (SBP) were compounded by twin-screw extrusion and injection molded into composite forms. Specific mechanical energy decreased with the addition of SBP during processing. PLA–SBP composites retained more tensile strength than expected based on the Nicolais–Narkis model especially at high levels of SBP suggesting adhesion between SBP and PLA. The thermal characteristics of PLA were not affected by thermo-mechanical processing or by the incorporation of SBP up to 30% weight basis. PLA and PLA–SBP composites had similar tensile properties to other thermoplastic resins and may be used as a cost-competitive replacement.
Victoria L. FinkenstadtEmail:
  相似文献   

3.
Poly(lactic acid) (PLA) is a biodegradable material. However, PLA is relatively cost effective. Blending starch with PLA is one of the promising efforts because starch is a widely distributed and inexpensive product. PLA and starch were blended using a rheometer to form composites in this report. Glycerin was added into the blends to make the mixture molecular compatible and more homogeneous. The starch was crosslinked using epichlorohydrin to improve the compatibility of starch with PLA. Two series of composite were fabricated. One was PLA and the crosslinked starch containing 32 wt% glycerin. In this group, the crosslinking degree of the modified starch was varied. The second group was PLA and non-crosslinked starch with varied amount of glycerin added. Micro-structure of the blending composites was observed using a SEM to view the homogeneity of the mixture. The SEM pictures indicated that the compatibility of PLA and starch molecules was poor. The addition of glycerin can change the compatibility of PLA and starch. The higher the glycerin content in the composites, the better the compatibility between PLA and starch. Furthermore, when the starch was crosslinked by epichlorohydrin, the compatibility of PLA and starch can be greatly improved. The compatibility increases with the increase of crosslinking degree. This is due to the change of hydrophilicity of starch because the hydroxyl groups on the starch molecules were crosslinked into ether groups by the epichlorohydrin molecules.  相似文献   

4.
Poly (lactic acid) (PLA) and poly (butylene adipate-co-terephthalate) (PBAT) are biodegradable polyesters and can be blended by twin-screw extrusion. Epoxy-functional styrene acrylic copolymer (ESA) was used as reactive agent for PLA/PBAT blends and the mechanical properties, phase morphology, thermal properties, melt properties, and melt rheological behaviors of the blends were investigated. During thermal extrusion, ESA was mainly a chain extender for the PLA matrix but had no evident reaction with PBAT. The great improvement in the toughness of PLA based blends was achieved by the addition of PBAT of no less than 15 wt% and that of ESA of no more than 0.5 wt%. Although SEM micrographs and the reduced deviation of the terminal slope of G′ and G″ indicated better compatibility and adhesion between the two phases, the blend with ESA was still a two-phase system as indicated in DSC curves. Rheological results reveal that the addition of ESA increased the storage modulus (G′), loss modulus (G″) and complex viscosity of the blend at nearly all frequencies. The melt strength and melt elasticity of the blend are improved by addition of ESA.  相似文献   

5.
Poly(lactic acid) (PLA) presents high strength and modulus, but very low toughness as well as slow crystallization. Natural rubber (NR) was blended to enhance the toughness and nucleating agent was added to improve the crystallization. Cyclodextrin (CD), considered as a green compound, as well as calcium carbonate (CaCO3) and talc were used as nucleating agents. Effects of these nucleating agents on crystallization, mechanical properties and morphology of neat PLA and PLA/NR blend were investigated. It was found that the addition of talc and CD decreased cold crystallization temperature (Tcc) of the PLA. Same result was obtained in PLA/NR blend containing talc. All nucleating agents increased the degree of crystallinity (ΧC) of PLA, whereas only talc and CaCO3 increased ΧC of PLA in PLA/NR blends. The enhanced toughness of PLA by the addition of nucleating agent was attributed to its increased crystallinity, as well as decreased spherulite size. For PLA/NR blends, the increase in toughness was mainly contributed by the presence of the rubber.  相似文献   

