首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Saba VS  Spotila JR  Chavez FP  Musick JA 《Ecology》2008,89(5):1414-1427
Nesting populations of leatherback turtles (Dermochelys coriacea) in the Atlantic and western Indian Oceans are increasing or stable while those in the Pacific are declining. It has been suggested that leatherbacks in the eastern Pacific may be resource limited due to environmental variability derived from the El Ni?o Southern Oscillation (ENSO), but this has yet to be tested. Here we explored bottom-up forcing and the responding reproductive output of nesting leatherbacks worldwide. We achieved this through an extensive review of leatherback nesting and migration data and by analyzing the spatial, temporal, and quantitative nature of resources as indicated by net primary production at post-nesting female migration and foraging areas. Leatherbacks in the eastern Pacific were the smallest in body size and had the lowest reproductive output due to less productive and inconsistent resources within their migration and foraging areas. This derived from natural interannual and multidecadal climate variability together with an influence of anthropogenic climate warming that is possibly affecting these natural cycles. The reproductive output of leatherbacks in the Atlantic and western Indian Oceans was nearly twice that of turtles in the eastern Pacific. The inconsistent nature of the Pacific Ocean may also render western Pacific leatherbacks susceptible to a more variable reproductive output; however, it appears that egg harvesting on nesting beaches is their major threat. We suggest that the eastern Pacific leatherback population is more sensitive to anthropogenic mortality due to recruitment rates that are lower and more variable, thus accounting for much of the population differences compared to Atlantic and western Indian turtles.  相似文献   

2.
Factors affecting population recovery from depletion are at the focus of wildlife management. Particularly, it has been debated how life‐history characteristics might affect population recovery ability and productivity. Many exploited fish stocks have shown temporal changes towards earlier maturation and reduced adult body size, potentially owing to evolutionary responses to fishing. Whereas such life‐history changes have been widely documented, their potential role on stock's ability to recover from exploitation often remains ignored by traditional fisheries management. We used a marine ecosystem model parameterized for Southeastern Australian ecosystem to explore how changes towards “faster” life histories might affect population per capita growth rate r. We show that for most species changes towards earlier maturation during fishing have a negative effect (3–40% decrease) on r during the recovery phase. Faster juvenile growth and earlier maturation were beneficial early in life, but smaller adult body sizes reduced the lifetime reproductive output and increased adult natural mortality. However, both at intra‐ and inter‐specific level natural mortality and trophic position of the species were as important in determining r as species longevity and age of maturation, suggesting that r cannot be predicted from life‐history traits alone. Our study highlights that factors affecting population recovery ability and productivity should be explored in a multi‐species context, where both age‐specific fecundity and survival schedules are addressed simultaneously. It also suggests that contemporary life‐history changes in harvested species are unlikely to increase their resilience and recovery ability.  相似文献   

3.
We develop a biologically correct cost system for production systems facing invasive pests that allows the estimation of population dynamics without a priori knowledge of their true values. We apply that model to a data set for olive producers in Crete and derive from it predictions about the underlying population dynamics. Those dynamics are compared to information on population dynamics obtained from pest sampling with extremely favorable results.  相似文献   

4.
We develop a biologically correct cost system for production systems facing invasive pests that allows the estimation of population dynamics without a priori knowledge of their true values. We apply that model to a data set for olive producers in Crete and derive from it predictions about the underlying population dynamics. Those dynamics are compared to information on population dynamics obtained from pest sampling with extremely favorable results.  相似文献   

5.
Individual specialisation is increasingly recognised to be an ecological and evolutionary process having important consequences for population dynamics of vertebrates. The South American fur seal (SAFS) and the South American sea lion (SASL) are two otariid species with similar ecology that coexist in sympatry in the Uruguayan coast. These two species have contrasting trends and widely different population sizes. The underlying reasons for these population trends, unique in their geographical ranges, remain unknown. We studied the foraging ecology of these otariid species over 2 years at the individual- and population levels using the isotopic ratios (δ13C–δ15N) in whiskers of both sexes. We compared the isotope ratios between species and sexes and used several metrics to characterise the degree of overlap and distinctiveness in the use of isotopic niche space at the individual- and population levels. Interspecific trophic niche overlap was minimal, thus ruling out interspecific competition as the cause for the contrasting population trends of both species. At the intraspecific level, both species had sexual segregation in their foraging areas, but each species had a large overlap in the isotopic niches between sexes. While SAFS had a wider niche and generalist individuals, SASL had the narrower niche with a higher degree of individual specialisation. Behavioural constraints during the breeding season, intraspecific competition and a major dependence on resources of the Uruguayan coastal shelf may explain why SASL had a higher trophic individual specialisation and a larger vulnerability in a heavily exploited habitat by fisheries and, by consequence, a locally declining population trend.  相似文献   

