首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Schoennagel T  Veblen TT  Kulakowski D  Holz A 《Ecology》2007,88(11):2891-2902
This study investigates the influence of climatic variability on subalpine forest fire occurrence in western Colorado during the AD 1600-2003 period. Interannual and multidecadal relationships between fire occurrence and the El Ni?o Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO) were examined, in addition to the effects of phase interactions among these oscillations. Fires occurred during short-term periods of significant drought and extreme cool (negative) phases of ENSO and PDO and during positive departures from mean AMO index. At longer time scales, fires exhibited 20-year periods of synchrony with the cool phase of the PDO, and 80-year periods of synchrony with extreme warm (positive) phases of the AMO. Years of combined positive AMO and negative ENSO and PDO phases represent "triple whammies" that significantly increased the occurrence of drought-induced fires. Fires were synchronous with this phase combination over 0-30 year periods and distinctly asynchronous with the opposite phase combination. Overall, because fires are synchronous at supra-annual to multidecadal time scales with warm AMO events, particularly when combined with cool ENSO and PDO phases, this suggests that we may be entering a qualitatively different fire regime in the next few decades due to the recent shift in 1998 to a likely long-term warm AMO phase. Although uncertainty remains regarding the effects of CO2-induced warming at regional scales, given the multidecadal persistence of the AMO there is mounting evidence that the recent shift to the positive phase of the AMO will promote higher fire frequencies in the region.  相似文献   

2.
Brown PM 《Ecology》2006,87(10):2500-2510
Climate influences forest structure through effects on both species demography (recruitment and mortality) and disturbance regimes. Here, I compare multi-century chronologies of regional fire years and tree recruitment from ponderosa pine forests in the Black Hills of southwestern South Dakota and northeastern Wyoming to reconstructions of precipitation and global circulation indices. Regional fire years were affected by droughts and variations in both Pacific and Atlantic sea surface temperatures. Fires were synchronous with La Ni?as, cool phases of the Pacific Decadal Oscillation (PDO), and warm phases of the Atlantic Multidecadal Oscillation (AMO). These quasi-periodic circulation features are associated with drought conditions over much of the western United States. The opposite pattern (El Ni?o, warm PDO, cool AMO) was associated with fewer fires than expected. Regional tree recruitment largely occurred during wet periods in precipitation reconstructions, with the most abundant recruitment coeval with an extended pluvial from the late 1700s to early 1800s. Widespread even-aged cohorts likely were not the result of large crown fires causing overstory mortality, but rather were caused by optimal climate conditions that contributed to synchronous regional recruitment and longer intervals between surface fires. Synchronous recruitment driven by climate is an example of the Moran effect. The presence of abundant fire-scarred trees in multi-aged stands supports a prevailing historical model for ponderosa pine forests in which recurrent surface fires affected heterogenous forest structure, although the Black Hills apparently had a greater range of fire behavior and resulting forest structure over multi-decadal time scales than ponderosa pine forests of the Southwest that burned more often.  相似文献   

3.
Heyerdahl EK  Morgan P  Riser JP 《Ecology》2008,89(3):705-716
Our objective was to infer the climate drivers of regionally synchronous fire years in dry forests of the U.S. northern Rockies in Idaho and western Montana. During our analysis period (1650-1900), we reconstructed fires from 9245 fire scars on 576 trees (mostly ponderosa pine, Pinus ponderosa P. & C. Lawson) at 21 sites and compared them to existing tree-ring reconstructions of climate (temperature and the Palmer Drought Severity Index [PDSI]) and large-scale climate patterns that affect modern spring climate in this region (El Ni?o Southern Oscillation [ENSO] and the Pacific Decadal Oscillation [PDO]). We identified 32 regional-fire years as those with five or more sites with fire. Fires were remarkably widespread during such years, including one year (1748) in which fires were recorded at 10 sites across what are today seven national forests plus one site on state land. During regional-fire years, spring-summers were significantly warm and summers were significantly warm-dry whereas the opposite conditions prevailed during the 99 years when no fires were recorded at any of our sites (no-fire years). Climate in prior years was not significantly associated with regional- or no-fire years. Years when fire was recorded at only a few of our sites occurred under a broad range of climate conditions, highlighting the fact that the regional climate drivers of fire are most evident when fires are synchronized across a large area. No-fire years tended to occur during La Ni?a years, which tend to have anomalously deep snowpacks in this region. However, ENSO was not a significant driver of regional-fire years, consistent with the greater influence of La Ni?a than El Ni?o conditions on the spring climate of this region. PDO was not a significant driver of past fire, despite being a strong driver of modern spring climate and modern regional-fire years in the northern Rockies.  相似文献   

