首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Using a laboratory-scale mixed reactor, the performance of alumina in degrading 2,4-Dichlorophenoxyacetic acid with ozone in the presence of tert-butyl alcohol radical scavenger was studied. The operating variables investigated were the dose of alumina catalyst and solution pH. Results showed that using ozone and alumina leads to a significant increase in 2,4-D removal in comparison to non-catalytic ozonation and adsorption processes. The observed reaction rate constants (k(obs)) for 2,4-D during ozonation were found to increase linearly with increasing catalyst dose. At pH 5, the k(obs) value increased from 19.3 to 26 M(-1) s(-1) and 67 M(-1) s(-1) when varying the alumina dose from 1 to 2 and 4 g L(-1), respectively. As pH was increased, higher reaction rates were observed for both non-catalytic ozonation and catalytic ozonation processes. Thus, at pH 3 and using a catalyst dose of 8 g L(-1), the k(obs) values for non-catalytic ozonation and catalytic ozonation processes were 3.4 and 58.9 M(-1) s(-1), respectively, whereas at pH 5 reaction rate constants of 6.5 and 128.5 M(-1) s(-1) were observed, respectively. Analysis of total organic carbon suggested that catalytic ozonation with alumina achieved a considerable level of mineralization of 2,4-D. Adsorption of 2,4-D on alumina was found to play an important role in the catalytic ozonation process.  相似文献   

2.
The objective of this study is to find metal ions that enhance the ozone decomposition of chlorinated organic substances in acetic acid. Although the pseudo-first order degradation rate constant for 2,4-DCP by ozone in acetic acid in addition of Ca2+, Mg2+, Al3+ and Fe2+ were almost the same as that with no metal ion, the degradation rate in addition of Mn2+ and Fe3+ were 2.4 and 4.5 times as high as that with no metal ion, respectively. The presence of Fe3+ enhanced the degradation of 2,4-DCP by ozone in acetic acid because Fe3+-phenolate complex which have high reactivity with ozone was produced by the reaction between 2,4-DCP and Fe3+ in acetic acid.  相似文献   

3.
Luo Q  Zhang X  Wang H  Qian Y 《Chemosphere》2005,59(9):1289-1298
The poor mobility of organic pollutants in contaminated sites frequently results in slow remediation processes. Organics, especially hydrophobic compounds, are generally retained strongly in soil matrix as a result of sorption, sequestration, or even formation into non-aqueous-phase liquids and their mobility is thus greatly reduced. The objective of this study was to evaluate the feasibility of using non-uniform electrokinetic transport processes to enhance the mobility of organic pollutants in unsaturated soils with no injection reagents. Phenol and 2,4-dichlorophenol (2,4-DCP), and kaolin and a natural sandy loam soil were selected as model organics and soils, respectively. The results showed that non-uniform electrokinetics can accelerate the desorption and movement of phenol and 2,4-DCP in unsaturated soils. Electromigration and electroosmotic flow were the main driving forces, and their role in the mobilization of phenol and 2,4-DCP varied with soil pH. The movement of 2,4-DCP in the sandy loam towards the anode (about 1.0 cmd(-1)V(-1)) was 1.0-1.5 cmd(-1)V(-1) slower than that in the kaolin soil, but about 0.5 cmd(-1)V(-1) greater than that of phenol in the sandy loam. When the sandy loam was adjusted to pH 9.3, the movement of phenol and 2,4-DCP towards the anode was about twice and five times faster than that at pH 7.7, respectively. The results also demonstrated that the movement of phenol and 2,4-DCP in soils can be easily controlled by regulating the operational mode of electric field. It is believed that non-uniform electrokinetics has the potential for practical application to in situ remediation of organics-contaminated sites.  相似文献   

4.
Using a laboratory-scale mixed reactor, the performance of alumina in degrading 2,4-Dichlorophenoxyacetic acid with ozone in the presence of tert-butyl alcohol radical scavenger was studied. The operating variables investigated were the dose of alumina catalyst and solution pH. Results showed that using ozone and alumina leads to a significant increase in 2,4-D removal in comparison to non-catalytic ozonation and adsorption processes. The observed reaction rate constants (kobs ) for 2,4-D during ozonation were found to increase linearly with increasing catalyst dose. At pH 5, the kobs value increased from 19.3 to 26 M?1 s?1 and 67 M?1 s?1 when varying the alumina dose from 1 to 2 and 4 g L?1, respectively. As pH was increased, higher reaction rates were observed for both non-catalytic ozonation and catalytic ozonation processes. Thus, at pH 3 and using a catalyst dose of 8 g L?1, the kobs values for non-catalytic ozonation and catalytic ozonation processes were 3.4 and 58.9 M?1 s?1, respectively, whereas at pH 5 reaction rate constants of 6.5 and 128.5 M?1 s?1 were observed, respectively. Analysis of total organic carbon suggested that catalytic ozonation with alumina achieved a considerable level of mineralization of 2,4-D. Adsorption of 2,4-D on alumina was found to play an important role in the catalytic ozonation process.  相似文献   

