首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the main goals of conservation biology is to understand the factors shaping variation in biodiversity across the planet. This understanding is critical for conservation planners to be able to develop effective conservation strategies. Although many studies have focused on species richness and the protection of rare and endemic species, less attention has been paid to the protection of the phylogenetic dimension of biodiversity. We explored how phylogenetic diversity, species richness, and phylogenetic community structure vary in seed plant communities along an elevational gradient in a relatively understudied high mountain region, the Dulong Valley, in southeastern Tibet, China. As expected, phylogenetic diversity was well correlated with species richness among the elevational bands and among communities. At the community level, evergreen broad‐leaved forests had the highest levels of species richness and phylogenetic diversity. Using null model analyses, we found evidence of nonrandom phylogenetic structure across the region. Evergreen broad‐leaved forests were phylogenetically overdispersed, whereas other vegetation types tended to be phylogenetically clustered. We suggest that communities with high species richness or overdispersed phylogenetic structure should be a focus for biodiversity conservation within the Dulong Valley because these areas may help maximize the potential of this flora to respond to future global change. In biodiversity hotspots worldwide, we suggest that the phylogenetic structure of a community may serve as a useful measure of phylogenetic diversity in the context of conservation planning.  相似文献   

2.
Flynn DF  Mirotchnick N  Jain M  Palmer MI  Naeem S 《Ecology》2011,92(8):1573-1581
How closely does variability in ecologically important traits reflect evolutionary divergence? The use of phylogenetic diversity (PD) to predict biodiversity effects on ecosystem functioning, and more generally the use of phylogenetic information in community ecology, depends in part on the answer to this question. However, comparisons of the predictive power of phylogenetic diversity and functional diversity (FD) have not been conducted across a range of experiments. To address how phylogenetic diversity and functional trait variation control biodiversity effects on biomass production, we summarized the results of 29 grassland plant experiments where both the phylogeny of plant species used in the experiments is well described and where extensive trait data are available. Functional trait variation was only partially related to phylogenetic distances between species, and the resulting FD values therefore correlate only partially with PD. Despite these differences, FD and PD predicted biodiversity effects across all experiments with similar strength, including in subsets that excluded plots with legumes and that focused on fertilization experiments. Two- and three-trait combinations of the five traits used here (leaf nitrogen percentage, height, specific root length, leaf mass per unit area, and nitrogen fixation) resulted in the FD values with the greatest predictive power. Both PD and FD can be valuable predictors of the effect of biodiversity on ecosystem functioning, which suggests that a focus on both community trait diversity and evolutionary history can improve understanding of the consequences of biodiversity loss.  相似文献   

3.
Carey MP  Wahl DH 《Ecology》2010,91(10):2965-2974
Aquatic communities have been altered by invasive species, with impacts on native biodiversity and ecosystem function. At the same time, native biodiversity may mitigate the effects of an invader. Common carp (Cyprinus carpio) is a ubiquitous, invasive fish species that strongly influences community and ecosystem processes. We used common carp to test whether the potential effects of an invasive species are altered across a range of species diversity in native communities. In mesocosms, treatments of zero, one, three, and six native fish species were used to represent the nested subset patterns observed in fish communities of lakes in Illinois, USA. The effect of the invader was tested across fish richness treatments by adding common carp to the native community and substituting native biomass with common carp. Native species and intraspecific effects reduced invader growth. The invader reduced native fish growth; however, the negative effect was minimized with increasing native richness. The zooplankton grazer community was modified by a top-down effect from the invader that increased the amount of phytoplankton. Neither the invader nor richness treatments influenced total phosphorus or community metabolism. Overall, the invader reduced resources for native species; and the effect scaled with how the invader was incorporated into the community. Higher native diversity mitigated the impact of the invader, confirming the need to consider biodiversity when predicting the impacts of invasive species.  相似文献   