6.
The objective of this work was to determine some physical and mechanical properties of the high density polyethylene (HDPE) composites reinforced with various mixtures of the paper sludge and the wood flour, and to evaluate the coupling agent performance. The waste sludge materials originating from two different sources including paper making waste water treatment sludge (PS) and ink-eliminated sludge (IES) were characterized in terms of physico-chemical properties. In the experiment, four levels of paper sludge (20, 30, 40 and 60 wt%), three levels of wood flour (20, 40 and 60 wt%), and two levels of coupling agent (MAPE) content (2 and 3 wt%) were used. The flexural properties of the composites were positively affected by the addition of the sludge. Especially, tensile modulus improved with the increase of paper sludge content. With the addition of MAPE, flexural properties improved considerably compared with control specimens (without any coupling agent). The results showed that the water absorption (WA) and thickness swelling (TS) values of the samples decreased considerably with increasing sludge content in the composite, while they increased with increasing wood flour content. It is to be noted that with incorporation of MAPE in the composite formulation, the compatibility between the wood flour and HDPE was enhanced through esterification, which reduced the WA and TS and improved the mechanical properties. Composites made with IES exhibited superior physico-mechanical properties compared with the PS filled composites. Overall results suggest that the waste paper sludge materials were capable of serving as feasible reinforcing fillers for thermoplastic polymer composites.  相似文献   

7.
There has been considerable interest in the use of the biodegradable polymer poly(lactic acid) (PLA) as a replacement for petroleum derived polymers due to ease of processability and its high mechanical strength. Other material properties have however limited its wider application. These include its brittle properties, low impact strength and yellow tint. In an attempt to overcome these drawbacks, PLA was blended with four commercially available additives, commonly known as masterbatches. The effect of the addition of 1.5 wt% of the four masterbatches on the mechanical, thermal, optical and surface properties of the polymer was evaluated. All four masterbatches had a slight negative effect on the tensile strength of PLA (3–5% reduction). There was a four fold increase in impact resistance however with the addition of one of the masterbatches. Differential scanning calorimetry demonstrated that this increase corresponded to a decrease in the polymer crystallinity. However there was an associated increase in polymer haze with the addition of this masterbatch. The clarity of PLA was improved through the addition of an optical brightener masterbatch, but the impact resistance remained low. The glass transition and melting temperatures of PLA were not affected by the addition of the masterbatches, and no change was observed in surface energy. Some delay in PLA degradation, in a PBS degradation medium at 50 °C, was observed due to blending with these masterbatches.  相似文献   

8.
In the present study, influence of talc on thermal, mechanical and rheological behavior of PLA is investigated and the structure?Cproperty correlation for the PLA/talc composites is established. Poly(lactic acid)/talc composites are prepared by melt mixing of PLA with talc in twin screw extruder followed by blown film processing. Various characterizations techniques are used to evaluate thermal, morphological, mechanical and rheological behavior of PLA/talc composites and its blown film. DSC analysis showed that degree of crystallinity of PLA/talc composites was higher than that of neat PLA because of nucleating ability of talc. Spherulite morphology of PLA/talc composites showed that talc has increased nucleation density of spherulite having smaller radius than that of neat PLA. Talc is effective in enhancing tensile modulus and storage modulus of PLA due to reinforcing ability of talc particles.  相似文献   

