首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
中庭火灾烟气流动数值模拟   总被引:3,自引:0,他引:3  
根据中庭火灾特点 提出了考虑辐射换热损失和壁面传热损失、不考虑燃烧过程、视火焰为体积热源,浮升力作用下火灾烟气湍流流动的场模型,并将辐射换热损失计人壁面传热损失,简化辐射换热模型计算,运用该场模型对中庭模型实验装置火灾烟气流动进行了数值模拟,采用通用软件PHOENICS进行数值计算,研究表明,数值模拟结果与中庭模型实验装置火灾试验结果吻合;以热源模拟火焰的方法对分析中庭火灾烟流发展规律可行。  相似文献   

2.
The spread of burning fuel spilled from oil product containers during offshore storage and transportation may cause large damage and trigger further accidents. Some analytical models already exist to predict the spread and burning behavior of liquid fuel spill fires, however, few experimental studies have been conducted to verify the model results. In this paper, continuous n-heptane spill fire experiments were conducted in a rectangular trench covered with water. The burning area, fuel spread rate, and thermal flux with different discharge flow rates and ignition delay times were investigated by both experimental and modeling means. The spill fire burning area, with 5 typical phases during burning, has a quasi-steady value which is directly proportional to the discharge rate but irrelevant to the ignition delay times. The steady burning rate, as the ratio of discharge rate over burning area, was estimated. A spread model was modified to simulate the spread of continuous liquid fuel spill fires in a one-dimensional channel, based on the balance between gravity and viscous forces. A cuboid solid flame model was used to compute the thermal flux from spill fires. The burning fuel spread and the heat flux calculated by the models agree with the experimental results.  相似文献   

3.
为澄清有关烃类池火灾热辐射量化分析模型选择中存在的问题,针对"池火计算方法"模型进行量纲分析和物理意义方面的讨论,提出该模型在概念使用、量纲关系、热释放速率的计算以及池火焰模化等方面存在的问题。系统阐述点源模型、Shokri-Beyler模型、Mudan模型等常用烃类池火灾热辐射通量分析模型的适用条件和应用范围。点源模型适用于被辐射目标物从池火焰接受的热辐射通量小于5 kW.m-2情况下池火灾热辐射的量化分析;Shokri-Beyler模型主要应用于估算被辐射目标物从池火焰接受的热辐射通量大于5 kW.m-2的情况;Mudan模型可用于估算无风或有风条件下被辐射目标物从池火焰接受的热辐射通量。  相似文献   

4.
烃类流体火灾伤害破坏作用定量分析   总被引:6,自引:2,他引:4  
对烃类流体火灾的伤害破坏作用进行正确的定量分析是开展重大消防目标火灾风险评估工作的基础。针对烃类流体火灾伤害破坏作用定量分析中存在的问题,系统论述烃类流体火灾伤害破坏作用的定量分析方法,分析并讨论火球、池火、喷射火和蒸气云火灾等不同火灾形式的热辐射通量计算模型及其前提条件,对不同热辐射伤害破坏作用准则及伤害概率模型的适用条件和模型基础进行了论述。  相似文献   

5.
LNG池火热辐射模型及安全距离影响因素研究   总被引:1,自引:1,他引:0  
重点对LNG池火热辐射模型,模型应用方式,以及热辐射安全距离的影响因素做了详细研究,给出池火热辐射模型采用及安全距离计算的方法。对常用的热辐射计算模型(点源模型、LNGFire3和PoFM ISE模型)加以介绍,并对3种模型做了对比研究。PoFM ISE模型充分考虑大池火直径时不完全燃烧的因素以及风速对火焰高度的影响,建议当风速大于1.5 m/s,池火直径大于20 m时采用。同时,进一步研究影响LNG池火热辐射安全距离的各种因素,包括池火直径、风速、环境温度和湿度,从而得出不同条件下池火热辐射安全距离的要求。  相似文献   

