共查询到20条相似文献,搜索用时 15 毫秒
1.
A.A.L. Oiffer J.F. Barker F.M. Gervais K.U. Mayer C.J. Ptacek D.L. Rudolph 《Journal of contaminant hydrology》2009,108(3-4):89-106
An anaerobic plume of process-affected groundwater was characterized in a shallow sand aquifer adjacent to an oil sands tailings impoundment. Based on biological oxygen demand measurements, the reductive capacity of the plume is considered minimal. Major dissolved components associated with the plume include HCO3, Na, Cl, SO4, and naphthenic acids (NAs). Quantitative and qualitative NA analyses were performed on groundwater samples to investigate NA fate and transport in the subsurface. Despite subsurface residence times exceeding 20 years, significant attenuation of NAs by biodegradation was not observed based on screening techniques developed at the time of the investigation. Relative to conservative tracers (i.e., Cl), overall NA attenuation in the subsurface is limited, which is consistent with batch sorption and microcosm studies performed by other authors. Insignificant biological oxygen demand and low concentrations of dissolved As (< 10 µg L− 1) in the plume suggest that the potential for secondary trace metal release, specifically As, via reductive dissolution reactions driven by ingress of process-affected water is minimal. It is also possible that readily leachable As is not present in significant quantities within the sediments of the study area. Thus, for similar plumes of process-affected groundwater in shallow sand aquifers which may occur as oil sands mining expands, a reasonable expectation is for NA persistence, but minimal trace metal mobilization. 相似文献
2.
Toxicity assessment of collected fractions from an extracted naphthenic acid mixture 总被引:1,自引:0,他引:1
Frank RA Kavanagh R Kent Burnison B Arsenault G Headley JV Peru KM Van Der Kraak G Solomon KR 《Chemosphere》2008,72(9):1309-1314
Recent expansion within the oil sands industry of the Athabasca Basin of Alberta, Canada has led to increased concern regarding process-affected wastewaters produced during bitumen extraction. Naphthenic acids (NAs) have been identified as the primary toxic constituents of oil sands process-affected waters (OSPW) and studies have shown that with time, microbial degradation of lower molecular weight NAs has led to a decrease in observed toxicity. As earlier studies identified the need for an "unequivocal demonstration" of lower molecular weight NAs being the primary contributors to mixture toxicity, a study was initiated to fractionate an extracted NA mixture by molecular weight and to assess each fraction's toxicity. Successful molecular weight fractionation of a methylated NA mixture was achieved using a Kugelrohr distillation apparatus, in which fractions collected at higher boiling points contained NAs with greater total carbon content as well as greater degree of cyclicity. Assays with Vibrio fischeri bioluminescence (via Microtox assay) revealed that the lowest molecular weight NAs collected had higher potency (EC50: 41.9+/-2.8 mg l(-1)) than the highest molecular weight NAs collected (EC50: 64.9+/-7.4 mg l(-1)). Although these results support field observations of microbial degradation of low molecular weight NAs decreasing OSPW toxicity, it is not clear why larger NAs, given their greater hydrophobicity, would be less toxic. 相似文献
3.
Naphthenic acids are components of most petroleums, including those found in the Athabasca Oil Sands of northeastern Alberta. Some naphthenic acids that are solubilized during bitumen extraction from oil sands are acutely toxic to a variety of organisms. Four-month enrichment cultures obtained from the rhizospheres of five plant species native to Alberta, and established with the addition of bitumen (0.5%) as the sole carbon source, revealed a high potential for aerobic degradation of a Merichem commercial preparation of naphthenic acids. Changes in the concentration and composition of the naphthenic acids mixtures during incubation were followed using high-performance liquid chromatography and gas chromatography-electron impact mass spectrometry. Concentrations did not significantly change in the sterile control, but they decreased by up to 90% after 10 days of incubation in the viable cultures. Lower molecular mass naphthenic acids were preferentially degraded, while the proportion of high molecular mass acids increased during incubation. By day 17, the most abundant ions were derived from cellular membranes, corresponding to an increase in microbial numbers in the cultures as naphthenic acids were metabolized. This study is the first to demonstrate the biodegradation potential of microorganisms from rhizosphere soils to biodegrade naphthenic acids. 相似文献
4.