4.
Morgan P  Heyerdahl EK  Gibson CE 《Ecology》2008,89(3):717-728
We inferred climate drivers of 20th-century years with regionally synchronous forest fires in the U.S. northern Rockies. We derived annual fire extent from an existing fire atlas that includes 5038 fire polygons recorded from 12,070,086 ha, or 71% of the forested land in Idaho and Montana west of the Continental Divide. The 11 regional-fire years, those exceeding the 90th percentile in annual fire extent from 1900 to 2003 (>102,314 ha or approximately 1% of the fire atlas recording area), were concentrated early and late in the century (six from 1900 to 1934 and five from 1988 to 2003). During both periods, regional-fire years were ones when warm springs were followed by warm, dry summers and also when the Pacific Decadal Oscillation (PDO) was positive. Spring snowpack was likely reduced during warm springs and when PDO was positive, resulting in longer fire seasons. Regional-fire years did not vary with El Ni?o-Southern Oscillation (ENSO) or with climate in antecedent years. The long mid-20th century period lacking regional-fire years (1935-1987) had generally cool springs, generally negative PDO, and a lack of extremely dry summers; also, this was a period of active fire suppression. The climate drivers of regionally synchronous fire that we inferred are congruent with those of previous centuries in this region, suggesting a strong influence of spring and summer climate on fire activity throughout the 20th century despite major land-use change and fire suppression efforts. The relatively cool, moist climate during the mid-century gap in regional-fire years likely contributed to the success of fire suppression during that period. In every regional-fire year, fires burned across a range of vegetation types. Given our results and the projections for warmer springs and continued warm, dry summers, forests of the U.S. northern Rockies are likely to experience synchronous, large fires in the future.  相似文献   

5.
Okland B  Bjørnstad ON 《Ecology》2006,87(2):283-290
Detailed analyses of thresholded ecological interactions can improve our understanding of the transition from aperiodic to periodic dynamics. We develop a threshold model of the population dynamics of outbreaking bark beetle populations that alternate between non-epidemic and epidemic behavior. The model involves accumulation of resources during low-density periods and depletion during outbreaks. The transition between the two regimes is caused by disturbance events in the form of major tree felling by wind. The model is analyzed with particular reference to the population dynamics of the spruce bark beetle (Ips typographus) in Scandinavia for which a comprehensive literature allows full parameterization. The fairly constant outbreak lengths and the highly variable waiting time between outbreaks that are seen in the historical records of this species agree well with the predictions of the model. The thresholded resource-depletion dynamics result in substantial variation in the degree of periodicity between stochastic realizations. The completely aperiodic tree colonizations are partly predictable when the timing of the irregular windfall events are known. However, the predictability of inter-outbreak periods is low due to the large variation of cases falling most frequently in the middle between the extremes of purely nonperiodic (erratic) and periodic (cyclic) fluctuations.  相似文献   