4.
Ecological theory suggests that environmental variability can promote coexistence, provided that species occupy differential niches. In this study, we focus on two questions: (1) Do allocation trade-offs provide a sufficient basis for niche differentiation in succulent plant communities? (2) What is the relative importance of different forms of environmental variability on species diversity and community composition? We approach these questions with a generic, individual-based simulation model. In our model, plants compete for water in a spatially explicit environment. Species differ in their size at maturity and in the allocation of carbon to roots, leaves and storage tissue. The model was fully specified with independent literature data. Model output was compared to characteristics of a species-rich community in the semi-arid Richtersveld (South Africa). The model reproduced the coexistence of plants with different sizes at maturity, the dominance of succulent shrubs, and the level of vegetation cover. We analyzed the effects of three forms of environmental variability: (a) temporal fluctuations in precipitation (rain and fog), (b) spatial heterogeneity of water supply due to run-on and run-off processes and (c) ‘rock pockets’ that limit root competition in space. The three types of variability had differential effects on diversity: diversity exhibited a strong hump-shaped response to temporal variation. Spatial variability increased diversity, with the strongest increase occurring at intermediate levels of temporal variability. Finally, rock pockets had the weakest effect, but contributed to diversity by providing refuges for small species, particularly at low temporal variability. The model thus shows that spatio-temporal variation of resource supply can maintain diversity over long time scales even in small systems, as is the case in the Richtersveld succulent communities. Trade-offs in allocation provide the basis for necessary niche differentiation. By describing resource competition between individual plants, our model provides a mechanistic basis for the link from species traits to community composition at given environmental conditions. It thereby contributes to an understanding of the forces shaping plant communities. Such an understanding is critical to reduce the threats environmental change poses to biodiversity and ecosystem services.  相似文献   

5.
A nearly neutral model of biodiversity   总被引:3,自引:0,他引:3  
Zhou SR  Zhang DY 《Ecology》2008,89(1):248-258
S. P. Hubbell's unified neutral theory of biodiversity has stimulated much new thinking about biodiversity. However, empirical support for the neutral theory is limited, and several observations are inconsistent with the predictions of the theory, including positive correlations between traits associated with competitive ability and species abundance and correlations between species diversity and ecosystem functioning. The neutral theory can be extended to explain these observations by allowing species to differ slightly in their competitive ability (fitness). Here, we show that even slight differences in fecundity can greatly reduce the time to extinction of competitors even when the community size is large and dispersal is spatially limited. In this case, species richness is dramatically reduced, and a markedly different species abundance distribution is predicted than under pure neutrality. In the nearly neutral model, species co-occur in the same community not because of, but in spite of, ecological differences. The more competitive species with higher fecundity tend to have higher abundance both in the metacommunity and in local communities. The nearly neutral perspective provides a theoretical framework that unites the sampling model of the neutral theory with theory of biodiversity affecting ecosystem function.  相似文献   

6.
Tan J  Pu Z  Ryberg WA  Jiang L 《Ecology》2012,93(5):1164-1172
Species immigration history can structure ecological communities through priority effects, which are often mediated by competition. As competition tends to be stronger between species with more similar niches, we hypothesize that species phylogenetic relatedness, under niche conservatism, may be a reasonable surrogate of niche similarity between species, and thus influence the strength of priority effects. We tested this hypothesis using a laboratory microcosm experiment in which we established bacterial species pools with different levels of phylogenetic relatedness and manipulated the immigration history of species from each pool into microcosms. Our results showed that strong priority effects, and hence multiple community states, only emerged for the species pool with the greatest phylogenetic relatedness. Community assembly also resulted in a significant positive relationship between bacterial phylogenetic diversity and ecosystem functions. Interestingly, these results emerged despite a lack of phylogenetic conservatism for most of the bacterial functional traits considered. Our results highlight the utility of phylogenetic information for understanding the structure and functioning of ecological communities, even when phylogenetically conserved functional traits are not identified or measured.  相似文献   

7.
Abstract:  Our objective was to reexamine the definition and use of surrogates in biodiversity studies of disturbed ecological communities. To this end, we examined diversity and community structure in recovering (pollution damaged) and restored (via liming, fertilizing, seeding, and planting) forests in the Great Lakes-St. Lawrence zone near Sudbury, Ontario, Canada. The relationships among taxonomic groups were determined using correlations between Shannon diversity and species richness. We used correspondence analysis to quantify the contribution of taxonomic groups to diversity and community structure. We detected useful surrogates in the naturally recovering forests but not in restored forests. In the former, vascular plant diversity was significantly correlated with nonvascular plant diversity and reflected community structure in the total plant community. Our results suggest that it may be important to restore and conserve diversity relationships rather than simply diversity levels because the relationships may be better indicators of ecosystem health or function.  相似文献   