5.
Okawa K  Nakano Y  Nishijima W  Okada M 《Chemosphere》2004,57(9):1231-1235
The objectives of this study are to clarify the behavior of humic substances throughout the processes of 2,4-dichlorophenol (2,4-DCP) adsorption on granular activated carbon (GAC) from water and extraction into acetic acid, and the influence of the extracted humic substances on the decomposition of 2,4-DCP by ozone in the acetic acid. The adsorption capacity of GAC for 2,4-DCP was not influenced by the humic substances preloaded to have equilibrium concentration of 24.9mg Cl(-1) (14.5mg Cg(-1)). The adsorption capacity of GAC for 2,4-DCP decreased to one tenth of new GAC after the first adsorption-extraction step because of only 16% desorption in the first step. However, 2,4-DCP adsorbed on GAC was completely extracted after the second step suggesting that GAC can be used as adsorbent to transfer 2,4-DCP from water to acetic acid. The concentration ratio of 2,4-DCP from water into acetic acid was around 2x10(5), whereas the concentration ratio of humic substances was about 3.5, indicating that 2,4-DCP was selectively adsorbed and extracted by this system. The first order degradation rate constant for 2,4-DCP by ozone in acetic acid increased with the addition of humic substances. The rate constant with 16mg Cl(-1) of humic substances was 2.6 times as high as that without humic substances. Humic substances behaved as a promoter for the degradation of 2,4-DCP by ozone.  相似文献   

6.
采用改进液相化学还原法制备纳米Pd/Fe双金属颗粒,研究其钯化率为0.045%和0.135%的条件下分别对3种单氯酚(2-CP、3-CP和4-CP)和3种二氯酚(2,3-DCP、2,4-DCP和2,6-DCP)的脱氯反应。结果表明,合成的纳米Pd/Fe颗粒分散性良好,粒径分布介于25~40nm。纳米Pd/Fe双金属颗粒对单氯酚及二氯酚具有良好的去除效果,3种单氯酚和3种二氯酚的脱氯难易程度分别为2-CP〉4-CP〉3-CP和2,6-DCP〉2,4-DCP〉2,3-DCP,脱氯反应均符合拟一级反应动力学方程。通过还原脱氯实验揭示了分子中氯原子的化学环境对还原脱氯过程具有明显影响。  相似文献   

7.
Ninety strains of fungi from the collection of our mycology laboratory were tested in Galzy and Slonimski (GS) synthetic liquid medium for their ability to degrade the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) and its by-product, 2,4-dichlorophenol (2,4-DCP) at 100 mg l(-1), each. Evolution of the amounts of each chemical in the culture media was monitored by HPLC. After 5 days of cultivation, the best results were obtained with Aspergillus penicilloides and Mortierella isabellina for 2,4-D and with Chrysosporium pannorum and Mucor genevensis for 2,4-DCP. The data collected seemed to prove, on one hand, that the strains responses varied with the taxonomic groups and the chemicals tested, and, on the other hand, that 2,4-D was less accessible to fungal degradation than 2,4-DCP. In each case, kinetics studies with the two most efficient strains revealed that there was a lag phase of 1 day before the onset of 2,4-D degradation, whereas there was none during 2,4-DCP degradation. Moreover, 2,4-DCP was detected transiently during 2,4-D degradation. Finally, M. isabellina improved its degradation potential in Tartaric Acid (TA) medium relative to GS and Malt Extract (ME) media.  相似文献   