9.
Research on biodegradable materials has been stimulated due to concern regarding the persistence of plastic wastes. Blending starch with poly(lactic acid) (PLA) is one of the most promising efforts because starch is an abundant and cheap biopolymer and PLA is biodegradable with good mechanical properties. Poly(vinyl alcohol) (PVOH) contains unhydrolytic residual groups of poly(vinyl acetate) and also has good compatibility with starch. It was added to a starch and PLA blend (50:50, w/w) to enhance compatibility and improve mechanical properties. PVOH (MW 6,000) at 10%, 20%, 30%, 40%, 50% (by weight) based on the total weight of starch and PLA, and 30% PVOH at various molecular weights (MW 6,000, 25,000, 78,000, and 125,000 dalton) were added to starch/PLA blends. PVOH interacted with starch. At proportions greater than 30%, PVOH form a continuous phase with starch. Tensile strength of the starch/PLA blends increased as PVOH concentration increased up to 40% and decreased as PVOH molecular weight increased. The increasing molecular weight of PVOH slightly affected water absorption, but increasing PVOH concentration to 40% or 50% increased water absorption. Effects of moisture content on the starch/PLA/PVOH blend also were explored. The blend containing gelatinized starch had higher tensile strength. However, gelatinized starch also resulted in increased water absorption.  相似文献   

10.
11.
The shape memory behavior of PLLA (poly(l-lactide)) and chitosan/PLLA composites was studied. PLLA and chitosan were compounded to fabricate novel materials which may have biodegradability and biocompatibility. Chitosan does not significantly affect the glass and melting transition temperature of the PLLA. Both the pure PLLA and chitosan/PLLA composites showed shape memory effect arising from the viscoelastic properties of PLLA comprised of semi crystalline structures. The shape recovery ratio of the chitosan/PLLA composites decreased significantly with increasing chitosan contents due to the incompatibility between PLLA and chitosan. Phase separation structures of the composites were observed by using atomic force microscopy. To obtain good shape memory effect, the chitosan content should be below 15 wt%.  相似文献   

12.
Neat poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA) films and PLLA/PDLA blend films were prepared by solution casting, and their photodegradation by UV-irradiation was investigated using wide-angle X-ray scattering (WAXS), gel permeation chromatography, differential scanning calorimetry, tensile testing, and polarized optical microscopy. The PLLA/PDLA blend film was more photodegradation-resistant than the neat PLLA and PDLA films when photodegradation was monitored by molecular weight, melting temperature, and WAXS crystalline peak positions. This indicates that the chains in both amorphous and crystalline regions of the PLLA/PDLA blend film were photo-cleavage-resistant compared to those of the neat PLLA and PDLA films. The changes in melting temperature and WAXS crystalline peak positions before and after photodegradation respectively indicated the increased crystalline lattice disorder and the decreased crystalline lattice sizes of the neat PLLA and PDLA films, whereas these changes were insignificant for the blend films. Photodegradation caused no significant change in tensile properties, with the exception of significant decreases in the tensile strength and elongation at break of PLLA/PDLA blend film. However, the tensile strength and elongation at break of the PLLA/PDLA blend film retained higher values compared to those of the neat PLLA and PDLA films during photodegradation. In spite of the slower photodegradation of the PLLA/PDLA blend film traced by M n, T m, and WAXS crystalline peak positions than that of neat PLLA and PDLA films, the rapid decrease in tensile strength and elongation at break of the former than that of the latter should be due to the highly-ordered structural difference between them, i.e., the three dimensional dry gel of the former and the spherulites of the latter.  相似文献   

13.
Fibers of poly(lactic acid) (PLA) produced by two-step melt-spinning are studied. The PLA resin used contains a 98:02 ratio of l:d stereochemical centers. A range of processing conditions is explored. The cold-draw ratio is varied from 1 to 8 under conditions of constant heating. In addition, three draw ratios are studied at three different heating rates. The thermal, mechanical, and morphological properties of the resultant fibers are determined. Properties can be widely manipulated through a combination of draw ratio and draw temperature. A maximum tensile strength and modulus of 0.38 GPa and 3.2 GPa, respectively, are obtainable. Using atomic force microscopy, the fiber morphology is found to be highly fibrillar; microfibril diameters are roughly 40 nm in diameter. Very high draw ratios cause the fiber to turn from shiny and translucent to dull and white; this transition is attributed to surface crazing. Significant molecular weight loss is observed upon processing (weight-average molecular weights drops between 27% and 43%).  相似文献   