6.
The road accident of a tanker transporting liquefied natural gas (LNG) originated a fire and, finally, the BLEVE of the tank. This accident has been analyzed, both from the point of view of the emergency management and the explosion and fireball effects. The accidental sequence is described: fire, LNG release, further safety valves release, flames impingement on vessel unprotected wall, vessel failure mode, explosion and fireball. According to the effects and consequences observed, the thermal radiation and overpressure are estimated; a mathematical model is applied to calculate the probable mass contained in the vessel at the moment of the explosion. The peak overpressure predicted from two models is compared with the values inferred from the accident observed data. The emergency management is commented.  相似文献   

7.
Currently, novel energy resources are receiving increasing attention as a response to the limitation in fossil fuels as well as their adverse effects on human health. Hydrogen, one of the most abundant elements on the earth, can be regarded as a new energy source to replace fossil fuels. Therefore, safety assessment of the relating processes is very crucial by increasing use of hydrogen as a fuel source. In this regard, consequence analysis for risk assessment and power reduction is very important. The present study aims at modeling hydrogen dispersion along with consequence analyses for such events as jet fire and flash fire. The model was validated by using the data derived from a study on hydrogen leakage in supply pipelines in the laboratory of the University of Pisa. Modeling results reveal that ambient conditions will impose a milder impact on leakage consequences if internal pressure is high in release source. The safe distance was also estimated to be 14 m. Dispersion consequence modeling was performed, followed by the evaluation of the effect of environmental (i.e., stability, ambient temperature, surface roughness, wind speed, and humidity) and process (i.e., vessel temperature and pressure, leakage diameter, and releasing point height) parameters on maximum size flammable vapor cloud and maximum level jet fire radiation on the ground. The size of flammable vapor cloud (consequence dispersion index) and the maximum flux of radiation were affected by process parameters more than ambient parameters. Leakage diameter and the vessel pressure were found to have the highest impact on the operational parameters.  相似文献   

8.
High pressure jet fires pose a serious hazard to offshore installations operated by the oil and gas industry as demonstrated by the Piper Alpha incident. Following the Piper Alpha incident a major initiative by the offshore oil and gas industry operators led to the production of Interim Guidance Notes which provided guidance to operators on how to assess jet fire hazards. However, many areas of uncertainty were identified where no data was available. Areas of particular concern identified in the Interim Guidance Notes were two-phase jet fires, the effect of confinement on jet fires and their behaviour with water deluge. Since that time a considerable body of experimental research has been undertaken. Based on this recent data, this paper reassesses jet fire hazards in an offshore environment and provides updated guidance on the hazards they pose, including tabulated data and simple calculation techniques for predicting jet fire hazards.  相似文献   

9.
The authors have recently undertaken a major review of LNG consequence modeling, compiling a wide range of historical information with more recent experiments and modeling approaches in a book entitled “LNG Risk-Based Safety: Modeling and Consequence Analysis”. All the main consequence routes were reviewed – discharge, evaporation, pool and jet fire, vapor cloud explosions, rollover, and Rapid Phase Transitions (RPT’s). In the book, experimental data bases are assembled for tests on pool spread and evaporation, burn rates, dispersion, fire and radiation and effects on personnel and structures. The current paper presents selected highlights of interest: lessons learned from historical development and experience, comparison of predictions by various models, varying mechanisms for LNG spread of water, a modeling protocol to enable acceptance of newer models, and unresolved technical issues such as cascading failures, fire engulfment of a carrier, the circumstances for a possible LNG BLEVE, and accelerated evaporation by LNG penetration into water.  相似文献   

10.
Pool fires are the most common of all process industry accidents. Pool fires often trigger explosions which may result in more fires, causing huge losses of life and property. Since both the risk and the frequency of occurrence of pool fires are high, it is necessary to model the risks associated with pool fires so as to correctly predict the behavior of such fires.Among the parameters which determine the overall structure of a pool fire, the most important is turbulence. It determines the extent of interaction of various parameters, including combustion, wind velocity, and entrainment of the ambient air. Of the various approaches capable of modeling the turbulence associated with pool fires, computational fluid dynamics (CFD) has emerged as the most preferred due to its ability to enable closer approximation of the underlying physical phenomena.A review of the state of the art reveals that although various turbulence models exist for the simulation of pool fire no single study has compared the performance of various turbulence models in modeling pool fires. To cover this knowledge-gap an attempt has been made to employ CFD in the assessment of pool fires and find the turbulence model which is able to simulate pool fires most faithfully. The performance of the standard k? model, renormalization group (RNG) k? model, realizable k? model and standard kω model were studied for simulating the experiments conducted earlier by Chatris et al. (2001) and Casal (2013). The results reveal that the standard k? model enabled the closest CFD simulation of the experimental results.  相似文献   

