首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Swindell AL  Reid BJ 《Chemosphere》2006,62(7):1126-1134
Recently, it has become apparent that the use of total contaminant concentrations as a measure of potential contaminant exposure to plants or soil organisms is inappropriate and that bioavailability of contaminants is a better measure of potential exposure. In light of this, non-exhaustive extraction techniques are being investigated to assess their appropriateness in determining bioavailability. In this study, phenanthrene extractability using hydroxypropyl-beta-cyclodextrin (HPCD) and desorption kinetics using butan-1-ol (BuOH) were determined in three dissimilar spiked soils. The soils were extracted after 1 d, 40 d and 80 d of soil-compound contact time. The amount of phenanthrene extracted by HPCD was compared to the rapidly desorbed fraction removed by BuOH. Further experiments using the same soils and extraction methods to assess the relative extractability of phenanthrene, pyrene and benzo(a)pyrene were conducted. Overall, the extraction methods used in this study had different extraction efficiencies. Results suggest that as compound hydrophobicity increased, BuOH became a more exhaustive extractant with respect to HPCD, especially for soils with high clay and organic matter content. These results are important as they highlight differences between two contrasting non-exhaustive extraction techniques both of which have been suggested to be appropriate in the assessment of bioavailability.  相似文献   

2.
Bioavailability of sediment-sorbed compounds may vary with increasing contact time. This may result in the dietary uptake route becoming more significant as conditions in the gut flora aid the extraction of contaminants, which have migrated into sites within the sediment particle. Such mechanisms may have important implications on risk assessments performed on substances released into the environment. A series of experiments were carried out using sediment spiked with 14C-labelled pyrene, a polycyclic aromatic hydrocarbon. The sediment was left at room temperature over a period of 220 days. Periodically (at 0, 1, 14, 28, 70, 220 days) the sediment was used to perform a bioaccumulation study using the freshwater oligochaete Lumbriculus variegatus. A novel methodology using feeding and (decapitated) non-feeding worms, allowed differentiation between uptake via ingestion and simple sorption. Results showed that there was a decline in bioavailability with time and that this was a 3 stage process. A rapid initial decline was observed over the first day when a 40% decrease was measured, an intermediate period were levels remained stable (day 14 to day 70) and an ultimate decrease in pyrene activity in worm tissue of 70% after 220 days. Over this period the chemical extractability of pyrene also decreased by 50%, as the chemical migrated deeper into unavailable sites within the sediment matrix. Normalising bioavailability to the chemically extractable fraction of pyrene within the sediment provided an overall decrease in bioavailability of 58%. The importance of the dietary route of uptake for pyrene varied during the sediment aging process, reflecting the changes in the physico-chemical interactions between the pyrene, sediment and pore water.  相似文献   

3.
Metal contamination was investigated in soils of the Vallecamonica, an area in the northern part of the Brescia province (Italy), where ferroalloy industries were active for a century until 2001. The extent in which emissions from ferroalloy plants affected metal concentration in soils is not known in this area. In this study, the geogenic and/or anthropogenic origin of metals in soils were estimated. A modified Community Bureau of Reference sequential chemical extraction method followed by inductively coupled plasma optical emission spectroscopy (ICP-OES) analyses were employed to evaluate the potential bioavailability of Al, Cd, Mn, Fe, Cr, Zn, and Pb in soils. Principal component analysis (PCA) was used to assess the relationships among metal sources in soil samples from different locations. This approach allowed distinguishing of different loadings and mobility of metals in soils collected in different areas. Results showed high concentrations and readily extractability of Mn in the Vallecamonica soils, which may suggest potential bioavailability for organisms and may create an environmental risk and potential health risk of human exposure.  相似文献   

