首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
There is a need to assess climate change mitigation opportunities in forest sector in India in the context of methodological issues such as additionality, permanence, leakage and baseline development in formulating forestry mitigation projects. A case study of forestry mitigation project in semi-arid community grazing lands and farmlands in Kolar district of Karnataka, was undertaken with regard to baseline and project scenario development, estimation of carbon stock change in the project, leakage estimation and assessment of cost-effectiveness of mitigation projects. Further, the transaction costs to develop project, and environmental and socio-economic impact of mitigation project was assessed. The study shows the feasibility of establishing baselines and project C-stock changes. Since the area has low or insignificant biomass, leakage is not an issue. The overall mitigation potential in Kolar for a total area of 14,000 ha under various mitigation options is 278,380 t C at a rate of 20 t C/ha for the period 2005–2035, which is approximately 0.67 t C/ha/year inclusive of harvest regimes under short rotation and long rotation mitigation options. The transaction cost for baseline establishment is less than a rupee/t C and for project scenario development is about Rs. 1.5–3.75/t C. The project enhances biodiversity and the socio-economic impact is also significant.
N. H. RavindranathEmail:
  相似文献   

2.
Carbon forestry mitigation potential estimates at the global-level are limited by the absence or simplicity of national-level estimates, and similarly national-level estimates are limited by absence of regional-level estimates. The present study aims to estimate the mitigation potential for a large diverse country such as India, based on the GTAP global land classification system of agro-ecological zones (AEZs), as well the Indian AEZ system. The study also estimates the implications of carbon price incentive (US$50 and $100) on mitigation potential in the short-, medium- and long-term, since afforestation and reforestation (A & R) is constrained by lack of investment and financial incentives. The mitigation potential for short and long rotation plantations and natural regeneration was estimated using the GCOMAP global forest model for two land area scenarios. One scenario included only wastelands (29 Mha), and the second enhanced area scenario, included wastelands plus long fallow and marginal croplands (54 Mha). Under the $100 carbon price case, significant additional area (3.6 Mha under the wasteland scenario and 6.4 Mha under the enhanced area scenario) and carbon mitigation is gained in the short-term (2025) compared to the baseline when using the GTAP land classification system. The area brought under A & R increases by 85–100% for the $100 carbon price compared to $50 carbon price in the short-term, indicating the effectiveness of higher carbon price incentives, especially in the short-term. A comparison of estimates of mitigation potential using GTAP and Indian AEZ land classification systems showed that in the short-term, 35% additional C-stock gain is achieved in the $100 carbon price case in the enhanced area scenario of the Indian AEZ system. This difference highlights the role of the land classification system adopted in estimation of aggregate mitigation potential estimates, particularly in the short-term. Uncertainty involved in the estimates of national-level mitigation potential needs to be reduced, by generating reliable estimates of carbon stock gain and losses, and cost and benefit data, for land use sector mitigation options at a scale disaggregated enough to be relevant for national mitigation planning.  相似文献   

3.
The concept of joint implementation as a way to implement climate change mitigation projects in another country has been controversial ever since its inception. Developing countries have raised numerous issues at the project-specific technical level and broader concerns having to do with equity and burden sharing. This paper summarizes the findings of studies for Brazil, India, Mexico and South Africa, four countries that have large greenhouse gas emissions and are heavily engaged in the debate on climate change projects under the Kyoto Protocol. The studies examine potential or current projects/programs to determine whether eight technical concerns about joint implementation can be adequately addressed. They conclude that about half the concerns were minor or well managed by project developers, but concerns about additionality of funds, host country institutions and guarantees of performance (including the issues of baselines and possible leakage) need much more effort to be adequately addressed. All the papers agree on the need to develop institutional arrangements for approving and monitoring such projects in each of the countries represented. The case studies illustrate that these projects have the potential to bring new technology, investment, employment and ancillary socioeconomic and environmental benefits to developing countries. These benefits are consistent with the goal of sustainable development in the four study countries. At a policy level, the studies' authors note that in their view, the Annex I countries should consider limits on the use of jointly implemented projects as a way to get credits against their own emissions at home, and stress the importance of industrialized countries developing new technologies that will benefit all countries. The authors also observe that if all countries accepted caps on their emissions (with a longer time period allowed for developing countries to do so) project-based GHG mitigation would be significantly facilitated by the improved private investment climate.  相似文献   

