首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Song U  Mun S  Ho CH  Lee EJ 《Environmental management》2012,49(6):1238-1246
The possible consequences of global warming on plant communities and ecosystems have wide-ranging ramifications. We examined how environmental change affects plant growth as a function of the variations in the microclimate along an urban-suburban climate gradient for two allergy-inducing, invasive plants, Humulus japonicus and Ambrosia artemisiifolia var. elatior. The environmental factors and plant growth responses were measured at two urban sites (Gangbuk and Seongbuk) and two suburban sites (Goyang and Incheon) around Seoul, South Korea. The mean temperatures and CO(2) concentrations differed significantly between the urban (14.8 °C and 439 ppm CO(2)) and suburban (13.0 °C and 427 ppm CO(2)) sites. The soil moisture and nitrogen contents of the suburban sites were higher than those at the urban sites, especially for the Goyang site. The two invasive plants showed significantly higher biomasses and nitrogen contents at the two urban sites. We conducted experiments in a greenhouse to confirm the responses of the plants to increased temperatures, and we found consistently higher growth rates under conditions of higher temperatures. Because we controlled the other factors, the better performance of the two invasive plants appears to be primarily attributable to their responses to temperature. Our study demonstrates that even small temperature changes in the environment can confer significant competitive advantages to invasive species. As habitats become urbanized and warmer, these invasive plants should be able to displace native species, which will adversely affect people living in these areas.  相似文献   

2.
Transgenic or genetically modified plants possess novel genes that impart beneficial characteristics such as herbicide resistance. One of the least understood areas in the environmental risk assessment of genetically modified crops is their impact on soil- and plant-associated microbial communities. The potential for interaction between transgenic plants and plant residues and the soil microbial community is not well understood. The recognition that these interactions could change microbial biodiversity and affect ecosystem functioning has initiated a limited number of studies in the area. At this time, studies have shown the possibility that transgenes can be transferred to native soil microorganisms through horizontal gene transfer, although there is not evidence of this occurring in the soil. Furthermore, novel proteins have been shown to be released from transgenic plants into the soil ecosystem, and their presence can influence the biodiversity of the microbial community by selectively stimulating the growth of organisms that can use them. Microbial diversity can be altered when associated with transgenic plants; however, these effects are both variable and transient. Soil- and plant-associated microbial communities are influenced not only by plant species and transgene insertion but also by environmental factors such as field site and sampling date. Minor alterations in the diversity of the microbial community could affect soil health and ecosystem functioning, and therefore, the impact that plant variety may have on the dynamics of the rhizosphere microbial populations and in turn plant growth and health and ecosystem sustainability, requires further study.  相似文献   

3.
Soil properties mitigate hazardous effects of contaminants through soil chemical sequestration and should be considered when evaluating ecological risk from terrestrial contamination. Empirical models that quantify relationships between soil properties and toxicity to ecological receptors are necessary for site-specific adjustments to ecological risk assessments. However, differential sensitivities of test organisms in dose-response studies may limit the utility of such models. We present a novel approach to toxicity estimation that partitions the effect of differential sensitivities of test organisms from that of soil chemical/physical properties. Five soils that ranged in selected properties were spiked with five concentrations of sodium arsenate. Bioassays were conducted where above ground dry matter growth and the corresponding tissue arsenic concentrations were evaluated for three terrestrial plants (Alfalfa, Medicago sativa L.; Perennial ryegrass, Lolium perrene L.; and Japanese millet, Echinochloa crusgalli L.). Estimates were combined into a plant contaminant sensitivity index (PCSI) and used to normalize phytotoxicity parameters to the most sensitive species (i.e., alfalfa) where necessary. Simple linear regression and ANCOVA indicated a 36.5% increase in the explanatory power of the modifying effects of soil properties on phytotoxicity when differential arsenate sensitivities were accounted for by PCSI (r(2) = 0.477-0.833). Normalization of ecotoxicity parameters by PCSI is a seemingly effective approach to quantify the modifying effects of soil properties on phytotoxicity endpoints when it is of interest to consider multiple plant species (or varieties within a species) with differential sensitivities to experimental contaminants.  相似文献   