4.
Lestan D  Hanc A  Finzgar N 《Chemosphere》2005,61(7):1012-1019
The effect of soil ozonation on Pb and Zn extraction with EDTA, bioavailability (Ruby's Physiologically Based Extraction Test, PBET) and mobility (Toxicity Characteristic Leaching Procedure, TCLP) of Pb was studied on contaminated soils taken from 7 different locations in the Mezica Valley, Slovenia. EDTA extraction (40 mmol kg(-1)) removed from 27.4+/-1.5% to 64.8+/-1.5% of Pb, and from 1.9+/-0.2% to 22.4+/-2.0% of Zn from tested soils, and significantly reduced soil Pb bioavailability (PBET) and mobility (TCLP). Pretreatment of tested soils with ozone before EDTA extraction enhanced EDTA extractability of Pb for 11.0 to 28.9%, but had no effect on the extractability of Zn. In most of the soils, ozonation had no statistically significant effect on bioavailability and mobility of Pb, residual after EDTA extraction. Using linear regression analysis we found a significant increase (p<0.01) in EDTA extractability of Pb after soil ozonation in soils with a higher initial Pb content. EDTA extractability of Pb after soil ozonation was also significantly higher for soils with a lower Pb extractability when treated with EDTA alone. We found no correlation between soil organic matter content and the percentage of the Pb fraction bound to soil organic matter (where from 25.6+/-1.3% to 73.2+/-0.6% of Pb reside in tested soils) and Pb extractability with EDTA after soil ozonation.  相似文献   

5.
6.
There is currently considerable scientific interest in finding a chemical technique capable of predicting bioavailability; non-exhaustive extraction techniques (NEETs) offer such potential. Hydroxypropyl-beta-cyclodextrin (HPCD), a NEET, is further validated through the investigation of concentration ranges, differing soil types, and the presence of co-contaminants. This is the first study to demonstrate the utility of the HPCD-extraction technique to predict the microbial availability to phenanthrene across a wide concentration range and independent of soil-contaminant contact time (123 d). The efficacy of the HPCD-extraction technique for the estimation of PAH microbial availability in soil is demonstrated in the presence of co-contaminants that have been aged for the duration of the experiment together in the soil. Desorption dynamics are compared in co-contaminant and single-PAH contaminated spiked soils to demonstrate the occurrence of competitive displacement. Overall, a single HPCD-extraction technique proved accurate and reproducible for the estimation of PAH bioavailability from soil.  相似文献   

7.
Ma L  Zhang J  Han L  Li W  Xu L  Hu F  Li H 《Chemosphere》2012,86(10):1072-1078
Understanding the effects of aging time on the fraction distribution and bioavailability of PAH, such as phenanthrene (PHE) and pyrene (PYR), has considerable benefits for risk assessment, food security and remediation strategies for contaminated soil. The results of the present study show that the proportion of the desorbed PHE decreased from ca. 82% at day 0 to ca. 65% at day 150. In addition, non-desorbed PHE increased from ca. 18% at day 0 to ca. 31% at day 150, whereas the changes of desorbed and non-desorbed PYR showed no significant trend during this aging period. The proportion of desorbed PYR was lower than that of PHE, whereas the opposite occurred with the non-desorbed fraction. After 150 d of aging, the proportion of bound residues (PHE and PYR) increased significantly with the cultivating time from ca. 0.2% to ca. 4.7% and ca. 0.1% to ca. 1.2% for PHE and PYR, respectively. In addition, the bioavailability of PAH (PHE and PYR) to earthworms was also assessed over 0-150 d. The results showed that the uptake rate and bioconcentration factor (BCF) of pollutants by earthworms displayed the following biphasic character: a rapid decrease over the first 15 d followed by a slow decrease over the next 135 d. Moreover, the earthworm uptake rate of PHE was greater than that of PYR throughout the incubation period, indicating that PHE has a higher bioavailability than PYR. In addition, the positive correlation between the uptake rate of earthworms and PAH extractability suggested that a three-step extraction is a reliable approach to predict PHE bioavailability in soil. However, a limit was observed for PYR.  相似文献   