8.
Cea M  Seaman JC  Jara AA  Fuentes B  Mora ML  Diez MC 《Chemosphere》2007,67(7):1354-1360
The adsorption of 2,4-dichlorophenol (2,4-DCP) and pentachlorophenol (PCP) by a variable-charge soil from southern Chile was studied in a series of batch equilibration experiments. 2,4-DCP and PCP adsorption behavior was evaluated as a function of pH (pH values of 4.5, 6.0 and 7.5) in a 0.1M KCl (25 degrees C) background solution for soil material collected at three different depths (0-20 cm, 20-40 cm, and 40-60 cm). 2,4-DCP and PCP adsorption decreased with increasing soil pH, suggesting that the undissociated species were adsorbed more readily and that electrostatic repulsion may inhibit partitioning as pH increases. The PCP adsorption was greater than observed for 2,4-DCP and decreased with soil depth. Multiple regression analysis between K(d) and various soil properties indicated that the soil organic carbon content is a strong indicator of chlorophenol adsorption, and in addition to organic carbon, the soil pH is an important property controlling adsorption behavior.  相似文献   

9.
Environmental Science and Pollution Research - 2,4-Dichlorophenol (2,4-DCP) is a hazardous chlorinated organic chemical, so its removal is an important task to protect the whole ecosystem and human...  相似文献   

10.
Wang SG  Liu XW  Zhang HY  Gong WX  Sun XF  Gao BY 《Chemosphere》2007,69(5):769-775
Development of aerobic granules for the biological degradation of 2,4-dichlorophenol (2,4-DCP) in a sequencing batch reactor was reported. A key strategy was involving the addition of glucose as a co-substrate and step increase in influent 2,4-DCP concentration. After operation of 39d, stable granules with a diameter range of 1-2mm and a clearly defined shape and appearance were obtained. After granulation, the effluent 2,4-DCP and chemical oxygen demand concentrations were 4.8mgl(-1) and 41mgl(-1), with high removal efficiencies of 94% and 95%, respectively. Specific 2,4-DCP biodegradation rates in the granules followed the Haldane model for substrate inhibition, and peaked at 39.6mg2,4-DCPg(-1)VSS(-1)h(-1) at a 2,4-DCP concentration of 105mgl(-1). Efficient degradation of 2,4-DCP by the aerobic granules suggests their potential application in the treatment of industrial wastewater containing chlorophenols and other inhibitory chemicals.  相似文献   

11.
Lin Q  Chen Y  Wang Z  Wang Y 《Chemosphere》2004,57(10):1439-1447
Hydrogen peroxide was widely selected as the chemical oxidant in chemical remediation or as the donor of oxygen in in situ aerobic bioremediation of organic pollutants. In this paper, hydrogen peroxide pretreatment and plant system was done to examine its possibility to remediate the heavy metal contaminated soil or heavy metal-organic combined contaminated soil. Heavy metal contaminated soil was collected from the heavily industrialized area, in Fuyang county, Zhejiang province, China. And heavy metal-organic combined contaminated soil was prepared from the same contaminated soil by spiking 100 microg g(-1) 2,4-dichlorophenol (2,4-DCP). Results showed that H2O2 could improve the dissipation of 2,4-DCP and enhance the availability of Cu and Zn in soil. The greatly increased DOC (dissolved organic carbon) in the oxidation process was probably the main reason for the greatly increased water soluble Cu in higher pH condition. Water soluble Zn, however, easily rebound to soil components with the time being and had no positive relation with dissolved organic carbon. Planting with ryegrass influenced the behavior of pollutants in soil. It was observed that the dissipation of 2,4-DCP could be enhanced by the presence of plant roots and the availability of Cu and Zn in the planted soil was changed due to the mobilization and rebound mechanisms in the rhizosphere. Co-contamination of 2,4-DCP caused the greater availability of Cu and Zn in H2O2 pretreatment. But with the ryegrass planting, it was easier to rebound to the less available phase in the rhizosphere. Both Cu and Zn concentration in shoots increased with the H2O2 treatment. Therefore our results suggested that H2O2 pretreatment was probably a promising way for promoting the dissipation of persistent organic pollutants and enhancing the solubility of Cu and Zn in soil. A combination of H2O2 pretreatment and suitable plant might be an efficient alternative for remedying heavy metal or heavy metal-organic contaminated soil.  相似文献   