6.
For over 20 years the El Niño-Southern Oscillation (ENSO) has caused damage to the coral reefs of the eastern Pacific and other regions. In the mid-1980s scientists estimated that coral cover was reduced by 50–100% in several countries across the region. Almost 20 years (2002) after the 1982–1983 event, we assessed the recovery of the virtually destroyed reefs at Cocos Island (Costa Rica), previously evaluated in 1987 and reported to have less than 4% live coral cover. We observed up to fivefold increase in live coral cover which varied among reefs surveyed in 1987 and 2002. Most new recruits and adults belonged to the main reef building species from pre-1982 ENSO, Porites lobata, suggesting that a disturbance as outstanding as El Niño was not sufficient to change the role or composition of the dominant species, contrary to phase shifts reported for the Caribbean. During the 1990s, new species were observed growing on the reefs. Notably, Leptoseris scabra, considered to be rare in the entire Pacific, was commonly found in the area. Recovery may have begun with the sexual and asexual recruits of the few surviving colonies of P. lobata and Pavona spp. and with long distance transport of larvae from remote reefs. We found an overall 23% live coral cover by 2002 and with one reef above 58% indicating that Cocos Island coral reefs are recovering.  相似文献   

7.
Floodplains are among the world's most threatened ecosystems due to the pervasiveness of dams, levee systems, and other modifications to rivers. Few unaltered floodplains remain where we may examine their dynamics over decadal time scales. Our study provides a detailed examination of landscape change over a 60-year period (1945-2004) on the Nyack floodplain of the Middle Fork of the Flathead River, a free-flowing, gravel-bed river in northwest Montana, USA. We used historical aerial photographs and airborne and satellite imagery to delineate habitats (i.e., mature forest, regenerative forest, water, cobble) within the floodplain. We related changes in the distribution and size of these habitats to hydrologic disturbance and regional climate. Results show a relationship between changes in floodplain habitats and annual flood magnitude, as well as between hydrology and the cooling and warming phases of the Pacific Decadal Oscillation (PDO). Large magnitude floods and greater frequency of moderate floods were associated with the cooling phases of the PDO, resulting in a floodplain environment dominated by extensive restructuring and regeneration of floodplain habitats. Conversely, warming phases of the PDO corresponded with decreases in magnitude, duration, and frequency of critical flows, creating a floodplain environment dominated by late successional vegetation and low levels of physical restructuring. Over the 60-year time series, habitat change was widespread throughout the floodplain, though the relative abundances of the habitats did not change greatly. We conclude that the long- and short-term interactions of climate, floods, and plant succession produce a shifting habitat mosaic that is a fundamental attribute of natural floodplain ecosystems.  相似文献   

8.
Saba VS  Spotila JR  Chavez FP  Musick JA 《Ecology》2008,89(5):1414-1427
Nesting populations of leatherback turtles (Dermochelys coriacea) in the Atlantic and western Indian Oceans are increasing or stable while those in the Pacific are declining. It has been suggested that leatherbacks in the eastern Pacific may be resource limited due to environmental variability derived from the El Ni?o Southern Oscillation (ENSO), but this has yet to be tested. Here we explored bottom-up forcing and the responding reproductive output of nesting leatherbacks worldwide. We achieved this through an extensive review of leatherback nesting and migration data and by analyzing the spatial, temporal, and quantitative nature of resources as indicated by net primary production at post-nesting female migration and foraging areas. Leatherbacks in the eastern Pacific were the smallest in body size and had the lowest reproductive output due to less productive and inconsistent resources within their migration and foraging areas. This derived from natural interannual and multidecadal climate variability together with an influence of anthropogenic climate warming that is possibly affecting these natural cycles. The reproductive output of leatherbacks in the Atlantic and western Indian Oceans was nearly twice that of turtles in the eastern Pacific. The inconsistent nature of the Pacific Ocean may also render western Pacific leatherbacks susceptible to a more variable reproductive output; however, it appears that egg harvesting on nesting beaches is their major threat. We suggest that the eastern Pacific leatherback population is more sensitive to anthropogenic mortality due to recruitment rates that are lower and more variable, thus accounting for much of the population differences compared to Atlantic and western Indian turtles.  相似文献   