4.
Setting a baseline for carbon stock changes in forest and land use sector mitigation projects is an essential step for assessing additionality of the project. There are two approaches for setting baselines namely, project-specific and regional baseline. This paper presents the methodology adopted for estimating the land available for mitigation, for developing a regional baseline, transaction cost involved and a comparison of project-specific and regional baseline. The study showed that it is possible to estimate the potential land and its suitability for afforestation and reforestation mitigation projects, using existing maps and data, in the dry zone of Karnataka, southern India. The study adopted a three-step approach for developing a regional baseline, namely: (i) identification of likely baseline options for land use, (ii) estimation of baseline rates of land-use change, and (iii) quantification of baseline carbon profile over time. The analysis showed that carbon stock estimates made for wastelands and fallow lands for project-specific as well as the regional baseline are comparable. The ratio of wasteland Carbon stocks of a project to regional baseline is 1.02, and that of fallow lands in the project to regional baseline is 0.97. The cost of conducting field studies for determination of regional baseline is about a quarter of the cost of developing a project-specific baseline on a per hectare basis. The study has shown the reliability, feasibility and cost-effectiveness of adopting regional baseline for forestry sector mitigation projects.
N. H. RavindranathEmail:
  相似文献   

5.
Rehabilitation of degraded forest land through implementation of carbon-sink projects can increase terrestrial carbon (C) stock. However, carbon emissions outside the project boundary, which is commonly referred to as leakage, may reduce or negate the sequestration benefits. This study assessed leakage from carbon-sink projects that could potentially be implemented in the study area comprised of 11 sub-districts in the Batanghari District, Jambi Province, Sumatra, Indonesia. The study estimates the probability of a given land use/cover being converted into other uses/cover, by applying a logit model. The predictor variables were: proximity to the center of the land use area, distance to transportation channel (road or river), area of agricultural land, unemployment (number of job seekers), job opportunities, population density and income. Leakage was estimated by analyzing with and without carbon-sink projects scenarios. Most of the predictors were estimated as being significant in their contribution to land use cover change. The results of the analysis show that leakage in the study area can be large enough to more than offset the project’s carbon sequestration benefits during the period 2002–2012. However, leakage results are very sensitive to changes of carbon density of the land uses in the study area. By reducing C-density of lowland and hill forest by about 10% for the baseline scenario, the leakage becomes positive. Further data collection and refinement is therefore required. Nevertheless, this study has demonstrated that regional analysis is a useful approach to assess leakage.  相似文献   

6.
The role of forestry projects in carbon conservation and sequestration is receiving much attention because of their role in the mitigation of climate change. The main objective of the study is to analyze the potential of the Upper Magat Watershed for a carbon sequestration project. The three main development components of the project are forest conservation: tree plantations, and agroforestry farm development. At Year 30, the watershed can attain a net carbon benefit of 19.5 M tC at a cost of US$ 34.5 M. The potential leakage of the project is estimated using historical experience in technology adoption in watershed areas in the Philippines and a high adoption rate. Two leakage scenarios were used: baseline and project leakage scenarios. Most of the leakage occurs in the first 10 years of the project as displacement of livelihood occurs during this time. The carbon lost via leakage is estimated to be 3.7 M tC in the historical adoption scenario, and 8.1 M tC under the enhanced adoption scenario.  相似文献   