12.
We evaluated the catalytic activity of a water-soluble iron-porphyrin in an oxidative coupling reaction to form covalent bonds between 2,4-dichlorophenol (2,4-DCP) and humic molecules. The biomimetic catalysis in the presence of H2O2 was tested in the dark and in daylight, and changes in reaction products were revealed by high-performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR) spectroscopy. In all conditions, iron-porphyrin was effective in promoting complete disappearance of 2,4-DCP, although catalyst activity was enhanced in daylight (with a maximum turnover number of 85.13). Further evidence of the occurred covalent coupling between 2,4-DCP and humic molecules was revealed by diffusion-ordered nuclear magnetic resonance (DOSY-NMR) spectroscopy that showed a reduced diffusivity of 2,4-DCP after the catalytic reaction. These findings indicate that iron-porphyrin is an efficient catalyst for the covalent binding of polyhalogenated phenols to humic molecules, thereby suggesting that the copolymerization reactions may become a useful technology to remediate soils and waters contaminated by halogenated phenols and their analogues.  相似文献   

13.
The complex and variable composition of natural sediments makes it very difficult to predict the bioavailability and bioaccumulation of sediment-bound contaminants. Several approaches have been proposed to overcome this problem, including an experimental model using artificial particles with or without humic acids as a source of organic matter. For this work, we have applied this experimental model, and also a sample of a natural sediment, to investigate the uptake and bioaccumulation of 2,4-dichlorophenol (2,4-DCP) by Sphaerium corneum. Additionally, the particle-water partition coefficients (K(d)) were calculated. The results showed that the bioaccumulation of 2,4-DCP by clams did not depend solely on the levels of chemical dissolved, but also on the amount sorbed onto the particles and the characteristics and the strength of that binding. This study confirms the value of using artificial particles as a suitable experimental model for assessing the fate of sediment-bound contaminants.  相似文献   

14.
Xiao H  Liu R  Zhao X  Qu J 《Chemosphere》2008,72(7):1006-1012
Mineralization of 2,4-dichlorophenol (DCP) was studied by ozone with Mn(2+) as an ozonation catalyst. Laboratory scale semi-batch ozonation experiments were conducted at room temperature. The results showed that trace amount of Mn(2+) accelerated the mineralization of DCP. Total organic carbon removal rate was independent on Mn(2+) dosage at its range of 0.1-0.5 mgL(-1). Dissolved ozone concentration in the solution remained low level in the catalytic ozonation process, which indicated that Mn(2+) catalyzed decomposition of ozone. DCP mineralization was inhibited in catalytic ozonation by the addition of carbonate. Electron spin resonance/spin-trapping technique was used to determine hydroxyl radicals, and the results showed that larger amounts of hydroxyl radicals were produced in catalytic ozonation system than those of single ozonation. Intermediates mainly including aliphatic carboxylic acids were determined qualitatively and semi-quantitatively by GC-MS. And, a general pathway for mineralization of DCP was proposed.  相似文献   

15.
Carbon tetrachloride (CTC), tetrachloroethylene (PCE), trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) were four of the most widely used cleaning and degreasing solvents in the United States. These compounds were also used in a wide variety of other applications. The history of the production and use of these four compounds is linked to the development and growth of the United States' synthetic organic chemical industry, and historical events that affected the development and use of chlorinated solvents in general. Part 1 of this article includes a discussion of the historical background common to each of the four solvents, followed by discussion on the history of CTC and PCE. In the early years of the 20th century, CTC became the first of the four solvents to come into widespread use. CTC was used as a replacement for petroleum distillates in the dry-cleaning industry, but was later replaced by PCE. In the 1990s, CTC was phased out under the Montreal Protocol due to its role in stratospheric ozone depletion.  相似文献   

16.
Carbon tetrachloride (CTC), tetrachloroethylene (PCE), trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) were four of the most widely used cleaning and degreasing solvents in the United States. These compounds were also used in a wide variety of other applications. The history of the production and use of these four compounds is linked to the development and growth of the United States' synthetic organic chemical industry, and historical events that affected the development and use of chlorinated solvents in general. Part 1 of this article includes a discussion of the historical background common to each of the four solvents, followed by discussion on the history of CTC and PCE. In the early years of the 20th century, CTC became the first of the four solvents to come into widespread use. CTC was used as a replacement for petroleum distillates in the dry-cleaning industry, but was later replaced by PCE. In the 1990s, CTC was phased out under the Montreal Protocol due to its role in stratospheric ozone depletion.  相似文献   