9.
Kulakowski D  Veblen TT 《Ecology》2007,88(3):759-769
Disturbances are important in creating spatial heterogeneity of vegetation patterns that in turn may affect the spread and severity of subsequent disturbances. Between 1997 and 2002 extensive areas of subalpine forests in northwestern Colorado were affected by a blowdown of trees, bark beetle outbreaks, and salvage logging. Some of these stands were also affected by severe fires in the late 19th century. During a severe drought in 2002, fires affected extensive areas of these subalpine forests. We evaluated and modeled the extent and severity of the 2002 fires in relation to these disturbances that occurred over the five years prior to the fires and in relation to late 19th century stand-replacing fires. Occurrence of disturbances prior to 2002 was reconstructed using a combination of tree-ring methods, aerial photograph interpretation, field surveys, and geographic information systems (GIS). The extent and severity of the 2002 fires were based on the normalized difference burn ratio (NDBR) derived from satellite imagery. GIS and classification trees were used to analyze the effects of prefire conditions on the 2002 fires. Previous disturbance history had a significant influence on the severity of the 2002 fires. Stands that were severely blown down (> 66% trees down) in 1997 burned more severely than other stands, and young (approximately 120 year old) postfire stands burned less severely than older stands. In contrast, prefire disturbances were poor predictors of fire extent, except that young (approximately 120 years old) postfire stands were less extensively burned than older stands. Salvage logging and bark beetle outbreaks that followed the 1997 blowdown (within the blowdown as well as in adjacent forest that was not blown down) did not appear to affect fire extent or severity. Conclusions regarding the influence of the beetle outbreaks on fire extent and severity are limited, however, by spatial and temporal limitations associated with aerial detection surveys of beetle activity. Thus, fire extent in these forests is largely independent of prefire disturbance history and vegetation conditions. In contrast, fire severity, even during extreme fire weather and in conjunction with a multiyear drought, is influenced by prefire stand conditions, including the history of previous disturbances.  相似文献   

10.
We use relationships between modern Pacific salmon (Oncorhynchus spp.) escapement (migrating adults counted at weirs or dams) and riparian tree-ring growth to reconstruct the abundance of stream-spawning salmon over 150-350 years. After examining nine sites, we produced reconstructions for five mid-order rivers and four salmon species over a large geographic range in the Pacific Northwest: chinook (O. tschwatcha) in the Umpqua River, Oregon, USA; sockeye (O. nerka) in Drinkwater Creek, British Columbia, Canada; pink (O. gorbuscha) in Sashin Creek, southeastern Alaska, USA; chum (O. keta) in Disappearance Creek, southeastern Alaska, USA; and pink and chum in the Kadashan River, southeastern Alaska, USA. We first derived stand-level, non-climatic growth chronologies from riparian trees using standard dendroecology methods and differencing. When the chronologies were compared to 18-55 years of adult salmon escapement we detected positive, significant correlations at five of the nine sites. Regression models relating escapement to tree-ring growth at the five sites were applied to the differenced chronologies to reconstruct salmon abundance. Each reconstruction contains unique patterns characteristic of the site and salmon species. Reconstructions were validated by comparison to local histories (e.g., construction of dams and salmon canneries) and regional fisheries data such as salmon landings and aerial surveys and the Pacific Decadal Oscillation climate index. The reconstructions capture lower-frequency cycles better than extremes and are most useful for determination and comparison of relative abundance, cycles, and the effects of interventions. Reconstructions show lower population cycle maxima in both Umpqua River chinook and Sashin Creek pink salmon in recent decades. The Drinkwater Creek reconstruction suggests that sockeye abundance since the mid-1990s has been 15-25% higher than at any time since 1850, while no long-term deviations from natural cycles are detected for salmon in the Kadashan River or in Disappearance Creek. Decadal-scale cycles in salmon abundance with periods of 25-68 years were detected in all of the reconstructions. This novel approach provides river-specific, long-term perspectives on salmon abundance and cycles. Additionally, it provides a new frame of reference for maintaining and rebuilding individual stocks and for striking a balance between societal demands and the limited, always-changing salmon resource.  相似文献   