4.
We studied stormwater detention basins where woody vegetation removal was suspended for 2 years in Virginia, USA to determine if woody vegetation can control Typha populations and how early woody plant succession interacts with Typha, other herbaceous vegetation, and site factors. Distribution and composition of woody vegetation, Typha and non-Typha herbaceous vegetation biomass, and site factors were assessed at 100 plots in four basins ranging in age from 7 to 17 years. A greenhouse study examined the interaction of shade and soil moisture on Typha biomass and persistence. Principal component analysis identified an environmental gradient associated with greater water table depths and decreased elevation that favored Typha but negatively influenced woody vegetation. Elevation was correlated with litter layer distribution, suggesting that initial topography influences subsequent environmental characteristics and thus plant communities. Soil organic matter at 0–10 cm ranged from 5.4 to 12.7 %. Woody plants present were native species with the exception of Ailanthus altissima and Pyrus calleryana. In the greenhouse, shade and reduced soil moisture decreased Typha biomass and rhizome length. The shade effect was strongest in flooded plants and the soil moisture effect was strongest for plants in full sun. Typha in dry soil and heavy shade had 95 % less total biomass and 83 % smaller rhizomes than Typha in flooded soil and full sun, but even moderate soil moisture reductions decreased above- and below-ground biomass by 63 and 56 %, respectively. Suspending maintenance allows restoration of woody vegetation dominated by native species and may suppress Typha invasion.  相似文献   

5.
Global sensitivity analysis can be used for assessing the relative importance of model parameters on model outputs. The sensitivity of parameters usually indicates a temporal variation due to variation in the environmental conditions (e.g., variation in weather or plant growth). In addition, the size of averaging window by which the outputs of a model are aggregated or averaged may impact parameter sensitivities. In this study, temporal variation of parameters sensitives, model performance, as well as the impact of the size of time‐averaging window on evapotranspiration (ET) prediction using the Agricultural Policy/Environmental eXtender (APEX) model are investigated. To achieve these goals, an open‐source package named PARAPEX was developed in R and used to perform dynamic sensitivity and model performance analysis of APEX using parallel computation. PARAPEX reduced the computation time from 5,939 to 379 s (using 20 and 1 computation nodes, respectively). The sensitivity analysis results indicated the parameters accounting for the reducing effect of plant cover on evaporation from the soil surface, the effect of soil on the plant root growth, and the effect of cycling and transformation dynamics of organic matter at the top soil layer as the top sensitive parameters based on the mean daily simulated ET and the Nash–Sutcliffe model performance measure. The dynamic performance analysis indicated poor ET predictions by APEX during the growing seasons. Editor's note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   

6.
Remediation methods for contaminated sites cover a wide range of technical solutions with different remedial efficiencies and costs. Additionally, they may vary in their secondary impacts on the environment i.e. the potential impacts generated due to emissions and resource use caused by the remediation activities. More attention is increasingly being given to these secondary environmental impacts when evaluating remediation options. This paper presents a methodology for an integrated economic decision analysis which combines assessments of remediation costs, health risk costs and potential environmental costs. The health risks costs are associated with the residual contamination left at the site and its migration to groundwater used for drinking water. A probabilistic exposure model using first- and second-order reliability methods (FORM/SORM) is used to estimate the contaminant concentrations at a downstream groundwater well. Potential environmental impacts on the local, regional and global scales due to the site remediation activities are evaluated using life cycle assessments (LCA). The potential impacts on health and environment are converted to monetary units using a simplified cost model.A case study based upon the developed methodology is presented in which the following remediation scenarios are analyzed and compared: (a) no action, (b) excavation and off-site treatment of soil, (c) soil vapor extraction and (d) thermally enhanced soil vapor extraction by electrical heating of the soil. Ultimately, the developed methodology facilitates societal cost estimations of remediation scenarios which can be used for internal ranking of the analyzed options. Despite the inherent uncertainties of placing a value on health and environmental impacts, the presented methodology is believed to be valuable in supporting decisions on remedial interventions.  相似文献   

7.
Future changes in water supply are likely to vary across catchments due to a river basin's sensitivity to climate and land use changes. In the Santiam River Basin (SRB), Oregon, we examined the role elevation, intensity of water demands, and apparent intensity of groundwater interactions, as characteristics that influence sensitivity to climate and land use changes, on the future availability of water resources. In the context of water scarcity, we compared the relative impacts of changes in water supply resulting from climate and land use changes to the impacts of spatially distributed but steady water demand. Results highlight how seasonal runoff responses to climate and land use changes vary across subbasins with differences in hydrogeology, land use, and elevation. Across the entire SRB, water demand exerts the strongest influence on basin sensitivity to water scarcity, regardless of hydrogeology, with the highest demand located in the lower reaches dominated by agricultural and urban land uses. Results also indicate that our catchment with mixed rain‐snow hydrology and with mixed surface‐groundwater may be more sensitive to climate and land use changes, relative to the catchment with snowmelt‐dominated runoff and substantial groundwater interactions. Results highlight the importance of evaluating basin sensitivity to change in planning for planning water resources storage and allocation across basins in variable hydrogeologic settings.  相似文献   