7.
This two-part paper considers the complementarity between adaptation and mitigation in managing the risks associated with the enhanced greenhouse effect. Part one reviews the application of risk management methods to climate change assessments. Formal investigations of the enhanced greenhouse effect have produced three generations of risk assessment. The first led to the United Nations Intergovernmental Panel on Climate Change (IPCC), First Assessment Report and subsequent drafting of the United Nations Framework Convention on Climate Change. The second investigated the impacts of unmitigated climate change in the Second and Third IPCC Assessment Reports. The third generation, currently underway, is investigating how risk management options can be prioritised and implemented. Mitigation and adaptation have two main areas of complementarity. Firstly, they each manage different components of future climate-related risk. Mitigation reduces the number and magnitude of potential climate hazards, reducing the most severe changes first. Adaptation increases the ability to cope with climate hazards by reducing system sensitivity or by reducing the consequent level of harm. Secondly, they manage risks at different extremes of the potential range of future climate change. Adaptation works best with changes of lesser magnitude at the lower end of the potential range. Where there is sufficient adaptive capacity, adaptation improves the ability of a system to cope with increasingly larger changes over time. By moving from uncontrolled emissions towards stabilisation of greenhouse gases in the atmosphere, mitigation limits the upper part of the range. Different activities have various blends of adaptive and mitigative capacity. In some cases, high sensitivity and low adaptive capacity may lead to large residual climate risks; in other cases, a large adaptive capacity may mean that residual risks are small or non-existent. Mitigative and adaptive capacity do not share the same scale: adaptive capacity is expressed locally, whereas mitigative capacity is different for each activity and location but needs to be aggregated at the global scale to properly assess its potential benefits in reducing climate hazards. This can be seen as a demand for mitigation, which can be exercised at the local scale through exercising mitigative capacity. Part two of the paper deals with the situation where regional bodies aim to maximise the benefits of managing climate risks by integrating adaptation and mitigation measures at their various scales of operation. In north central Victoria, Australia, adaptation and mitigation are being jointly managed by a greenhouse consortium and a catchment management authority. Several related studies investigating large-scale revegetation are used to show how climate change impacts and sequestration measures affect soil, salt and carbon fluxes in the landscape. These studies show that trade-offs between these interactions will have to be carefully managed to maximise their relative benefits. The paper concludes that when managing climate change risks, there are many instances where adaptation and mitigation can be integrated at the operational level. However, significant gaps between our understanding of the benefits of adaptation and mitigation between local and global scales remain. Some of these may be addressed by matching demands for mitigation (for activities and locations where adaptive capacity will be exceeded) with the ability to supply that demand through localised mitigative capacity by means of globally integrated mechanisms.  相似文献   

8.
The Noel Kempff Climate Action Project in Bolivia, nowin its third year, is breaking ground to establishcredible and verifiable methods to quantify greenhousegas (GHG) benefits of land-use change and forestry (LUCF)projects. Developed under the United Nations FrameworkConvention Climate Change (FCCC) Activities ImplementedJointly pilot phase, the project conserves naturalforests that would otherwise have been subjected tocontinued logging and future agricultural conversion.Carbon (C) monitoring began with a C inventory of theproject area in 1997. The total amount of C in theproject area was 118 Tg (Tg = 1012g) ± 4%(95% confidence interval). Periodic monitoring ofrelevant C pools (occurring in 1999 and every 5 yrthereafter) occurs over the 30-year life of theproject to establish the difference between thewith-project and projected without-project scenarios. Permanent sample plots were established both insidethe project area to monitor changes in C pools overtime and in a proxy logging concession near theproject area to determine changes in C pools inforests that have been impacted by logging. Ground-based monitoring is complemented by datacollection on forest industry trends and land-usechange patterns. Remote sensing was used to developa vegetation stratification map of the area, and workis ongoing to investigate the potential application ofdual-camera aerial videography to improve theefficiency of monitoring over time.  相似文献   