14.
15.
The effect of orientation in the amorphous and crystalline regions on the biodegradability of PTMS [poly(tetramethylene succinate)] was studied using the amorphous orientation function, birefringence, and crystallinity. The crystalline and amorphous intrinsic lateral sonic moduli, E t,c 0 and E t,am 0 , were 2.61 × 103 and 0.41 × 103 MPa, respectively. Using the data on birefringence, crystalline and amorphous orientation function (f and f am), crystallinity, and sonic modulus of the oriented PTMS fibers, the intrinsic birefringence of the crystalline ( c 0 ) and amorphous ( am 0 ) regions were evaluated to be 0.0561 and 0.0634, respectively. The biodegradabilities of oriented PTMS films were reduced as the elongation increased, i.e., the amorphous orientation increased. At low elongation (100 and 150%), however, biodegradabilities remained unchanged when the degradation test was performed in activated sludge, which was attributed to the amorphous orientation occurring even at 100% elongation, though the amorphous orientation direction was perpendicular to the fiber axis.  相似文献   

16.
Compositions of wood-polypropylene composites (WPCs) are prepared through melt compounding followed by injection moulding. WPCs are formulated for eight compositions with a different weight ratio of wood, virgin or recycled polypropylene and coupling agent. WPCs compositions are compared in terms of Melt Flow Index, Tensile, FESEM images, Flexural and crystallinity index for same operating variable conditions. From the results, recycled polypropylene based WPCs are superior in comparison to virgin polypropylene based WPCs. With the addition of 5 % coupling agent in recycled polypropylene-based composites for 45:50 composition, tensile and flexural values of WPCs are higher in comparison to all composition and neat virgin or recycled polypropylene. This work stands for the utilization of waste wood with recycled plastic for replacement of wood and virgin plastic.  相似文献   

17.
Journal of Polymers and the Environment - This work aims to investigate the effect of organically modified montmorillonite (OMMT) and vermiculite (OVT) clays on the properties of poly(lactic acid)...  相似文献   

18.
In this work, two processing aids, acetyl tri-n-butyl citrate and an alkene bis fatty amide (wax), were investigated for their effects on rheological properties, morphology, thermal transition temperatures, and mechanical properties of the poly(lactic acid) (PLA)/soy protein concentrate blends. Acetyl tri-n-butyl citrate and alkene bis fatty amide played different roles in improving the processability of the blends, with the former functioning as a plasticizer for PLA and the latter as an internal/external lubricant. The amide wax was more effective in reducing blend melt viscosity through its dual functions of internal and external lubrication. Acetyl tri-n-butyl citrate displayed a stronger effect in facilitating PLA nucleation than the amide wax. Both processing aids decreased tensile strength and modulus of the blends and increased break strain and impact strength.  相似文献   

19.
20.
In the first part of this work, composites based on polypropylene (PP) and maple wood flour (MF) were prepared by melt compounding using twin-screw extrusion followed by compression molding. The morphological and mechanical properties of the composites were analyzed for three samples: PP, MF/PP and MF/PP containing maleic anhydride grafted polypropylene (MAPP) as coupling agent. The results showed that MF/PP composites have improved mechanical properties, especially tensile modulus (+33 %), with only 8 % increase in density. The addition of MAPP further improved the mechanical properties, in particular tensile modulus (up to 51 %), which could be related to better fiber/matrix adhesion. In the second step, nano crystalline cellulose (NCC) was added to all samples to produce NCC-MF/PP hybrid composites. From the mechanical analysis performed, the hybrid composites with MAPP have improved properties, especially tensile (+53 %) and flexural (+40 %) moduli. These results confirmed that multi-scale hybrid NCC-MF composites can substantially improve the mechanical properties of polyolefins with limited increase in density (14 %) leading to high specific properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号