11.
聚合物燃烧火焰辐射及其温度的估算   总被引:3,自引:2,他引:3  
姜冯辉  钟奇 《火灾科学》1994,3(1):18-26
受限空间中,通风对于燃烧状况和火焰辐射特性有重要影响。本文根据火焰中炭颗粒的生成及其受通风的影响,提出了关于聚合物燃烧火焰辐射和平均辐射温度的估算方法。计算了几种典型聚合物的火焰辐射及其平均辐射温度,并讨论了通风、燃料组成、炭颗粒和燃烧尺度的影响,旨在加深认识通风条件对于火焰温度及其有关辐射特性的影响,为受限空间中燃烧过程的分析提供依据。  相似文献   

12.
A number of models have been proposed to calculate overpressure and impulse from accidental industrial explosions. When the blast is produced by explosives, pyrotechnics or unstable substances, the TNT equivalent model is widely used. From the curves given by this model, data are fitted to obtain equations showing the relationship between overpressure, impulse and distance. These equations, referred to here as characteristic curves, can be fitted by means of power equations, which depend on the TNT equivalent mass. Characteristic curves allow determination of overpressure and impulse at each distance.  相似文献   

13.
树冠火对输油站热辐射影响的数值模拟研究   总被引:1,自引:0,他引:1  
树冠火是森林火灾的一种,在森林的树冠层燃烧和蔓延,主要由地表火在强风作用下引起.树冠火很少发生,约占森林火灾的5%,但其燃烧温度高、热释放速率大、蔓延速度快,对周围物体的破坏性极大.处在森林地区的输油站面临着树冠火带来的潜在风险.火灾产生的热辐射极有可能导致输油站内人员伤亡,设备遭到破坏.通过确定树冠火热释放速率、火灾发生位置及环境参数来设计火灾场景,采用火灾动力学场模拟软件FDS,模拟分析树冠火对输油站的热辐射影响.结果表明,由于无法采用地面扑救,防火隔离带是应对树冠火威胁的有效措施;当防火隔离带达到一定间距时,有风条件下与无风条件相比目标物体不会接收到更多的热辐射;防火隔离带设置为坡面形式,可以增加其表面积,从而吸收更多的热辐射.  相似文献   

14.
As well known, risk is a combination of probability and consequences of an accident. In analyzing the consequence of accidental hydrocarbon fires and the potential for domino effects, the evaluation of the flame extent and temperature are of the utmost importance. Since the primary effects of pool fires are connected to thermal radiation and issues of interplant/tank spacing employees’ safety zones, firewall specifications are to be addressed on the basis of a proper consequence analysis. By means of real scale experimental tests it was verified that both the thermal power and the flame temperature, Tf, increase as the pool area increases, up to reach maximum values in connection with a “critical pool dimension”. Dealing with pool areas higher than the critical one, experimental results, performed by different researchers at different scales, show a decrease of Tf. An in-depth analysis of the different concurring phenomena connected to a pool fire development allowed identifying the limiting step controlling the flame temperature. In fact, the trend of Tf is mainly determined by the increasing difficulty of oxygen diffusion within the internal bulk of gaseous hydrocarbons. In this article, we propose a novel pool fire modelling approach based on the simplified physical phenomena occurring in a circular turbulent diffusion fire and suitable to provide a theoretical insight into the above-mentioned experimental trends and to obtain the maximum values of the flame temperature and of the thermal power.The geometry of the pool is dictated by the surroundings (i.e., diking) and the analytical models here presented were successfully applied to the common situation of circular pools.However, it must be remarked that the developed model, matching fairly well experimental data for different hydrocarbons, can be applied in modelling similar scenarios characterized by different geometric or environmental conditions (e.g. road and rail tunnel fires).  相似文献   