8.
Qiao XL  Luo YM  Christie P  Wong MH 《Chemosphere》2003,50(6):823-829
An incubation experiment was conducted to study the chemical speciation and extractability of three heavy metals in two contrasting biosolids-amended clay soils. One was a paddy soil of pH 7.8 and the other was a red soil of pH 4.7 collected from a fallow field. Anaerobically digested biosolids were mixed with each of the two soils at three rates: 20, 40 and 60 g kg(-1) soil (DM basis), and unamended controls were also prepared. The biosolids-amended and control soils were incubated at 70% of water holding capacity at 25 degrees C for 50 days. Separate subsamples were extracted with three single extractants and a three-step sequential extraction procedure representing acetic acid (HOAc)-soluble, reducible and oxidisable fractions to investigate the extractability and speciation of the heavy metals. As would be expected, there were good relationships between biosolids application rate and metal concentrations in the biosolids-amended soils. The three heavy metals had different extractabilities and chemical speciation in the two biosolids-amended soils. Ethylene diamine tetraacetic acid extracted more Cu, Zn and Cd than did the other two single extractants. The oxidisable fraction was the major fraction for Cu in both biosolids-amended soils and the HOAc-soluble and reducible fractions accounted for most of the Zn. In contrast, Cd was present mainly in the reducible fraction. The results are discussed in relation to the mobility and bioavailability of the metals in polluted soils.  相似文献   

9.
Swindell AL  Reid BJ 《Chemosphere》2007,66(2):332-339
This study was carried out to assess the influence of diesel, applied over a log concentration range, on the loss and extractability of phenanthrene (measured as putative 14C-phenanthrene residues) in two different soils. The influence of diesel on the ability of a cyclodextrin based extraction method to predict the microbial bioavailability of 14C-residues was also assessed. An increase in loss of 14C-residues with increasing diesel concentration from 0 to 2000 mg kg-1 was generally observed with time in both soils. It is suggested that this trend is attributable to competitive sorption for soil sorption sites and to a lesser extent to displacement of 14C-residues from soil sorption sites by diesel resulting in greater compound availability and therefore greater loss by degradation via the actions of indigenous microorganisms. However, in the 20000 mg kg-1 diesel treatments of both soils, results indicated a delayed loss. It is suggested that this retarded loss was due to the formation of a discrete NAPL-phase into which 14C-phenanthrene residues partitioned, thereby decreasing their availability and as a consequence their degradation. Furthermore, it is suggested that nutrient limitation may have slowed down degradation rates as diesel concentrations increased. Comparison between cyclodextrin-extractability and microbial mineralisation supported the use of cyclodextrin to assess microbial bioavailability of 14C-residues after 50 d or more ageing up to diesel concentrations of 2000 mg kg-1. However, results suggested that at high diesel concentrations (specifically 20000 mg kg-1) co-extraction of 14C-phenanthrene residues may have occurred as a result of the combined solvation powers of both the cyclodextrin and the diesel. Furthermore, mineralisation of 14C-phenanthrene residues may have been affected by extreme nutrient limitation in this treatment.  相似文献   

10.
A soil column experiment was carried out to investigate the effects of inoculation of bacteria on metal bioavailability, mobility and potential leachability through single chemical extraction, consequential extraction and in situ soil solution extraction technologies. Results showed that bacteria inoculated, including Azotobacter chroococcum, Bacillus megaterium and Bacillus mucilaginosus, may pose both positive and negative impacts on bioavailability and mobility of heavy metals in soil, depending on the chemical nature of the metals. The activities of bacteria led to an increase of water dissolved organic carbon (DOC) concentration and a decrease of pH value, which enhanced metal mobility and bioavailability (e.g. an increase of water-soluble and HOAc-soluble Zn). On the other hand, bacteria could immobilize metals (e.g. a great reduction of water-soluble Pb) due to the adsorption by bacterial cell walls and possible sedimentation reactions with phosphate or other anions produced through bacterial metabolism.  相似文献   