6.
Optimal harvesting strategies for an ungulate population are estimated using stochastic dynamic programming. Data on the Llano Basin white-tailed deer (Odocoileus virginianus) population were used to construct a 2-variable population dynamics model. The model provided the basis for estimating optimal harvesting strategies as a feedback function of the current values of the state variables (prefawning older deer and juveniles). Optimal harvest strategies were insensitive to assumptions about the probability distributions of the stochastic variable (rainfall). The response of the population components to harvesting and the returns obtained from applying optimal strategies were explored through simulation. Mean annual harvest is about 15% of the population. Simplified harvesting strategies based on age-ratios as well as a simplified version based on optimal strategies—but assuming persisting equilibrium juvenile deer density—were compared to optimal strategies through examining values of information. Simplified harvesting strategies lead to a lower harvest over a 50-year simulation period.  相似文献   

7.
Biology and population dynamics of the intertidal isopod Cirolana harfordi   总被引:1,自引:0,他引:1  
The distribution of Cirolana harfordi (Lockington) populations is determined largely by the availability of loose boulders on sandy beaches. The isopods swim out from under the rocks at high tide to feed. Their diet consists primarily of minute polychaetes and crustaceans. In addition, the isopods locate and utilize any available dead animal matter in the surf zone. Breeding occurs throughout most of the year, except for a brief lull in the fall. Females produce 1 or 2 broods of 18 to 68 young during their 2-year life-span. Marsupial incubation lasts 3 to 4 months. The population size and structure remained relatively constant from one year to the next. Mortality rates estimated for juveniles, males and females showed that newly emergent young and post-reproductive females suffer the greatest losses (up to 75% mortality per month).  相似文献   

8.
Dissolved total carbohydrate (TCHO), polysaccharide (PCHO), monosaccharide (MCHO) and organic carbon (DOC) were determined at 3-h intervals over 5 diel cycles in the mixed layer of the northwestern Caribbean Sea while following a drogued buoy. These data have been compared to populations of phototrophic (PNAN) and heterotrophic (HNAN) nanoplankton (2–20 m diameter) and heterotrophic bacteria (HBAC) (0.2–2.0 m diameter) estimated by epifluorescence counts, as well as to CO2, phosphate, chlorophyll a and phaeopigment data determined simultaneously. Two different types of apparent diel dissolved carbohydrate (CHO) patterns were found. On 3 d when no sustained net CO2 uptake was evident, TCHO and PCHO generally declined during the afternoon and early evening while MCHO tended to increase. On two other days when apparent sustained CO2 uptake occurred during the day, there were large evening TCHO and PCHO peaks with constant or declining MCHO levels. These accumulations probably resulted from the release of recently produced PCHO from phototrophs. As was found earlier in the Sargasso Sea, PNAN populations were inversely related to PCHO concentrations. The sample to sample fluctuations of PNAN also were inversely related to the apparent rates of change of TCHO and PCHO, possibly due to an inverse relation between the rates of PNAN cell division and CHO excretion. Fluctuations in HBAC populations were inversely correlated with PCHO dynamics and directly related to MCHO variations, possibly due to extracellular hydrolysis of PCHO to MCHO during periods of rapid bacterial growth as well as to net heterotrophic PCHO uptake. A direct relationship between HNAN and TCHO fluctuations suggests the importance of HNAN excretion in the release of dissolved organics. The combined PNAN and HBAC fluctuations accounted for a more significant fraction of the variance in the apparent rates of change of PCHO than did any single population parameter indicating that intimate interactions between the microbial plankton groups are important in the in-situ regulation of CHO dynamics. Total system net TCHO release and uptake rates for 5 d averaged 56 and 53 g C l-1 d-1 respectively, assuming that the observed fluctuations resulted from temporal planktonic processes in homogeneous water masses. While the data contain indications that this was the case, this assumption is not definitive.  相似文献   