8.
Effects of Fishing on the Ecosystem Structure of Coral Reefs   总被引:7,自引:0,他引:7  
Overfishing is considered one of the three most significant threats to coral reef ecosystems. Exponentially increasing human populations in the tropics have placed enormous demands upon reefs as a food source. At high intensities, termed ecosystem or Malthusian overfishing, fishing causes major direct and indirect effects on the community structure of fishes and other organisms. It reduces species diversity and leads to local extinctions not only of target species but also of other species not fished directly. Conceivably it could also lead to global extinctions. Loss of keystone species, such as predators of echinoderms, through fishing, can lead to major effects on reef processes, such as accretion of calcium carbonate. Ultimately, sustained heavy fishing may lead to loss of entire functional groups of species, resulting in impairment of the potentially important ecosystem functions provided by those groups. Overfishing has been shown to interact with other agents of disturbance to reduce the ability of reefs to recover from natural occurrences such as hurricanes. Effective management of fishing will require a deeper understanding of the effects of exploitation than we now possess. Research initiatives are underway to examine the responses of fish populations to fishing, generally responses to protection from fishing. There is, however, an urgent need to look beyond fish communities and to consider the entire reef ecosystem. Studies that integrate population and community biology with ecosystem processes will provide a much better understanding of the effects of biodiversity loss on reef function and will improve our ability to manage these complex systems.  相似文献   

9.
Changing climate conditions may impact the short-term ability of forest tree species to regenerate in many locations. In the longer term, tree species may be unable to persist in some locations while they become established in new places. Over both time frames, forest tree biodiversity may change in unexpected ways. Using repeated inventory measurements five years apart from more than 7000 forested plots in the eastern United States, we tested three hypotheses: phylogenetic diversity is substantially different from species richness as a measure of biodiversity; forest communities have undergone recent changes in phylogenetic diversity that differ by size class, region, and seed dispersal strategy; and these patterns are consistent with expected early effects of climate change. Specifically, the magnitude of diversity change across broad regions should be greater among seedlings than in trees, should be associated with latitude and elevation, and should be greater among species with high dispersal capacity. Our analyses demonstrated that phylogenetic diversity and species richness are decoupled at small and medium scales and are imperfectly associated at large scales. This suggests that it is appropriate to apply indicators of biodiversity change based on phylogenetic diversity, which account for evolutionary relationships among species and may better represent community functional diversity. Our results also detected broadscale patterns of forest biodiversity change that are consistent with expected early effects of climate change. First, the statistically significant increase over time in seedling diversity in the South suggests that conditions there have become more favorable for the reproduction and dispersal of a wider variety of species, whereas the significant decrease in northern seedling diversity indicates that northern conditions have become less favorable. Second, we found weak correlations between seedling diversity change and latitude in both zones, with stronger relationships apparent in some ecoregions. Finally, we detected broadscale seedling diversity increases among species with longer-distance dispersal capacity, even in the northern zone, where overall seedling diversity declined. The statistical power and geographic extent of such analyses will increase as data become available over larger areas and as plot measurements are repeated at regular intervals over a longer period of time.  相似文献   

10.
Changing land use in the tropics has resulted in vast areas of damaged and degraded lands where biodiversity has been reduced. The majority of research on biodiversity has been focused on population and community dynamics and has rarely considered the ecosystem processes that are intimately related. We present a framework for examining the effects of changes in biodiversity on ecosystem function in natural, managed, and damaged tropical forests. Using a whole-ecosystem approach, the framework identifies key nutrient and energy cycling processes and critical junctures or pathways, termed interfaces, where resources are concentrated and transferred between the biotic and abiotic components of the ecosystem. Processes occurring at these interfaces, and the organisms or attributes participating in these processes, exert a strong influence on ecosystem structure. We use examples from Puerto Rico, Southern China, Dominica, and Nicaragua to illustrate how the functional diversity framework can be applied to critically examine the effects of changes in biodiversity on ecosystem function, and the relative success or failure of rehabilitation strategies. The few available data suggest that functional diversity, and not just species richness, is important in maintaining the integrity of nutrient and energy fluxes. High species richness, however, may increase ecosystem resiliency following disturbance by increasing the number of alternative pathways for the flow of resources. We suggest ways in which the framework of functional diversity can be used to design research to examine the effects of changes in biodiversity on ecosystem processes and in the design and evaluation of ecosystem management and land rehabilitation projects in the tropics.  相似文献   