Naphthenic acids are a complex mixture of carboxylic acids that occur naturally in petroleum. During the extraction of bitumen from the oil sands in northeastern Alberta, Canada, naphthenic acids are released into the aqueous phase and these acids become the most toxic components in the process-affected water. Although previous studies have exposed fish to naphthenic acids or oil sands process-affected waters, there has been no analytical method to specifically detect naphthenic acids in fish. Here, we describe a qualitative method to specifically detect these acids. In 96-h static renewal tests, rainbow trout (Oncorhynchus mykiss) fingerlings were exposed to three different treatments: (1) fed pellets that contained commercial naphthenic acids (1.5mg g(-1) of food), (2) kept in tap water that contained commercial naphthenic acids (3mg l(-1)) and (3) kept in an oil sands process-affected water that contained 15mg naphthenic acids l(-1). Five-gram samples of fish were homogenized and extracted, then the mixture of free fatty acids and naphthenic acids was isolated from the extract using strong anion exchange chromatography. The mixture was derivatized and analyzed by gas chromatography-mass spectrometry. Reconstructed ion chromatograms (m/z=267) selectively detected naphthenic acids. These acids were present in each fish that was exposed to naphthenic acids, but absent in fish that were not exposed to naphthenic acids. The minimum detectable concentration was about 1microg naphthenic acids g(-1) of fish. 相似文献
5.
Novel results were obtained when a fulvic acid was isolated from Acros humic acid and fractionated by traditional preparative thin-layer chromatography. Eight colorful bands were directly viewed and analyzed showing very different fluorescence and absorption properties. The fluorescence quantum yield of the bands ranged from 2% to 9.4%, significantly higher than that of natural humic substances. An aqueous fulvic acid solution was also extracted with methylene chloride (CH(2)Cl(2)) by continuous liquid-liquid extraction. The CH(2)Cl(2) extract was further fractionated by thin-layer chromatography. Eleven highly fluorescent colorful bands and six weakly fluorescent bands were observed and examined. UV-vis absorption and fluorescence (including 3D matrix) spectra and fluorescence quantum yields revealed that each band still represented a mixture of compounds. Moreover, substantial differences in optical properties were observed among bands. A single band possessed the highest fluorescence quantum yield (6%) and highest specific fluorescence (fluorescence/mass), and accounted for 21% of the total fluorescence of the extract. The mass of individual bands varied from 1.6% to 14.1% of the total materials recovered. Components of all fractions were grouped into 11 fluorophore families according to their maxima on 3D matrix fluorescence spectra. No component is dominant in the whole fulvic acid or extracted portion in terms of optical properties. Over 40 natural products are proposed for model chromophores. 相似文献
6.
Naphthenic acids are naturally-occurring, aliphatic or alicyclic carboxylic acids found in petroleum. Water used to extract bitumen from the Athabasca oil sands becomes toxic to various organisms due to the presence of naphthenic acids released from the bitumen. Natural biodegradation was expected to be the most cost-effective method for reducing the toxicity of the oil sands process water (OSPW). However, naphthenic acids are poorly biodegraded in the holding ponds located on properties leased by the oil sands companies. In the present study, chemical oxidation using ozone was investigated as an option for mitigation of this toxicity. Ozonation of sediment-free OSPW was conducted using proprietary technology manufactured by Seair Diffusion Systems Inc. Ozonation for 50min generated a non-toxic effluent (based on the Microtox bioassay) and decreased the naphthenic acids concentration by approximately 70%. After 130min of ozonation, the residual naphthenic acids concentration was 2mgl(-1): <5% of the initial concentration in the filtered OSPW. Total organic carbon did not change with 130min of ozonation, whereas chemical oxygen demand decreased by approximately 50% and 5-d biochemical oxygen demand increased from an initial value of 2mgl(-1) to a final value of 15mgl(-1). GC-MS analysis showed that ozonation resulted in an overall decrease in the proportion of high molecular weight naphthenic acids (n> or = 22). 相似文献
7.
Anne Christine Knag Marion Sebire Ian Mayer Sonnich Meier Patrick Renner Ioanna Katsiadaki 《Chemosphere》2013
Oil pollution from various sources, including exploration, production and transportation, is a growing global concern. The highest toxicity of hydrocarbon pollutants is associated with the water-soluble phase compounds, including naphthenic acids, a known component found in all hydrocarbon deposits. Recently, naphthenic acids (NAs) have shown estrogenic and anti-androgenic effects in vitro. For this reason we investigated the potential effects of two commercial mixtures of naphthenic acids on fish in vivo, using the three-spined stickleback (Gasterosteus aculeatus) as a model species. 相似文献
8.