11.
Long-term outdoor lysimeter studies using (14)C-labelled compounds allow the quantification of the 'non-extractable residue fraction'. More than 20 lysimeter studies under realistic environmental conditions showed that more than 80% of residual carbon of the molecule is retained in the topsoil layer even after several years. Generally, 50-90% of this residual radiocarbon is regarded as 'soil bound residue'. Microbial biomass is present in large quantities in topsoil and continuously influences chemical and biochemical alteration of pesticide molecules that may interact directly with the total soil organic matter. Labelling techniques using radioactive isotopes like (14)C have been used to characterize these residues in the humus matrix. Our studies have been directed to the investigation of extractability and/or bioavailability of these residues in long-term investigations.  相似文献   

12.
The concentrations of PCBs, DDTs, HCHs, HCB and OCS were determined in sediments and associated biota, both invertebrates (Physella acuta, Hirudo medicinalis, chironomid larvae, Hydrous pistaceus, Helochares lividus) and vertebrates (Rana perezi), in a temporary aquatic system, a rice field in the Ebro Delta (NE Spain). The qualitative and quantitative distribution of organochlorine compounds in sediments and aquatic biota has been explained by two mechanisms: equilibrium partitioning and/or biomagnification through the trophic web. Nevertheless, bioaccumulation processes are by far more complex, since several biotic and abiotic factors contribute to the observed pollutant loads in the organisms. In this respect, the biological characteristics of the organisms considered (e.g. species, age, lipid contents, feeding habits, etc.), as well as ecological factors (e.g. the habitat of the species and vertical distribution), have been shown to account for the organochlorine levels observed.  相似文献   

13.
A study was conducted to determine a possible role of loosely bound humic substances (i.e., humic and fulvic acids) in bioavailability of aged phenanthrene with time. In this study, long-term residence of phenanthrene in soil is defined as aging or sequestration, and the effect was determined by the declined bioavailability to bacteria of the polycyclic aromatic hydrocarbon with increased residence time. After 1, 7, and 100 days of aging of phenanthrene in Lima loam, about 90-93% of initial phenanthrene was recovered from the humin-mineral fraction of Lima loam whereas less than 12% was found in humic and fulvic acids of the same soil. Mineralization rates of phenanthrene aged in the humin-mineral fraction significantly decreased with time by the test bacterium P5-2. In terms of extents of mineralization, the difference with time was not appreciable, but still significant at P<0.05. Additional decreases in the rates and extents of mineralization were observed with the whole soil (i.e. Lima loam) to which phenanthrene had been aged. Data suggest that major sequestration sites for phenanthrene may reside in the humin-mineral fraction, and probably humic and fulvic acids may act as a physico-chemical barrier to bacterial degradation so that the compound's bioavailability may be limited.  相似文献   

14.
To better understand the fate of metals in the environment, numerous parameters must be studied, such as the soil properties and the different sources of contamination for the organisms. Among bioindicators of soil quality, the garden snail (Cantareus aspersus) integrates multiple sources (e.g. soil, plant) and routes (e.g. digestive, cutaneous) of contamination. However, the contribution of each source on metal bioavailability and how soil properties influence these contributions have never been studied when considering the dynamic process of bioavailability. Using accumulation kinetics, this study showed that the main assimilation source of Cd was lettuce (68 %), whereas the main source of Pb was the soil (90 %). The plant contribution increased in response to a 2-unit soil pH decrease. Unexpectedly, an increase in the soil contribution to metal assimilation accompanied an increase in the organic matter (OM) content of the soil. For both metals, no significant excretion and influence of source on excretion have been modelled either during exposure or depuration. This study highlights how the contribution of different sources to metal bioavailability changes based on changes in soil parameters, such as pH and OM, and the complexity of the processes that modulate metal bioavailability.  相似文献   