15.
Liquefied petroleum gas (LPG) has potential pool fire risks due to its flammability. The configuration of pool fires plays a significant role when applying the solid flame model or point source model to assess the risks from heat radiation. However, no existing correlations can precisely predict the configuration of large LPG (100% propane) pool fires. To enhance the fundamental understanding on how pool diameter and wind velocity can influence the configuration of large LPG pool fires, an experimentally validated Computational Fluid Dynamics (CFD) model is employed to simulate fires using different burning rate models. Fire temperature profiles, flame heights, and flame tilts predicted by the CFD model were compared with empirical models and experimental data. Accordingly, new correlations for flame height and flame tilt as functions of pool diameter D and wind velocity uw have been developed. The comparisons demonstrate that the new correlations have the best overall accuracy in the prediction of flame height and tilt for large LPG pool fires under different conditions (10 m ≤ D ≤ 20 m, 0 ≤ uw ≤ 3 m·s−1).  相似文献   

16.
双室火灾烟气特性的实验研究   总被引:3,自引:0,他引:3  
本文在1/2缩尺建筑模型中,取双室-走廊结构,以标准木垛为火源,对建筑火灾的初始阶段进行了实验模拟。着重研究了火灾初期的烟气特性及其变化,包括烟气温度及烟气中CO_2气体和炭颗粒浓度。本文目的在于在探索和发展中等尺寸火灾实验模拟手段和方法的同时,定性地确定火源功率对烟气特性的影响,并积累一定的实验数据,为建筑火灾的分析和模化提供实验基础和依据。  相似文献   

17.
沸腾液体扩展蒸气爆炸机理及相关计算理论模型研究   总被引:16,自引:1,他引:15  
剖析了沸腾液体扩展蒸气爆炸 (BLEVE)的发生、发展过程 ,阐述了其机理及相关条件 ,研究并提出了两种BLEVE火球热辐射模拟计算理论模型 ,即近地面和抬升火球模型 ,以及爆炸超压模型。与有关实验结果比较和与已有模型的对比计算表明了所建模型的有效性  相似文献   

18.
火旋风是森林火灾中经常发生的一种特殊火行为。作为一种复杂的包舍化学反应的有旋流动,火旋风在不同的可燃物种类和物理条件,以及不同的环境流场条件下,会表现出复杂的动力学特征。本文设计了一个在边角对称开有缝隙的六棱柱体火旋风发生装置,探讨了火旋风特征参数的测量方法,实验模拟了火旋风的发生与发展,对火旋风的温度分布、速度和燃烧时间随燃料和环境条件的变化规律进行了比较分析。  相似文献   

19.
为对火球热辐射影响范围进行合理的计算和危险后果进行合理评价,借鉴点源模型和计算流体力学CFD思想,建立了火球热辐射改进计算模型,并与点源模型进行了对比。结果表明:改进模型比传统的点源模型计算结果偏大,特别是距离火球较近处。随着半径的增加,2种模型的计算结果趋于统一。当测量点的半径大于火球半径的2倍时,可以使用点源模型进行热辐射量的计算,满足工程精度要求;在近火球位置,点源模型精度较差,须用改进模型进行计算。建立的改进计算模型可以实现火球热辐射的快速计算,是有效、可行的。  相似文献   

20.
Spill fires are common during oil product storage and transportation after a loss of containment. Since the burning fuel is moving and the fuel depth is quite shallow, the burning rate in a spill fire is different from that of a pool fire with a static burning zone. Unlike pool fires, which have been studied for decades and have well-established correlations for burning rate, research on spill fires is inadequate. In this paper, continuously released n-heptane spill fire experiments were conducted on open water surfaces with varying fuel discharge rates. The pool diameters were measured, and the spill fire burning rates were estimated based on a dynamic balance between fuel supply and combustion. The burning rates in n-heptane pool fires from the literature were reviewed and compared with the estimated burning rates in spill fires of the same dimension. The spill fire burning rate was found to be close to that in a pool fire during the initial burning phase but lower than that in a bulk burning pool fire and that in a “fuel-level-controlled” pool fire. The distinction between the burning rates of spill fires and pool fires is explained by the heat balance analysis of the fuel layer. A model for the spill fire burning rate was proposed accordingly. The results calculated with the presented model are closer to the measured data than those calculated with pool fire models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号