11.
张红玉 《生态环境》2013,(8):1451-1456
生物入侵在全球范围内影响了生物群落的结构与功能,打破了群落内物种共存的生态格局,继而反馈性影响全球环境。该文就外来杂草紫茎泽兰入侵对生物群落之间交互作用的影响进行了分析。1)紫茎泽兰通过竞争排斥降低了土著植物群落的多样性,造成依赖于土著植物的节肢动物群落减少或丧失适宜的栖息环境。2)打破了土著植物与节肢动物之间相互依存的状态,并通过单优群落优势和强烈化感作用制约天敌昆虫的自然控制作用。3)通过改变地表生境和枯落物种类影响土壤动物群落。4)引起土壤微生物群落组成和功能的变化,改变土壤中可利用资源的形式和数量,影响并重塑了生物种间互作模式,并动态反馈于地面植物群落新格局的形成。分析指出:1)入侵过程中群落之间的交互作用通过多层次生态过程对群落结构与功能的生态改变发挥影响。2)入侵对生物群落的改变所产生的生态驱动反馈性作用于群落互作模式的重塑、群落和生态系统新格局的重建。同时,指出了生物入侵对群落影响的复杂性以及后续研究的方向。  相似文献   

12.
Ecosystem engineers affect ecological communities by physically modifying the environment. Understanding the factors determining the distribution of engineers offers a powerful predictive tool for community ecology. In this study, we examine whether the goldenrod bunch gall midge (Rhopalomyia solidaginis) functions as an ecosystem engineer in an old-field ecosystem by altering the composition of arthropod species associated with a dominant host plant, Solidago altissima. We also examine the suite of factors that could affect the distribution and abundance of this ecosystem engineer. The presence of bunch galls increased species richness and altered the structure of associated arthropod communities. The best predictors of gall abundance were host-plant genotype and plot-level genotypic diversity. We found positive, nonadditive effects of genotypic diversity on gall abundance. Our results indicate that incorporating a genetic component in studies of ecosystem engineers can help predict their distribution and abundance, and ultimately their effects on biodiversity.  相似文献   

13.
植物多样性对土壤微生物的影响   总被引:6,自引:0,他引:6  
肖辉林  郑习健 《生态环境》2001,10(3):238-241
生物多样性强烈地影响生态系统的过程.生态系统过程的变化可导致生物多样性衰减并因此导致生态系统功能衰退.植物种丰度和植物功能多样性对土壤细菌群落的代谢活性和代谢多样性有成正比的影响.土壤细菌的代谢活性和代谢多样性随植物种数量的对数和植物功能组的数量而直线上升.其原因可能是由植被流入土壤的物质和能量的多样性和数量的增加,也可能是由土壤动物区系起作用的土壤微生境的多样性的增加造成的.由于植物多样性的丧失所引起的植物生物量的减少对分解者群落有强烈的影响微生物生物量将可能减少,因为在大多数陆地生态系统中,有机碳源限制着土壤微生物的活性.  相似文献   

14.
Canopy-forming plants and algae commonly contribute to spatial variation in habitat complexity for associated organisms and thereby create a biotic patchiness of communities. In this study, we tested for interaction effects between biotic habitat complexity and resource availability on net biomass production and species diversity of understory macroalgae by factorial field manipulations of light, nutrients, and algal canopy cover in a subtidal rocky-shore community. Presence of algal canopy cover and/or artificial shadings limited net biomass production and facilitated species diversity. Artificial shadings reduced light to levels similar to those under canopy cover, and net biomass production was significantly and positively correlated to light availability. Considering the comparable and dependent experimental effects from shadings and canopy cover, the results strongly suggest that canopy cover controlled net biomass production and species diversity by limiting light and thereby limiting resource availability for community production. Canopy cover also controlled experimental nutrient effects by preventing a significant increase in net biomass production from nutrient enrichment recorded in ambient light (no shading). Changes in species diversity were mediated by changes in species dominance patterns and species evenness, where canopy cover and shadings facilitated slow-growing crust-forming species and suppressed spatial dominance by Fucus vesiculosus, which was the main contributor to net production of algal biomass. The demonstrated impacts of biotic habitat complexity on biomass production and local diversity contribute significantly to understanding the importance of functionally important species and biodiversity for ecosystem processes. In particular, this study demonstrates how loss of a dominant species and decreased habitat complexity change the response of the remaining assembly to resource loading. This is of potential significance for marine conservation since resource loading often promotes low habitat complexity and canopy species are among the first groups lost in degraded aquatic systems.  相似文献   