9.
The energetics and population dynamics of a barnacle (Balanus glandula Darwin) population in British Columbia, Canada, were studied. Consumption, energy flow, production and mortality were 6844.6, 6667.0, 2896.5 and 2522.8 Kcal m-2 year-1, respectively. These energy flow and production values are among the highest for animal populations reported, and therefore strongly suggest the functional importance of E. glandula in littoral systems. The young age groups of the first-year settlements were most important in contributing to the energy flow, production and reproduction of the entire population. Most of the assimilated energy in the older age groups was used in respiration.  相似文献   

10.
Two types of demographic analyses, perturbation analysis and uncertainty analysis, can be conducted to gain insights about matrix population models and guide population management. Perturbation analysis studies how the perturbation of demographic parameters (survival, growth, and reproduction parameters) may affect the population projection, while uncertainty analysis evaluates how much uncertainty there is in population dynamic predictions and where the uncertainty comes from. Previously, both perturbation analysis and uncertainty analysis were conducted on the long-term population growth rate. However, the population may not reach its equilibrium state, especially when there is management by harvesting or hunting. Recently, there has been an increased interest in short-term transient dynamics, which can differ from asymptotic long-term dynamics. There are currently techniques to conduct perturbation analyses of short-term transient dynamics, but no techniques have been proposed for uncertainty analysis of such dynamics. In this study, we introduced an uncertainty analysis technique, the general Fourier Amplitude Sensitivity Test (FAST), to study uncertainties in transient population dynamics. The general FAST is able to identify the amount of uncertainty in transient dynamics and contributions by different demographic parameters. We applied the general FAST to a mountain goat (Oreamnos americanus) matrix population model to give a clear illustration of how uncertainty analysis can be conducted for transient dynamics arising from matrix population models.  相似文献   

11.
Individual based model of slug population and spatial dynamics   总被引:1,自引:0,他引:1  
The slug, Deroceras reticulatum, is one of the most important pests of agricultural and horticultural crops in UK and Europe. In this paper, a spatially explicit individual based model (IbM) is developed to study the dynamics of a population of D. reticulatum. The IbM establishes a virtual field within which slug spatial dynamics and changes in abundance were simulated. The strong dependence of slug behaviour on environmental conditions is built into the model, which is based upon previous work on the environmental dependence of slug population dynamics. The simulation results show that the IbM described well changes in the slug population. The IbM proved capable of describing slug populations over 3.5 years, including the presence, magnitude and duration of D. reticulatum population crashes within this period. Moreover, the model was capable of reproducing slug population dynamics at two sites, with distinct weather and some 100 km apart, with minor changes in initialisation values but no change in model structure and parameter values. A study of field heterogeneity, which might simulate various field designs, indicated the importance of spatial structuring to slug population dynamics and the utility of the IbM for simulating a range of potential spatial management treatments for slug control to maximise crop yield. This IbM system performs well and is currently being used as part of an integrated approach to predict slug population dynamics and control in the UK.  相似文献   

12.
The effects of the following modes of density-dependent control of population growth: density-dependent birth rate, adult survival rate, juvenile survival rate are compared based on the mathematical model of population dynamics. It is shown that the most efficient mechanisms limiting population size are decreasing with the growth of the adult population birth rate and/or the decreasing survival rate of the offspring with the increase in their number. However, these same mechanisms are responsible for oscillations of the population size and its chaotic change. The density-dependence of the adult survival rate is not efficient in constraining the population growth, but it can substantially limit the magnitude of oscillations of the population size.  相似文献   

13.
Enchytraeids are regarded as keystone soil organisms in forest ecosystems. Their abundance and biomass fluctuate widely. Predicting the consequences of anthropogenic disturbances requires an understanding of the mechanisms underlying enchytraeid population dynamics. Here I develop a simple model, which predicts that the type of dynamics is controlled by resource input rate. If fungal resource input is a discrete event once a year, an exponential growth phase is followed by starvation and sharp decline of enchytraeid abundance. Model simulations with three different forcing functions were compared to field data. Initial parameter values were obtained from various independent sources, and parameters were estimated by minimizing the residual sum of squares. The best fitting model with resource addition once a year explained 39% of the variation in enchytraeid biomass over an 8-year study period. Further, variation in rainfall explained 59% of the variation in R2 of the exponential phase models, which is also an index of the stability of population size-structure. The results emphasize the importance of resource limitation for enchytraeid population dynamics and support the hypothesis that the mortality during the decline phase is size-dependent.  相似文献   