11.
Increments in the hard parts of marine organisms (otoliths, skeletons, shells) can provide long-term chronologies of growth analogous to tree rings. For the first time in the Southern Hemisphere, we use a dendrochronological (tree-ring analysis) approach to develop a multidecadal chronology of growth for a temperate reef fish, Girella tricuspidata, from the coast of northern New Zealand. Growth patterns in the otoliths of this species were strongly synchronous among individual fish over a period spanning 27 years (1980–2006). We then compared our otolith chronology to climatic records and found strong positive correlations of growth with sea surface temperature, and weak negative correlations with the multivariate El Nino Southern Oscillation (ENSO) index. Strongest correlations were found between summer sea surface temperature and otolith growth. This relationship was consistent across all years and explained 44 % of the variation (y = −2.0 + 0.1785 × temperature, r 2 = 0.4367, P = 0.0002) in the G. tricuspidata growth chronology. Our study illustrates how otolith chronologies provide remarkable records of annual growth patterns over decadal time scales that will be useful for forecasting the likely effects of climate change on marine ecosystems.  相似文献   

12.
Climate in low-latitude wintering areas may influence temperate and high-latitude breeding populations of birds, but demonstrations of such relationships have been rare because of difficulties in linking wintering with breeding populations. We used long-term aerial surveys in Mexican wintering areas and breeding areas in Alaska, USA, to assess numbers of Black Brant (Branta bernicla nigricans; hereafter brant) on their principal wintering and breeding area in El Ni?o and non-El Ni?o years. We used Pollock's robust design to directly estimate probability of breeding and apparent annual survival of individually marked brant at the Tutakoke River (TR) colony, Alaska, in each year between 1988 and 2001. Fewer brant wintered in Mexico during every El Ni?o event since 1965. Fewer brant were observed on the principal breeding area following each El Ni?o since surveys began in 1985. Probability of breeding was negatively related to January sea surface temperature along the subtropical coast of North America during the preceding winter. Between 23% (five-year-olds or older) and 30% (three-year-olds) fewer brant nested in 1998 following the strong El Ni?o event in the winter of 1997-1998 than in non-El Ni?o years. This finding is consistent with life history theory, which predicts that longer-lived species preserve adult survival at the expense of reproduction. Oceanographic conditions off Baja California, apparently by their effect on Zostera marina (eelgrass), strongly influence winter distribution of brant geese and their reproduction (but not survival), which in turn affects ecosystem dynamics in Alaska.  相似文献   

13.
A study concerning the effects of elevation and exposure of the spruce forests on defoliation levels of oriental spruce (Picea orientalis (L.) Link.) by Ips typographus L. was carried out during 2005 and 2006 in Artvin-Hatila National Park, Turkey Nine spruce stands were selected at 3 zones of elevations (1000-1350 m, 1350-1700 m and 1700-2000 m) and at different aspects to assess the role of elevation and exposure in the crown defoliation level and body length of beetles. Influence of bark thickness and trunk diameter at 1.3 m on the damage caused by the pest was investigated as well. The results of the study were as follows: (1) The mean defoliation level was highest at 1700-2000 m following by 1350-1700 m and 1000-1350 m. (2) The highest defoliation levels occurred on southern slopes following by eastern and northern slopes at 1700-2000 m. (3) No statistical differences were found in the mean bark thickness between tree defoliation levels 1, 2, 3 and 4. (4) Mean trunk diameters of dead trees (level 4) were significantly greater than those with defoliation levels 0, 1 and 2. (5) Mean body length of I. typographus at upper zones was significantly higher than those at middle and lower zones.  相似文献   