17.
The effects of monoterpenes on the degradation of 14C-2,4-dichlorophenol (DCP) were investigated in soils collected from areas surrounding monoterpene and non-monoterpene-emitting vegetation. Indigenous microorganisms degraded 14C-2,4-DCP to 14CO2, after 1 d contact time. Degradation was enhanced by prior exposure of the soils to 2,4-DCP for 32 d, increasing extents of mineralisation up to 60%. Monoterpene amendments further enhanced 2,4-DCP degradation, but only following pre-exposure to both 2,4-DCP and monoterpene, with total 2,4-DCP mineralisation extents of up to 71%. Degradation was greatest at the higher monoterpene concentrations (≥1 μg kg−1). Total mineralisation extents were similar between concentrations, but higher than the control and the 0.1 μg kg−1 amendment, indicating that increases in monoterpene concentration has a diminishing enhancing effect. We suggest that monoterpenes can stimulate the biodegradation of 2,4-DCP by indigenous soil microorganisms and that monoterpene amendment in soils is an effective strategy for removing organic contaminants.  相似文献   

18.
The chemical decomposition of aqueous solutions of various chlorophenols (4-chlorophenol (4-CP), 2,4-dichlorophenol (2-DCP), 2,4,6-trichlorophenol (2,4,6-TCP) and 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP)), which are environmental priority pollutants, is studied by means of single oxidants (hydrogen peroxide, UV radiation, Fenton's reagent and ozone at pH 2 and 9), and by the Advanced Oxidation Processes (AOPs) constituted by combinations of these oxidants (UV/H2O2 UV/Fenton's reagent and O3/UV). For all these reactions the degradation rates are evaluated by determining their first-order rate constants and the half-life times. Ozone is more reactive with higher substituted CPs while OH* radicals react faster with those chlorophenols having lower number of chlorine atoms. The improvement in the decomposition levels reached by the combined processes, due to the generation of the very reactive hydroxyl radicals. in relation to the single oxidants is clearly demonstrated and evaluated by kinetic modeling.  相似文献   

19.
Biogeochemical reductive dechlorination (BiRD) is a newly recognized method for the remediation or natural attenuation of chlorinated solvents. Chlorinated solvents are rapidly treated by abiotic reaction with reduced mineral iron sulfides. Iron sulfides are formed by naturally occurring sulfate-reducing bacteria when sufficient SO(4)(2-) and organic carbon are present or supplied to sediments containing mineral iron. An example of site characterization focusing on BiRD is presented focusing on mineral phases. Methods demonstrated here may be employed at other sites to evaluate naturally occurring BiRD or to evaluate an engineered BiRD remediation. A field investigation was performed at a TCE contaminated site at Altus AFB with naturally high concentrations of SO(4)(2-) and Fe(III) minerals and where an accidental fuel spill provided organic carbon. In the area of this fuel spill significant mineral iron sulfides were found, sulfate was almost completely removed, and TCE was absent. Only small amounts of daughter products were found, further indicating that the BiRD pathway was operative. Mass balance data indicates all of the remaining TCE (182 kg) could be treated by the remaining FeS (66.5 kg) in the upper aquifer; however, the FeS was not co-located with TCE to enable complete reaction. Laboratory microcosm tests with FeS amended and FeS-rich sediment from Altus AFB also suggest that BiRD is capable of destroying TCE. The results suggest that an engineered BiRD treatment is possible for this site.  相似文献   

20.
This study investigated the fate and behaviour of [UL-(14)C] 2,4-dichlorophenol (DCP) in planted (Lolium perenne L.) and unplanted soils over 57 days. Extractability of [UL-(14)C] 2,4-DCP associated activity was measured using calcium chloride (CaCl(2)), acetonitrile-water and dichloromethane (DCM) extractions. Biodegradability of [UL-(14)C] 2,4-DCP associated activity was assessed through measurement of (14)CO(2) production by a degrader inoculum (Burkholderia sp.). Although extractability and mineralisation of [UL-(14)C] 2,4-DCP associated activity decreased significantly in both planted and unplanted soils, plants appeared to enhance the sequestration process. After 57 days, in unplanted soil, 27% of the remaining [UL-(14)C] 2,4-DCP associated activity was mineralised by Burkholderia sp., and 13%, 48%, and 38% of (14)C-activity were extracted by CaCl(2), acetonitrile-water and DCM, respectively. However, after 57 days, in planted soils, only 10% of the [UL-(14)C] 2,4-DCP associated activity was available for mineralisation, whilst extractability was reduced to 2% by CaCl(2), 17% by acetonitrile-water and 11% by DCM. This may be due to the effect of plants on soil moisture conditions, which leads to modification of the soil structure and trapping of the compound. However, the influence of plants on soil biological and chemical properties may also play a role in the ageing process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号