14.
Jones J  Doran PJ  Holmes RT 《Ecology》2007,88(10):2505-2515
Synchrony in population fluctuations has been identified as an important component of population dynamics. In a previous study, we determined that local-scale (<15-km) spatial synchrony of bird populations in New England was correlated with synchronous fluctuations in lepidopteran larvae abundance and with the North Atlantic Oscillation. Here we address five questions that extend the scope of our earlier study using North American Breeding Bird Survey data. First, do bird populations in eastern North America exhibit spatial synchrony in abundances at scales beyond those we have documented previously? Second, does spatial synchrony depend on what population metric is analyzed (e.g., abundance, growth rate, or variability)? Third, is there geographic concordance in where species exhibit synchrony? Fourth, for those species that exhibit significant geographic concordance, are there landscape and habitat variables that contribute to the observed patterns? Fifth, is spatial synchrony affected by a species' life history traits? Significant spatial synchrony was common and its magnitude was dependent on the population metric analyzed. Twenty-four of 29 species examined exhibited significant synchrony in population abundance: mean local autocorrelation (rho)= 0.15; mean spatial extent (mean distance where rho=0) = 420.7 km. Five of the 29 species exhibited significant synchrony in annual population growth rate (mean local autocorrelation = 0.06, mean distance = 457.8 km). Ten of the 29 species exhibited significant synchrony in population abundance variability (mean local autocorrelation = 0.49, mean distance = 413.8 km). Analyses of landscape structure indicated that habitat variables were infrequent contributors to spatial synchrony. Likewise, we detected no effects of life history traits on synchrony in population abundance or growth rate. However, short-distance migrants exhibited more spatially extensive synchrony in population variability than either year-round residents or long-distance migrants. The dissimilarity of the spatial extent of synchrony across species suggests that most populations are not regulated at similar spatial scales. The spatial scale of the population synchrony patterns we describe is likely larger than the actual scale of population regulation, and in turn, the scale of population regulation is undoubtedly larger than the scale of individual ecological requirements.  相似文献   

15.
Yosef Cohen 《Ecological modelling》2009,220(13-14):1613-1619
Methods for modeling population dynamics in probability using the generalized point process approach are developed. The life history of these populations is such that seasonal reproduction occurs during a short time. Several models are developed and analyzed. Data about two species: colonial spiders (Stegodyphus dumicola) and a migratory bird (wood thrush, Hylocichla mustelina) are used to estimate model parameters with appropriate log maximum likelihood functions. For the spiders, the model is fitted to provide evolutionary feasible colony size based on maximum likelihood estimates of fecundity and survival data. For the migratory bird species, a maximum likelihood estimates are derived for the fecundity and survival rates of young and adult birds and immigration rate. The presented approach allows computation of quantities of interest such as probability of extinction and average time to extinction.  相似文献   

16.
Irruptive population dynamics appear to be widespread in large herbivore populations, but there are few empirical examples from long time series with small measurement error and minimal harvests. We analyzed an 89-year time series of counts and known removals for pronghorn (Antilocapra americana) in Yellowstone National Park of the western United States during 1918-2006 using a suite of density-dependent, density-independent, and irruptive models to determine if the population exhibited irruptive dynamics. Information-theoretic model comparison techniques strongly supported irruptive population dynamics (Leopold model) and density dependence during 1918-1946, with the growth rate slowing after counts exceeded 600 animals. Concerns about sagebrush (Artemisia spp.) degradation led to removals of >1100 pronghorn during 1947-1966, and counts decreased from approximately 700 to 150. The best models for this period (Gompertz, Ricker) suggested that culls replaced intrinsic density-dependent mechanisms. Contrary to expectations, the population did not exhibit enhanced demographic vigor soon after the termination of the harvest program, with counts remaining between 100 and 190 animals during 1967 1981. However, the population irrupted (Caughley model with a one-year lag) to a peak abundance of approximately 600 pronghorn during 1982-1991, with a slowing in growth rate as counts exceeded 500. Numbers crashed to 235 pronghorn during 1992-1995, perhaps because important food resources (e.g., sagebrush) on the winter range were severely diminished by high densities of browsing elk, mule deer, and pronghorn. Pronghorn numbers remained relatively constant during 1996-2006, at a level (196-235) lower than peak abundance, but higher than numbers following the release from culling. The dynamics of this population supported the paradigm that irruption is a fundamental pattern of growth in many populations of large herbivores with high fecundity and delayed density-dependent effects on recruitment when forage and weather conditions become favorable after range expansion or release from harvesting. Incorporating known removals into population models that can describe a wide range of dynamics can greatly improve our interpretation of observed dynamics in intensively managed populations.  相似文献   