14.
15.
A model is presented to predict sanitary felling of Norway spruce (Picea abies) due to spruce bark beetles (Ips typographus, Pityogenes chalcographus) in Slovenia according to different climate change scenarios. The model incorporates 21 variables that are directly or indirectly related to the dependent variable, and that can be arranged into five groups: climate, forest, landscape, topography, and soil. The soil properties are represented by 8 variables, 4 variables define the topography, 4 describe the climate, 4 define the landscape, and one additional variable provides the quantity of Norway spruce present in the model cell. The model was developed using the M5′ model tree. The basic spatial unit of the model is 1 km2, and the time resolution is 1 year. The model evaluation was performed by three different measures: (1) the correlation coefficient (51.9%), (2) the Theil's inequality coefficient (0.49) and (3) the modelling efficiency (0.32). Validation of the model was carried out by 10-fold cross-validation. The model tree consists of 28 linear models, and model was calculated for three different climate change scenarios extending over a period until 2100, in 10-year intervals. The model is valid for the entire area of Slovenia; however, climate change projections were made only for the Maribor region (596 km2). The model assumes that relationships among the incorporated factors will remain unchanged under climate change, and the influence of humans was not taken into account. The structure of the model reveals the great importance of landscape variables, which proved to be positively correlated with the dependent variable. Variables that describe the water regime in the model cell were also highly correlated with the dependent variable, with evapotranspiration and parent material being of particular importance. The results of the model support the hypothesis that bark beetles do greater damage to Norway spruce artificially planted out of its native range in Slovenia, i.e., lowlands and soils rich in N, P, and K. The model calculation for climate change scenarios in the Maribor region shows an increase in sanitary felling of Norway spruce due to spruce bark beetles, for all scenarios. The model provides a path towards better understanding of the complex ecological interactions involved in bark beetle outbreaks. Potential application of the results in forest management and planning is discussed.  相似文献   

16.
Charrette NA  Cleary DF  Mooers AO 《Ecology》2006,87(9):2330-2337
The forest fires induced by the El Ni?o Southern Oscillation (ENSO) in 1997-1998 resulted in the temporary extirpation of more than 100 lowland butterfly species at a forest site in Borneo. Species with more restricted ranges were less likely to recover over the following four years. Matched-pair analyses revealed that species with lower initial abundances, restricted geographic ranges, and more specialized larvae were less likely to return. Specialization differed predictably between the (more generalist) wide-range and (more specialized) restricted-range species in our data set, and both geographic range and level of specialization were important in multivariate models. These are the first observations directly linking extent of occurrence, ecological specialization, and observed recovery following local extirpation. If recovery time exceeds the frequency of disturbance, local extirpation can lead to local extinction. Given that ENSO-induced disturbances are increasing in frequency, in severity, and in geographic scale, these results suggest that specialist species with restricted geographic ranges could be at particularly high risk of global extinction.  相似文献   

17.
We took advantage of regional differences in environmental forcing and consumer abundance to examine the relative importance of nutrient availability (bottom-up), grazing pressure (top-down), and storm waves (disturbance) in determining the standing biomass and net primary production (NPP) of the giant kelp Macrocystis pyrifera in central and southern California. Using a nine-year data set collected from 17 sites we show that, despite high densities of sea urchin grazers and prolonged periods of low nutrient availability in southern California, NPP by giant kelp was twice that of central California where nutrient concentrations were consistently high and sea urchins were nearly absent due to predation by sea otters. Waves associated with winter storms were consistently higher in central California, and the loss of kelp biomass to winter wave disturbance was on average twice that of southern California. These observations suggest that the more intense wave disturbance in central California limited NPP by giant kelp under otherwise favorable conditions. Regional patterns of interannual variation in NPP were similar to those of wave disturbance in that year-to-year variation in disturbance and NPP were both greater in southern California. Our findings provide strong evidence that regional differences in wave disturbance overwhelmed those of nutrient supply and grazing intensity to determine NPP by giant kelp. The important role of disturbance in controlling NPP revealed by our study is likely not unique to giant kelp forests, as vegetation dynamics in many systems are dominated by post-disturbance succession with climax communities being relatively uncommon. The effects of disturbance frequency may be easier to detect in giant kelp because it is fast growing and relatively short lived, with cycles of disturbance and recovery occurring on time scales of years. Much longer data sets (decades to centuries) will likely be needed to properly evaluate the role of disturbance relative to other processes in determining patterns of NPP in other systems.  相似文献   