8.
Abstract:  Automated electronic soil moisture sensors, such as time domain reflectometry (TDR) and capacitance probes are being used extensively to monitor and measure soil moisture in a variety of scientific and land management applications. These sensors are often used for a wide range of soil moisture applications such as drought forage prediction or validation of large‐scale remote sensing instruments. The convergence of three different research projects facilitated the evaluation and comparison of three commercially available electronic soil moisture probes under field application conditions. The sensors are all installed in shallow soil profiles in a well instrumented small semi‐arid shrub covered subwatershed in Southeastern Arizona. The sensors use either a TDR or a capacitance technique; both of which indirectly measure the soil dielectric constant to determine the soil moisture content. Sensors are evaluated over a range of conditions during three seasons comparing responses to natural wetting and drying sequences and using water balance and infiltration simulation models. Each of the sensors responded to the majority of precipitation events; however, they varied greatly in response time and magnitude from each other. Measured profile soil moisture storage compared better to water balance estimates when soil moisture in deeper layers was accounted for in the calculations. No distinct or consistent trend was detected when comparing the responses from the sensors or the infiltration model to individual precipitation events. The results underscore the need to understand how the sensors respond under field application and recognize the limitations of soil moisture sensors and the factors that can affect their accuracy in predicting soil moisture in situ.  相似文献   

9.
Despite the use of recyclable materials increasing worldwide, waste disposal to landfill remains the most common method of waste management because it is simple and relatively inexpensive. Although landfill disposal is an effective waste management system, if not managed correctly, a number of potential detrimental environmental impacts have been identified including soil and ground water contamination, leachate generation, and gas emissions. In particular, improper post-closure treatment of landfills or deterioration of the conventional clay landfill capping were shown to result in land degradation which required remediation to secure contaminants within the landfill site.Phytoremediation is an attractive technology for landfill remediation, as it can stabilize soil and simultaneously remediate landfill leachate. In addition, landfill phytoremediation systems can potentially be combined with landfill covers (Phytocapping) for hydrological control of infiltrated rainfall. However, for the successful application of any phytoremediation system, the effective establishment of appropriate, desired vegetation is critical. This is because the typically harsh and sterile nature of landfill capping soil limits the sustainable establishment of vegetation. Therefore, the physicochemical properties of landfill capping soils often need to be improved by incorporating soil amendments. Biosolids are a common soil amendment and will often meet these demanding conditions because they contain a variety of plant nutrients such as nitrogen, phosphate, potassium, as well as a large proportion of organic matter. Such amendment will also ameliorate the physical properties of the capping soils by increasing porosity, moisture content, and soil aggregation. Contaminants which potentially originate from biosolids will also be remediated by activities congruent with the establishment of plants and bacteria.  相似文献   

10.
Despite biological invasions being a worldwide phenomenon causing significant ecological, economic, and human welfare impacts, there is limited understanding regarding how environmental managers perceive the problem and subsequently manage alien species. Spanish environmental managers were surveyed using questionnaires to (1) analyze the extent to which they perceive plant invasions as a problem; (2) identify the status, occurrence, and impacts of noxious alien plant species; (3) assess current effort and expenditure targeting alien plant management; and, finally, (4) identify the criteria they use to set priorities for management. In comparison to other environmental concerns, plant invasions are perceived as only moderately problematic and mechanical control is the most valued and frequently used strategy to cope with plant invasions in Spain. Based on 70 questionnaires received, 193 species are considered noxious, 109 of which have been the subject of management activities. More than 90% of species are found in at least one protected area. According to respondents, the most frequently managed species are the most widespread across administrative regions and the ones perceived as causing the highest impacts. The perception of impact seems to be independent of their invasion status, since only half of the species identified as noxious are believed to be invasive in Spain, while 43% of species thought to only be casual aliens are causing a high impact. Records of management costs are poor and the few data indicate that the total actual expenditure amounted to 50,492,437 € in the last decade. The majority of respondents stated that management measures are insufficient to control alien plants due to limited economic resources, lack of public awareness and support, and an absence of coordination among different public administrations. Managers also expressed their concern about the fact that much scientific research is concerned with the ecology of alien plants rather than with specific cost-efficient strategies to manage alien species.  相似文献   