15.
The leachability of lindane from different biosolid amended soils was determined and compared to its bioavailability. Sand, soil, and a mixture of soil-sand (1:1 w/w) were spiked with lindane, blended with different amounts of biosolids, and subjected to a leaching process with water that lasted for 1-28 d. This procedure is in accordance with ISO/TS 21268-1: 2007. After these batch tests, lindane was extracted from the leachates using three different solvent-free microextraction techniques, including solid phase microextraction (SPME), stir-bar sorptive extraction (SBSE), and silicone rod extraction (SRE). The amount of lindane was determined with thermal desorption and gas chromatography coupled to mass spectrometry (GC-MS). The efficiencies of the three microextraction techniques were statistically different, and the efficiency could be related to the amount of polydimethylsiloxane (PDMS) in each extraction device. However, all of the techniques provide data that shows that the leachability of lindane is dependent on the amount of organic matter contained in the matrix.The results of the lindane leachability assay were compared to the bioavailability of lindane, which was determined by measuring the amount of lindane that accumulated in the roots of wheat plants grown in similar soil-biosolid systems.It was confirmed that the amount of organic matter in the matrix is a determining factor for lindane immobilization. The presence of biosolids decreases the mobility of lindane in all of the systems under study. Similarly, increasing biosolid concentrations in the soil significantly decreased the bioavailability of lindane and, consequently, plant absorption.The good correlation (R2 = 0.997) between the leachability of lindane from the matrix and plant absorption of lindane indicates that the proposed biomimetic methodology can predict the bioavailability of lindane in a time period as short as 7 d.The results of this work confirm that amending contaminated soils with biosolids is beneficial for immobilizing lindane and helps prevent the percolation of lindane through the soil profile and into groundwater.  相似文献   

16.
It is often argued that the concentration of a pollutant inside an organism is a good indicator of its bioavailability, however, we show that the rate of uptake, not the concentration itself, is the superior predictor. In a study on zinc accumulation and toxicity to isopods (Porcellio scaber) the dietary EC(50) for the effect on body growth was rather constant and reproducible, while the internal EC(50) varied depending on the accumulation history of the animals. From the data a critical value for zinc accumulation in P. scaber was estimated as 53 microg/g/wk. We review toxicokinetic models applicable to time-series measurements of concentrations in invertebrates. The initial slope of the uptake curve is proposed as an indicator of bioavailability. To apply the dynamic concept of bioavailability in risk assessment, a set of representative organisms should be chosen and standardized protocols developed for exposure assays by which suspect soils can be evaluated.  相似文献   

17.
Sequential extraction of heavy metals during composting of sewage sludge   总被引:15,自引:0,他引:15  
Amir S  Hafidi M  Merlina G  Revel JC 《Chemosphere》2005,59(6):801-810
The major limitation of soil application of sewage sludge compost is the total heavy metal contents and their bioavailability to the soil-plant system. This study was conducted to determine the heavy metal speciation and the influence of changing the physico-chemical properties of the medium in the course of composting on the concentrations, bioavailability or chemical forms of Cu, Zn, Pb and Ni in sewage sludge. Principal physical and chemical properties and FTIR spectroscopical characterization of sludge compost during treatment show the stability and maturity of end product. The total metal contents in the final compost were much lower than the limit values of composts to be used as good soil fertilizer. Furthermore, it was observed by using a sequential extraction procedure in sludge compost at different steps of treatment, that a large proportion of the heavy metals were associated to the residual fraction (70-80%) and more resistant fractions to extraction X-NaOH, X-EDTA, X-HNO3 (12-29%). Less than 2% of metals bound to bioavailable fractions X-(KNO3+H2O). Heavy metal distribution and bioavailability show some changes during composting depending on the metal itself and the physico-chemical properties of the medium. Bioavailable fractions of all elements tend to decrease except Ni-H2O. Zn and mainly Cu present more affinity to organic and carbonate fractions. In contrast, Pb is usually preferentially bound to sulfide forms X-HNO3. Nickel shows a significant decrease of organic form. Significant degrees of correlation were found between heavy metal fractions and changes of some selected variables (e.g. pH, ash, organic matter, humic substance) during the course of composting. Mobile fractions of metals are poorly predictable from the total content. The R2 value was significantly increased by the inclusion of other variables such as the amount of organic matter (OM) and pH.  相似文献   