Naphthenic acids are complex mixtures of alkyl-substituted acyclic and cycloaliphatic carboxylic acids, with the general chemical formula CnH2n+zO2, where n is the carbon number and Z specifies a homologous family. These acids have a variety of commercial uses, including being used as wood preservatives. They are found in conventional and heavy oils, and in the oil sands of northeastern Alberta, Canada. Naphthenic acids are major contributors to the toxicity of tailings waters that result from the oil sands extraction process. Eight naphthenic acids preparations (four from commercial sources and four from the oil sands operations) were derivatized and analyzed by gas chromatography–mass spectrometry. The composition of each mixture was summarized as a three-dimensional plot of the abundance of specific ions (corresponding to naphthenic acids) versus carbon number (ranging from 5 to 33) and Z family (ranging from 0 to −12). The data in these plots were divided into three groups according to carbon number (group 1 contained carbon numbers 5–14, group 2 contained carbon numbers 15–21, and group 3 contained carbon numbers 22–33). A t-test, using arcsine-transformed data, was applied to compare corresponding groups in samples from various sources. Results of the statistical analyses showed differences between various commercial naphthenic acids preparations, and between naphthenic acids from different oil sands ores and tailings ponds. This statistical approach can be applied to data collected by other mass spectrometry methods. 相似文献
9.
Nazely Diban Ane Urtiaga 《Environmental science and pollution research international》2018,25(35):34922-34929
Electrochemical oxidation (ELOX) with boron-doped diamond (BDD) anodes was successfully applied to degrade a model aqueous solution of a mixture of commercial naphthenic acids (NAs). The model mixture was prepared resembling the NA and salt composition of oil sands process-affected water (OSPW) as described in the literature. The initial concentration of NAs between 70 and 120 mg/L did not influence the electrooxidation kinetics. However, increasing the applied current density from 20 to 100 A/m2 and the initial chloride concentration from 15 to 70 and 150 mg/L accelerated the rate of NA degradation. At higher chloride concentration, the formation of indirect oxidative species could contribute to the faster oxidation of NAs. Complete chemical oxygen demand removal at an initial NA concentration of 120 mg/L, 70 mg/L of chloride and applied 50 A/m2 of current density was achieved, and 85% mineralization, defined as the decrease of the total organic carbon (TOC) content, was attained. Moreover, after 6 h of treatment and independently on the experimental conditions, the formation of more toxic species, i.e. perchlorate and organochlorinated compounds, was not detected. Finally, the use of ELOX with BDD anodes produced a 7 to 11-fold reduction of toxicity (IC50 towards Vibrio fischeri) after 2 h of treatment. 相似文献
10.
A laboratory bench procedure was developed to efficiently extract naphthenic acids from bulk volumes of Athabasca oil sands tailings pond water (TPW) for use in mammalian oral toxicity testing. This solvent-based procedure involved low solvent losses and a good extraction yield with low levels of impurities. Importantly, labour-intensive centrifugation of source water to remove solids was avoided, allowing processing of much larger volumes of water compared with previous protocols. Naphthenic acids, present at an estimated concentration of 81 mg/l, were procured from 515.5 l of TPW at an overall extraction efficiency of approximately 85%. By using distillation to recover and recycle solvent, a high solvent:water ratio was maintained while actual solvent consumption was limited to 70 ml per liter of water processed. Electrospray ionization mass spectrometry suggested a highly heterogeneous naphthenic acid mixture that exhibited nearly identical proportions of monocyclic, polycyclic, and acyclic acids with molecular weights primarily between 220 and 360. Biphenyls, naphthalenes, and phenanthrene/anthracene were the most prominent impurities detected, but their levels were low (< or = 13 microg/l) even in a concentrated solution of the naphthenic acids (8549 mg/l). Naphthenic acids stored at 4 degrees C at this concentration were stable, exhibiting no significant change in concentration over a 10-month period. This bulk isolation procedure should be useful to others needing to process large volumes of tailings or other source water for the purpose of procuring moderate amounts of naphthenic acids. 相似文献
11.