15.
Hillebrand H  Bennett DM  Cadotte MW 《Ecology》2008,89(6):1510-1520
The composition of communities is strongly altered by anthropogenic manipulations of biogeochemical cycles, abiotic conditions, and trophic structure in all major ecosystems. Whereas the effects of species loss on ecosystem processes have received broad attention, the consequences of altered species dominance for emergent properties of communities and ecosystems are poorly investigated. Here we propose a framework guiding our understanding of how dominance affects species interactions within communities, processes within ecosystems, and dynamics on regional scales. Dominance (or the complementary term, evenness) reflects the distribution of traits in a community, which in turn affects the strength and sign of both intraspecifc and interspecific interactions. Consequently, dominance also mediates the effect of such interactions on species coexistence. We review the evidence for the fact that dominance directly affects ecosystem functions such as process rates via species identity (the dominant trait) and evenness (the frequency distribution of traits), and indirectly alters the relationship between process rates and species richness. Dominance also influences the temporal and spatial variability of aggregate community properties and compositional stability (invasibility). Finally, we propose that dominance affects regional species coexistence by altering metacommunity dynamics. Local dominance leads to high beta diversity, and rare species can persist because of source-sink dynamics, but anthropogenically induced environmental changes result in regional dominance and low beta diversity, reducing regional coexistence. Given the rapid anthropogenic alterations of dominance in many ecosystems and the strong implications of these changes, dominance should be considered explicitly in the analysis of consequences of altered biodiversity.  相似文献   

16.
Lamb EG 《Ecology》2008,89(1):216-225
Multiple factors linked through complex networks of interaction including fertilization, aboveground biomass, and litter control the diversity of plant communities. The challenge of explaining plant diversity is to determine not only how each individual mechanism directly influences diversity, but how those mechanisms indirectly influence diversity through interactions with other mechanisms. This approach is well established in the study of plant species richness, but surprisingly little effort has been dedicated toward understanding the controls of community evenness, despite the recognition that this aspect of diversity can influence a variety of critical ecosystem functions. Similarly, studies of diversity have predominantly focused on the influence of shoot, rather than root, biomass, despite the fact that the majority of plant biomass is belowground in many natural communities. In this study, I examine the roles of belowground biomass, live aboveground biomass, litter, and light availability in controlling the species richness and evenness of a rough fescue grassland community using structural equation modeling. Litter was the primary mechanism structuring grassland diversity, with both richness and evenness declining with increasing litter cover. There were few relationships between shoot biomass, shading, and diversity, and more importantly, no relationship between root biomass and diversity. The lack of relationship between root biomass and species richness and evenness suggests that, even though root competition in grasslands is intense, belowground interactions may not play an important role in structuring community diversity or composition.  相似文献   

17.
Abstract:  Research that connects the effects of urbanization on biodiversity and ecosystem services is lacking. Ants perform multifarious ecological functions that stabilize ecosystems and contribute to a number of ecosystem services. We studied responses of ant communities to urbanization in the Lake Tahoe basin by sampling sites along a gradient of urban land development. We sampled ant communities, measured vegetation characteristics, quantified human activities, and evaluated ant-community responses by grouping ants into service-providing units (SPUs), defined as a group of organisms and their populations that perform specific ecosystem services, to provide an understanding of urbanization impacts on biodiversity and their delivery of ecosystem services. Species richness and abundance peaked at intermediate levels of urban development, as did the richness of 3 types of ant SPUs (aerators, decomposers, and compilers). With increasing land development aerator and decomposer ants significantly declined in abundance, whereas compiler ants significantly increased in abundance. Competing models demonstrated that precipitation was frequently among the strongest influences on ant community structure; however, urban development and human activities also had a strong, negative influence on ants, appearing in most models with ΔAICc < 2 for species richness and abundance patterns of SPUs and generalists. Response diversity was observed within SPUs, which suggests that the corresponding ecosystem services were maintained until development reached 30–40%. Our data provide evidence that ecosystem functions, such as water infiltration and soil productivity, may be diminished at sites subject to greater levels of urbanization and that conserving ant communities and the ecosystem services they provide could be an important target in land-use planning and conservation efforts.  相似文献   