11.
Biodiversity maintenance and soil improvement are key sustainable forestry objectives. Research on the effects of bamboo forest management on plant diversity and soil properties are therefore necessary in bamboo-growing regions, such as southeastern China’s Shunchang County, that have not been studied from this perspective. We analyzed the effects of different Phyllostachys pubescens proportions in managed forests on vegetation structure and soil properties using pure Cunninghamia lanceolata forests as a contrast, and analyzed the relation between understory plants and environmental variables (i.e., topography, stand and soil characteristics) by canonical correspondence analysis (CCA). The forest with 80% P. pubescens and 20% hardwoods (such as Phoebe bournei, Jatropha curcas, Schima superba) maintained the highest plant diversity and best soil properties, with significantly higher plant diversity than the C. lanceolata forest, and better soil physicochemical and biological properties. The distribution of understory plants is highly related to environmental factors. Silvicultural disturbance strongly influenced the ability of different bamboo forests to maintain biodiversity and soil quality under extensive management, and the forest responses to management were consistent with the intermediate-disturbance hypothesis (i.e., diversity and soil properties were best at intermediate disturbance levels). Our results suggest that biodiversity maintenance and soil improvement are important management goals for sustainable bamboo management. To achieve those objectives, managers should balance the inputs and outputs of nutrients and protect understory plants by using appropriate fertilizer (e.g., organic fertilizer), adjusting stand structure, modifying utilization model and the harvest time, and controlling the intensity of culms and shoots harvests.  相似文献   

12.
Decisionmakers are in the process of selecting remedial measures for controlling nonpoint pollution runoff. Conservation tillage (CT) is being looked to as one of the major recommended practices. Many different systems exist and vary in the amount of crop residue left and soil roughness produced. Therefore, varying results occur in terms of yield and potential water quality impacts. Differences vary with type of tillage system, soils, geographic region, and the farmer's management. The purpose of this review is to provide material to decisionmakers that points out the assets and liabilities of the various CT systems. Tillage effects on soil characteristics and plant growth are presented and include a discussion of soil moisture and temperature, weed and insect control, nutrient availability, and yields. Water quality aspects are addressed through a discussion of the effects CT systems have on sediment, water, pesticide, and phosphorus loss.This work was supported by the Soil Science Department, College of Agriculture and Life Sciences, University of Wisconsin-Madison, and the U.S. Environmental Protection Agency, Region V, Chicago, Illinois. (Grant No. G005139-01).  相似文献   

13.
放射性核素污染土壤的植物修复   总被引:4,自引:0,他引:4  
某些植物在生长过程中能从土壤中吸收特定的重金属(包括放射性核素),并在可被收割的部位富集,人们通过将植物富集部位的收割处理,达到处理污染土壤的目的,这就是植物修复法。利用植物修复法来治理土壤放射性污染问题具有绿色、廉价、清洁、环保的独特优点。本文着重介绍植物修复的机理、超积累植物的概念和研究进展以及影响植物富集效率的因素等。  相似文献   

14.
Ecosystem responses to physical or chemical stress may vary from changes in single organisms to alteration of the structure and function of the ecosystem. These responses to stress cannol be predicted exactly. Ecosystems repeatedly exposed to physical and/or chemical stress can be used to study the separate and combined environmental effects of stress. Such studies also allow the development of procedures to select test systems for the analysis of stress in ecosystems. A preliminary field survey of six military training sites at Fort Riley, Kansas, USA, was conducted to identify and verify ecological test systems for evaluating ecosystem responses to physical and/or chemical stress. Comparisons of these data with data collected concurrently from Konza Prairie Research Natural Area reference sites showed that soil microarthropods, some species of macroarthropods, small mammals, and native earthworm species were negatively affected by stress. In contrast, plant species diversity, plant foliage biomass, soil mycorrhizae, and many soil characteristics were within the boundaries of nominal variations observed on “pristine” Konza Prairie. Introduced European earthworms appeared to be positively affected by training activities. This study provided a test of systematic procedures to support impact analysis, ecological toxicology, and ecosystem risk assessments. This is paper IX in D. J. Schaeffer's “Environmental Audit” series.  相似文献   