18.
A biological testing system for the monitoring of stack gas condensates of municipal waste incinerators has been developed using Euglena gracilis as a test organism. The motility, velocity and cellular form of the organisms were the endpoints, calculated by an image analysis system. All endpoints showed statistically significant changes in a short time when organisms were exposed to samples collected during combustion situations with increased pollutant concentrations. The velocity of the organisms proved to be the most appropriate endpoint. A semi-continuous system with E. gracilis for monitoring stack gas condensate is proposed, which could result in an online system for testing stack gas condensates in the future.  相似文献   

19.
Internationally agreed standard protocols for assessing chemical toxicity of contaminants in soil to worms assume that the test soil does not need to equilibrate with the chemical to be tested prior to the addition of the test organisms and that the chemical will exert any toxic effect upon the test organism within 28 days. Three experiments were carried out to investigate these assumptions. The first experiment was a standard toxicity test where lead nitrate was added to a soil in solution to give a range of concentrations. The mortality of the worms and the concentration of lead in the survivors were determined. The LC50s for 14 and 28 days were 5311 and 5395 microgPb g(-1)soil respectively. The second experiment was a timed lead accumulation study with worms cultivated in soil containing either 3000 or 5000 microgPb g(-1)soil. The concentration of lead in the worms was determined at various sampling times. Uptake at both concentrations was linear with time. Worms in the 5000 microg g(-1) soil accumulated lead at a faster rate (3.16 microg Pb g(-1)tissue day(-1)) than those in the 3000 microg g(-1) soil (2.21 microg Pb g(-1)tissue day(-1)). The third experiment was a timed experiment with worms cultivated in soil containing 7000 microgPb g(-1)soil. Soil and lead nitrate solution were mixed and stored at 20 degrees C. Worms were added at various times over a 35-day period. The time to death increased from 23 h, when worms were added directly after the lead was added to the soil, to 67 h when worms were added after the soil had equilibrated with the lead for 35 days. In artificially Pb-amended soils the worms accumulate Pb over the duration of their exposure to the Pb. Thus time limited toxicity tests may be terminated before worm body load has reached a toxic level. This could result in under-estimates of the toxicity of Pb to worms. As the equilibration time of artificially amended Pb-bearing soils increases the bioavailability of Pb decreases. Thus addition of worms shortly after addition of Pb to soils may result in the over-estimate of Pb toxicity to worms. The current OECD acute worm toxicity test fails to take these two phenomena into account thereby reducing the environmental relevance of the contaminant toxicities it is used to calculate.  相似文献   

20.
Validating chemical methods to predict bioavailable fractions of polycyclic aromatic hydrocarbons (PAHs) by comparison with accumulation bioassays is problematic. Concentrations accumulated in soil organisms not only depend on the bioavailable fraction but also on contaminant properties. A historically contaminated soil was freshly spiked with deuterated PAHs (dPAHs). dPAHs have a similar fate to their respective undeuterated analogues, so chemical methods that give good indications of bioavailability should extract the fresh more readily available dPAHs and historic more recalcitrant PAHs in similar proportions to those in which they are accumulated in the tissues of test organisms. Cyclodextrin and butanol extractions predicted the bioavailable fraction for earthworms (Eisenia fetida) and plants (Lolium multiflorum) better than the exhaustive extraction. The PAHs accumulated by earthworms had a larger dPAH:PAH ratio than that predicted by chemical methods. The isotope ratio method described here provides an effective way of evaluating other chemical methods to predict bioavailability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号