17.
Twombly S  Wang G  Hobbs NT 《Ecology》2007,88(3):658-670
Understanding the processes that control species abundance and distribution is a major challenge in ecology, yet for a large number of potentially important organisms, we know little about the biotic and abiotic factors that influence population size. One group of aquatic organisms that defies traditional demographic analyses is the Crustacea, particularly those with complex life cycles. We used likelihood techniques and information theoretics to evaluate a suite of models representing alternative hypotheses on factors controlling the abundance of two copepod crustaceans in a small, tropical floodplain lake. Quantitative zooplankton samples were collected at three stations in a Venezuelan floodplain lake from June through December 1984; the average sampling interval was two days. We constructed a series of models with stage structure that incorporated six biotic and abiotic covariates in various combinations to account for temporal changes in abundance of these target species and in their population growth rates. Our analysis produced several novel insights into copepod population dynamics. We found that multiple forces affected the abundance of particular stages, that these factors differed between species as well as among stages within each species, and that biotic processes had the largest effects on copepod population dynamics. Density dependence had a large effect on the survival of Oithona amazonica copepodites and on population growth rate of Diaptomus negrensis.  相似文献   

18.
Spherical TiO2 nanoparticles (npTiO2) were prepared by controlled hydrolysis of tetraethoxy orthotitanate under a nitrogen atmosphere. ZnO nanoparticles (npZnO) were prepared using hydrothermal methods. The crystal structure, chemical, thermal and morphological properties of npZnO and npTiO2 were characterised using Fourier Transform Infrared Spectrometer, enery-dispersive X-ray spectroscopy, X-ray diffraction, and scanning electron microscope techniques. The short- and long-term experiments were started with neonates taken from the same culture and laboratory condition. In the acute experiments, npTiO2, npZnO, and cocktail concentrations were applied. 96h-LC50 values were 1.8, 0.7, and 0.1?mg?L?1, respectively (p?<?.05). For the chronic experiments, different npTiO2 concentrations were performed. 21d-LC50 value was 1.0?mgL?1 (p?<?.05). Morphometry became progressively worse in concentrations of more than 1?mgL?1 npTiO2. Neonate and young individuals were more sensitive to death because of their low tolerance. This result was affected by population progeny and growth rates (p?<?.05). While control and 0.5?mgL?1 npTiO2 groups were determined as growing population, 1.5 and 2?mgL?1 npTiO2 groups had decreased population size as R0 values. Consequently, the relationships between nanoparticle accumulation within Daphnia magna and its population structure and body morphometry for each concentration were important indicators. Its tolerance level to nanoparticles under laboratory conditions reflected its replacement and behaviour in the ecosystem.  相似文献   

19.
The problems of the asymptotic behavior of age-dependent population models with interior and spatial structures are considered. It is proved that the existence and uniqueness of the stable state and its exact form is founded for general linear models. Problems on the speed of convergence to stable state and transitional effects are investigated. Methods of solving two special classes of nonlinear models (separate models and models of the Gurtin-MacCami type) are suggested. A model of forest stand dynamics on the basis of conception of layer-mosaic characteristics of the spatial-temporal structure of stands is examined as an example of the application of given results.  相似文献   

20.
Life cycle changes that allow populations of the toxic dinoflagellate Gonyaulax tamarensis Lebour to inhabit the benthos and the plankton alternately are important factors regulationg the initiation and decline of blooms in restricted embavments. When the dynamics of these estuarine populations were monitored during “bloom” and “non bloom” years, it was shown that: (1) each year, germination of benthie cysts inoculated the overlying waters during the vernal warming period, but a large residual population remained in the sediments throughout the blooms; (2) the resulting planktonic population began growth under suboptimal temperature conditions; (3) the populations developed from this inoculum through asexual reproduction until sexuality (and cyst formation) were induced; (4) encystment was not linked to any obvious environmental cue and occurred under apparently optimal conditions; and (5) an increase in the number of non-mitotic swimming cells (planozygotes, the precursors to dormant cysts) accompanied the rapid decline of the planktonic population. Thus encystment, in combination with hypothesized losses due to advection and grazing, contributed substantiatly to the decline of the vegetative cell population. We conclude that the encystment/excystment cycle temporally restricts the occurrence of the vegetative population and may not be optimized for rapid or sustained vegetative growth and bloom formation in shallow embayments. The factors that distinguish “bloom” from “non-bloom” years thus appear to be operating on the growth of the planktonic population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号