18.
While much effort has been directed at determining the spatial scales of adaptation in thermal reaction norms for growth, it is widely assumed that these reaction norms have high temporal stability. Water temperatures in the Gulf of Alaska in 2007 were the coldest on record since the mid-1970s and we present evidence that the thermal reaction norm for growth of age-0 Pacific cod (Gadus macrocephalus) in this cohort differed significantly from two adjacent cohorts. In addition to exhibiting higher growth potential at low temperatures, the 2007 cohort had a higher mean vertebral count, consistent with the widespread thermal effect known as “Jordan’s Rule.” Variation among cohorts in these physiological and morphological traits suggests a persistent response to environmental history (epigenetic effect). Temperature-induced phenotypic plasticity in the reaction norm for growth has significant implications for using growth rates to evaluate habitat quality and illustrates the complex responses of fishes to climate variability.  相似文献   

19.
Fong P  Smith TB  Wartian MJ 《Ecology》2006,87(5):1162-1168
Macroalgal dominance of some tropical reef communities in the Eastern Pacific after coral mortality during the 1997-1998 El Ni?o Southern Oscillation (ENSO) was facilitated by protection from herbivory by epiphytic cyanobacteria. Our results do not support that reduction in number of herbivores was a necessary precursor to coral reef decline and shifts to algal reefs in this system. Rather, macroalgae dominated the community for several years after this pulse disturbance with no concurrent change in herbivore populations. While results of microcosm experiments identified the importance of nutrients, especially phosphorus, in stimulating macroalgal growth, nutrient supply alone could not sustain macroalgal dominance as nutrient-stimulated growth rates in our in situ experiments never exceeded consumption rates of unprotected thalli. In addition, thalli with nutrient-enriched tissue were preferentially consumed, possibly negating the positive effects of nutrients on growth. These tropical reefs may be ideal systems to conduct experimental tests distinguishing phase shifts from alternative stable states. Shifts were initiated by a large-scale disturbance with no evidence of a changing environment except, perhaps, dilution in herbivory pressure due to increased algal cover. Community establishment was most likely stochastic, and the community was likely maintained by strongly positive interaction between macroalgal hosts and cyanobacterial epiphytes that uncoupled consumer control of community structure.  相似文献   

20.
Insect disturbance is often thought to increase fire risk through enhanced fuel loadings, particularly in coniferous forest ecosystems. Yet insect disturbances also affect successional pathways and landscape structure that interact with fire disturbances (and vice-versa) over longer time scales. We applied a landscape succession and disturbance model (LANDIS-II) to evaluate the relative strength of interactions between spruce budworm (Choristoneura fumiferana) outbreaks and fire disturbances in the Boundary Waters Canoe Area (BWCA) in northern Minnesota (USA). Disturbance interactions were evaluated for two different scenarios: presettlement forests and fire regimes vs. contemporary forests and fire regimes. Forest composition under the contemporary scenario trended toward mixtures of deciduous species (primarily Betula papyrifera and Populus spp.) and shade-tolerant conifers (Picea mariana, Abies balsamea, Thuja occidentalis), with disturbances dominated by a combination of budworm defoliation and high-severity fires. The presettlement scenario retained comparatively more "big pines" (i.e., Pinus strobus, P. resinosa) and tamarack (L. laricina), and experienced less budworm disturbance and a comparatively less-severe fire regime. Spruce budworm disturbance decreased area burned and fire severity under both scenarios when averaged across the entire 300-year simulations. Contrary to past research, area burned and fire severity during outbreak decades were each similar to that observed in non-outbreak decades. Our analyses suggest budworm disturbances within forests of the BWCA have a comparatively weak effect on long-term forest composition due to a combination of characteristics. These include strict host specificity, fine-scaled patchiness created by defoliation damage, and advance regeneration of its primary host, balsam fir (A. balsamea) that allows its host to persist despite repeated disturbances. Understanding the nature of the three-way interaction between budworm, fire, and composition has important ramifications for both fire mitigation strategies and ecosystem restoration initiatives. We conclude that budworm disturbance can partially mitigate long-term future fire risk by periodically reducing live ladder fuel within the mixed forest types of the BWCA but will do little to reverse the compositional trends caused in part by reduced fire rotations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号