18.
How best to predict the effects of perturbations to ecological communities has been a long-standing goal for both applied and basic ecology. This quest has recently been revived by new empirical data, new analysis methods, and increased computing speed, with the promise that ecologically important insights may be obtainable from a limited knowledge of community interactions. We use empirically based and simulated networks of varying size and connectance to assess two limitations to predicting perturbation responses in multispecies communities: (1) the inaccuracy by which species interaction strengths are empirically quantified and (2) the indeterminacy of species responses due to indirect effects associated with network size and structure. We find that even modest levels of species richness and connectance (-25 pairwise interactions) impose high requirements for interaction strength estimates because system indeterminacy rapidly overwhelms predictive insights. Nevertheless, even poorly estimated interaction strengths provide greater average predictive certainty than an approach that uses only the sign of each interaction. Our simulations provide guidance in dealing with the trade-offs involved in maximizing the utility of network approaches for predicting dynamics in multispecies communities.  相似文献   

19.
三江源区不同建植年代人工草地群落演替与土壤养分变化   总被引:6,自引:0,他引:6  
研究了了三源区不同建植期人工修复草地在不同演替阶段毒杂草[主要是甘肃马先蒿(Pedicularis kansuensis)]的入侵规律、数量特征,植物群落物种组成、生物苗和草地质最以及土壤养分、微生物活性的变化规律.结果表明,不同建植期人工修复草地植物群落的种类组成、植物功能群组成和群落数量特征存在显著差异.随着演替时间的推移,人工草地群落盖度、高度、物种数、生物最和多样性指数均表现出"V"字型变化规律,杂类草--甘肃马先蒿的数量特征变化尤为明显,在4 a的人工草地群落中开始局部入侵,在5~6 a的人工草地群落中大面积入侵,其入侵速度、入侵面积达到高峰期.土壤的含水量、容重、土壤中有机质、氮素和磷素在演替过程(7 a、9 a草地)中逐渐降低,到一定时期又逐步增加;随着演替的进行,不同建植期人工草地的土壤微牛物生物量碳和酶活性均呈"V"字型,变化.对于退化生态系统的恢复首先是植被恢复,其次是土壤肥力的恢复.土壤有机质等养分的积累、微生物活性的改善不仅能使土壤-植物复合系统的功能得以恢复,同时也能促进物种多样性的形成,有利于人工草地群落稳定性的提高.在试验区尽管植被恢复演替进行得比较缓慢,但从土壤发展的角度看,仍属进展演替.所以,在退化高寒草甸的恢复过程中,若降低和有效控制外界的干扰(如围栏封育),可为退化草地恢复提供繁殖体与土壤环境,实现人工草地逐步向恢复(正向)演替进行.图3表6参34  相似文献   

20.
Tylianakis JM  Tscharntke T  Klein AM 《Ecology》2006,87(12):3047-3057
Global biodiversity decline has prompted great interest in the effects of habitat modification and diversity on the functioning and stability of ecosystem processes. However, the applicability of previous modeled or mesocosm community studies to real diverse communities in different habitats remains ambiguous. We exposed standardized nesting resources for naturally occurring communities of cavity-nesting bees and wasps and their parasitoids in coastal Ecuador, to test the effects of host and parasitoid diversity on an ecosystem function (parasitism rates) and temporal variability in this function. In accordance with predictions of complementary host use, parasitism rates increased with increasing diversity, not simply abundance, of parasitoids. In contrast, parasitism decreased with increasing host diversity, possibly due to positive prey interactions or increased probability of selecting unpalatable species. Temporal variability in parasitism was lower in plots with high mean parasitoid diversity and higher in plots with temporally variable host and parasitoid diversity. These effects of diversity on parasitism and temporal stability in parasitism rates were sufficiently strong to be visible across five different habitat types, representing a gradient of increasing anthropogenic modification. Habitat type did not directly affect parasitism rates, but host and parasitoid diversity and abundance were higher in highly modified habitats, and parasitoid diversity was positively correlated with rates of parasitism. The slope of the richness-parasitism relationship did not vary significantly across habitats, although that for Simpson's diversity was significant only in rice and pasture. We also show that pooling data over long time periods, as in previous studies, can blur the effect of diversity on parasitism rates, and the appropriate spatiotemporal scale of study must be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号