9.
Short rotation bioenergy crops for energy production are considered an effective means to mitigate the greenhouse effect, mainly due to their ability to substitute fossil fuels. Alternatively, carbon can be sequestered and stored in the living biomass. This paper compares the two land use categories (forest land and non-forest land) for two management practices (short rotation vs. long rotation) to study mitigation potential of afforestation and fossil fuel substitution as compared to carbon storage. Significant carbon benefit can be obtained in the long run from using lands for growing short rotation energy crops and substituting fossil fuels by the biomass thus produced, as opposed to sequestering carbon in the biomass of the trees. When growth rates are high and harvest is used in a sustainable manner (i.e., replanting after every harvest), the opportunities for net carbon reductions appear to be fossil fuel substitution, rather than storage in ecosystem biomass. Our results suggest that at year 100 a total of 216 Mg C ha−1 is sequestered for afforestation/reforestation using long rotation sal (Shorea robusta Gaertn.f) species, as opposed to offset of 412 Mg C ha−1 for carbon storage and fossil fuel substitution for short rotation poplar (Populus Deltoides Marsh) plantations. The bioenergy option results in a continuous stream of about 3 Mg C ha−1 yr−1 of carbon benefits per year on forest land and 4 Mg C ha−1 yr−1 on non-forest land. Earlier studies have shown that in India waste land availability for establishing energy plantations is in the range of 9.6 to 36.5 Mha. Thus, using the 758 Tg biomass per year generated from 9.6 Mha waste land gives a mitigation potential in the range of 227 to 303 Tg C per year for carbon storage and fossil fuel substitution from poplar plantation for substituting coal based power generation. Depending upon the land availability for plantation, the potential for energy generation is in the range of 11,370 PJ, possibly amounting to a bioenergy supply of 43% of the total projected energy consumption in 2015. Further studies are needed to estimate the mitigation potential of other species with different productivities for overall estimation of the economic feasibility and social acceptability in a tropical country like India.  相似文献   

10.
Climate change combined with human activities poses significant risks to people’s livelihood especially in developing countries. Adaptation at the community level is of crucial importance in enabling them to respond to the direct and indirect effects of changes in climate. In a case study of fishing communities in Chilika lagoon, India, the focus is made on understanding climate change adaptation at the community level and scaling it up into the policy perspective through application of Sustainable Livelihood Approach. This article challenges the research and policy community to encourage the identification of locally negative constraints and positive strengths toward climate resilient communities in rural areas.
Rajib ShawEmail:
  相似文献   

11.

实现碳达峰、碳中和目标是我国近年来提出的重大战略决策,是引领我国绿色低碳发展的重要目标,可以带来环境质量改善和产业进步等多重效应。以我国典型的林业资源型城市——伊春市为研究对象,建立经济-环境-碳排放评价指标体系并运用熵值法和耦合协调度模型测算伊春市2010—2020年经济发展、环境质量和碳排放水平的耦合协调关系。结果表明:伊春市经济发展与环境质量总体呈上升趋势,但碳排放量和强度不断增加,整体由经济滞后型发展转变至环境和碳排放滞后型发展;伊春市耦合协调水平持续上升,由严重失调衰退发展至中级协调发展,环境和碳排放子系统需要加强改善。最后,从着力解决突出环境问题、强化节能增效和循环经济、大力发展林业经济、积极探索创新碳汇产品价值实现机制等方面出发,提出实现经济高质量发展目标的建议。

  相似文献   

12.
This paper presents the results of an exploratory study working with two Amazonian communities in Peru to identify key climate-related health risks from the perspective of local residents, and characterize how these risks are experienced and managed. The work adopts a vulnerability-based approach and utilizes participatory methodologies to document and examine local perspectives on vulnerability and adaptive capacity. Thirty nine community members were engaged in participatory photography (photovoice), and rapid rural appraisal workshops were conducted with a total 40 participants. Contextual information was obtained from 34 semi-structured interviews with key informants and participant observation during fieldwork. Three climate-related health risks were identified by the communities as pressing issues (food insecurity, water insecurity, and vector-borne disease), all of which are climate-dependent and reported to be being affected by observed changes in climatic conditions. Sensitivity to these risks is high due to social and economic disadvantages which force people to live in suboptimal conditions, partake in dangerous activities, and engage in unhealthy behaviors. Traditional approaches to health and strong social networks are important in moderating health risks, but are placed under increasing stress in the context of local social and economic changes due to larger scale influences, including resource development, deforestation, and changing social relations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号