The extraction of bitumen from the oil sands in Canada releases toxic naphthenic acids into the process-affected waters. The development of an ideal analytical method for quantifying naphthenic acids (general formula C(n)H(2n+Z)O(2)) has been impeded by the complexity of these mixtures and the challenges of differentiating naphthenic acids from other naturally-occurring organic acids. The oil sands industry standard FTIR method was compared with a newly-developed GC-MS method. Naphthenic acids concentrations were measured in extracts of surface and ground waters from locations within the vicinity of and away from the oil sands deposits and in extracts of process-affected waters. In all but one case, FTIR measurements of naphthenic acids concentrations were greater than those determined by GC-MS. The detection limit of the GC-MS method was 0.01 mg L(-1) compared to 1 mg L(-1) for the FTIR method. The results indicated that the GC-MS method is more selective for naphthenic acids, and that the FTIR method overestimates their concentrations. 相似文献
12.
A case study of molinate application in a Portuguese rice field: herbicide dissipation and proposal of a clean-up methodology 总被引:1,自引:0,他引:1
This study was designed to monitor molinate losses in surface and underground waters during Ordram application in a rice field situated in central Portugal. Water samples were collected from different sites, before, during and about one month and a half after Ordram application. Molinate quantification was based on a solid-phase microextraction (SPME) method followed by gas chromatography with flame photometric detector (GC-FPD) analysis, and led to the conclusion that the herbicide was dissipated in the environment, reaching levels as high as 3.9 microgl(-1) in underground water and 15.8 microgl(-1) in the river receiving tail waters. The feasibility of the application of treatment methodologies based on adsorption or biodegradation as processes to remove molinate from real-world waters was assessed. These methods seem suitable to reduce molinate concentrations to values in the range of the legally recommended limits (<0.5 microgl(-1)). 相似文献
13.
The effects of oil spill and clean-up on dominant US Gulf coast marsh macrophytes: a review 总被引:6,自引:0,他引:6
Pezeshki SR Hester MW Lin Q Nyman JA 《Environmental pollution (Barking, Essex : 1987)》2000,108(2):129-139
The objective of this review was to synthesize existing information regarding the effects of petroleum hydrocarbons on marsh macrophytes in a manner that will help guide research and improve spill-response efficiency. Petroleum hydrocarbons affect plants chemically and physically. Although plants sometime survive fouling by producing new leaves, even relatively non-toxic oils can stress or kill plants if oil physically prevents plant gas-exchange. Plant sensitivity to fouling varies among species and among populations within a species, age of the plant, and season of spill. Physical disturbance and compaction of vegetation and soil associated with clean-up activities following an oil spill appear to have detrimental effects on the US Gulf coast marshes. Other techniques, including the use of chemicals such as cleaners or bioremediation, may be necessary to address the problem. Clean-up may also be beneficial when timely removal prevents oil from migrating to more sensitive habitats. 相似文献
14.
R.C.C. Wegman J. Freudenthal G.A.L. de Korte G.S. Groenemeijer J. Japenga 《Chemosphere》1986,15(9-12):1107-1112
PCDDs can be determined in soil samples in the presence of high amounts of hexachlorocyclohexanes with a modified method, including a clean-up procedure with a column containing carbon. To reach low detection limits use is made of a column switching system in the GC-MS analysis. 相似文献
15.
Bioassay-directed chemical analysis of River Elbe surface water including large volume extractions and high performance fractionation 总被引:1,自引:0,他引:1
A bioassay-directed fractionation and identification (toxicity identification evaluation procedure) was performed on extracts of 10 1 River Elbe water samples. The experimental method included a SDB-1 solid phase extraction followed by RP-HPLC fractionation and subfractionation. Chemical analysis by GC-MS as well as acute toxicity testing using a luminescent bacteria assay were conducted in the respective fractions. Many substances were identified, among which were pesticides and pharmaceuticals, but many compounds remained unknown. 相似文献
16.
A method based on gas chromatography electron capture detection (GC-ECD) for the analysis of chlorinated paraffins (CPs) in biological samples has been investigated. The method includes photolytic destruction of halogenated aromatic compounds, such as PCBs, to eliminate some of the interferences in the analysis of CPs in environmental samples. Gel permeation chromatography was used to isolate CPs from the interfering components of Toxaphene and chlordane after the photolysis. GC-ECD gave a detection limit of 20 ng CPs/g fresh muscle tissue. The recovery of CPs from a spiked moose liver sample was estimated to 94%. 相似文献
17.
A review of the occurrence, analyses, toxicity, and biodegradation of naphthenic acids 总被引:7,自引:0,他引:7
Naphthenic acids occur naturally in crude oils and in oil sands bitumens. They are toxic components in refinery wastewaters and in oil sands extraction waters. In addition, there are many industrial uses for naphthenic acids, so there is a potential for their release to the environment from a variety of activities. Studies have shown that naphthenic acids are susceptible to biodegradation, which decreases their concentration and reduces toxicity. This is a complex group of carboxylic acids with the general formula CnH(2n+Z)O2, where n indicates the carbon number and Z specifies the hydrogen deficiency resulting from ring formation. Measuring the concentrations of naphthenic acids in environmental samples and determining the chemical composition of a naphthenic acids mixture are huge analytical challenges. However, new analytical methods are being applied to these problems and progress is being made to better understand this mixture of chemically similar compounds. This paper reviews a variety of analytical methods and their application to assessing biodegradation of naphthenic acids. 相似文献
18.
Dasharath Oulkar Arnab Goon Manisha Dhanshetty Zareen Khan Sagar Satav 《Journal of environmental science and health. Part. B》2018,53(4):255-260
This paper reports a sensitive and cost effective method of analysis for aflatoxins B1, B2, G1 and G2. The sample preparation method was primarily optimised in peanuts, followed by its validation in a range of peanut-processed products and cereal (rice, corn, millets) matrices. Peanut slurry [12.5 g peanut + 12.5 mL water] was extracted with methanol: water (8:2, 100 mL), cleaned through an immunoaffinity column and thereafter measured directly by ultra-performance liquid chromatography-fluorescence (UPLC-FLD) detection, within a chromatographic runtime of 5 minutes. The use of a large volume flow cell in the FLD nullified the requirement of any post-column derivatisation and provided the lowest ever reported limits of quantification of 0.025 for B1 and G1 and 0.01 μg/kg for B2 and G2. The single laboratory validation of the method provided acceptable selectivity, linearity, recovery and precision for reliable quantifications in all the test matrices as well as demonstrated compliance with the EC 401/2006 guidelines for analytical quality control of aflatoxins in foodstuffs. 相似文献
19.
Farag Malhat Hany Badawy Dalia Barakat Ayman Saber 《Journal of environmental science and health. Part. B》2013,48(5):331-335
A method for determination of etoxazole residues in apples, strawberries and green beans was developed and validated. The analyte was extracted with acetonitrile from foodstuff and a charcoal-celite cartridge was used for clean-up of raw extracts. Reversed phase high performance liquid chromatography with photodiode array detector (HPLC-DAD) was used for the determination and quantification of etoxazole residues in the studied samples. The calibration graphs of etoxazole in a solvent or three blank matrixes were linear within the tested intervals 0.01–2 mg L?1, with correlation coefficient of determination >0.999. The combined solid phase extraction (SPE) clean-up and the chromatographic method steps were sensitive and reliable for simultaneous determination of etoxazole residues in the studied samples. The average recoveries of etoxazole in the tested foodstuffs were between 93.4 to 102% at spiking levels of 0.01, 0.10, and 0.50 mg kg?1, with relative standard deviations ranging from 2.8 to 4.7%, in agreement with directives for method validation in residue analyses. The limit of detection (LOD) of the HPLC-DAD system was 100 pg. The limit of quantification of the entire method was 0.01 mg kg?1. 相似文献
20.
Evaluation of alternative PCB clean-up strategies using an individual-based population model of mink
Salice CJ Sample BE Miller Neilan R Rose KA Sable S 《Environmental pollution (Barking, Essex : 1987)》2011,159(12):3334-3343
Population models can be used to place observed toxic effects into an assessment of the impacts on population-level endpoints, which are generally considered to provide greater ecological insight and relevance. We used an individual-based model of mink to evaluate the population-level effects of exposure to polychlorinated biphenyls (PCBs) and the impact that different remediation strategies had on mink population endpoints (population size and extinction risk). Our simulations indicated that the initial population size had a strong impact on mink population dynamics. In addition, mink populations were extremely responsive to clean-up scenarios that were initiated soon after the contamination event. In fact, the rate of PCB clean-up did not have as strong a positive effect on mink as did the initiation of clean-up (start time). We show that population-level approaches can be used to understand adverse effects of contamination and to also explore the potential benefits of various remediation strategies. 相似文献