15.
ABSTRACT: Concentrations of atmospheric CO2 and other radiatively active trace gases have risen since the Industrial Revolution. Such atmospheric modifications can alter the global climate and hydrologic cycle, in turn affecting water resources. The clear physical and biological sensitivities of water resources to climate, the indication that climate change may be occurring, and the substantial social and economic dependencies on water resources have instigated considerable research activity in the area of potential water resource impacts. We discuss how the literature on climate change and water resources responds to three basic research needs: (1) a need for water managers to clearly describe the climatic and hydrologic statistics and characteristics needed to estimate climatic impacts on water resources, (2) a need to estimate the impacts of climate change on water resources, and (3) a need to evaluate standard water management and planning methods to determine if uncertainty regarding fundamental assumptions (e.g., hydrologic stationarity) implies that these methods should be revised. The climatic and hydrologic information needs for water resource managers can be found in a number of sources. A proliferation of impact assessments use a variety of methods for generating climate scenarios, and apply both modeling approaches and historical analyses of past responses to climate fluctuations for revealing resource or system sensitivities to climate changes. Traditional techniques of water resources planning and management have been examined, yielding, for example, suggestions for new methods for incorporating climate information in real-time water management.  相似文献   

16.
Land degradation by soil erosion is a socioeconomic and environmental problem facing many developing countries. Application of stonewall terraces for soil moisture conservation is vital to reducing the environmental impacts of this phenomenon. To this end, a field plot experiment was conducted in the study area along with the use of a closed-ended questionnaire. The object of the experiment was to study the socioeconomic impacts of soil erosion on local farmers and their adoption of the stonewall terrace technique. The study showed a higher net profit in areas that had implemented terrace conservation practices than in areas that had not (i.e., 3.5 to 6 times higher net profit). Correlation analysis indicated that the farmers’ perceptions, land ownership, and geomorphology were significantly related to the farmers’ incentives and willingness to adopt terraces as soil conservation measures (P < 0.05), although the correlations were negative. Smallholder farmers (52% of the interviewed farmers) were involved in the sale of the agricultural land for urban uses, largely because of the high price and immediate returns offered. However, the associated land use changes warrant greater involvement of both the private and public sectors. This cooperation may be accomplished through the introduction of a long-term agricultural loan system and the development of proper legislation accompanied by a comprehensive and durable infrastructure and service system with the goal of reducing the negative impact of land use changes and encouraging sustainable use of resources.  相似文献   

17.
Hiking, horse riding and mountain biking are popular in protected areas in Australia and the United States of America. To help inform the often contentious deliberations about use of protected areas for these three types of activities, we review recreation ecology research in both countries. Many impacts on vegetation, soils and trails are similar for the three activities, although there can be differences in severity. Impacts include damage to existing trails, soil erosion, compaction and nutrification, changes in hydrology, trail widening, exposure of roots, rocks and bedrock. There can be damage to plants including reduction in vegetation height and biomass, changes in species composition, creation of informal trails and the spread of weeds and plant pathogens. Due to differences in evolutionary history, impacts on soil and vegetation can be greater in Australia than in the USA. There are specific social and biophysical impacts of horses such as those associated with manure and urine, grazing and the construction and use of tethering yards and fences. Mountain bike specific impacts include soil and vegetation damage from skidding and the construction of unauthorised trails, jumps, bridges and other trail technical features. There are gaps in the current research that should be filled by additional research: (1) on horse and mountain bike impacts to complement those on hiking. The methods used need to reflect patterns of actual usage and be suitable for robust statistical analysis; (2) that directly compares types and severity of impacts among activities; and (3) on the potential for each activity to contribute to the spread of weeds and plant pathogens. Additional research will assist managers and users of protected areas in understanding the relative impacts of these activities, and better ways to manage them. It may not quell the debates among users, managers and conservationists, but it will help put it on a more scientific footing.  相似文献   

18.
Droughts are a natural scourge with extremely serious socio-economic consequences, leading not only to human suffering and misery, but also to grave environmental deterioration. Some of the impacts of drought may be curbed through technological, economic and legal measures. This paper deals particularly with the last of these.
Legal measures are grouped according to their objectives, such as: the mitigation of drought impacts; the regulation of water use; the control of production and distribution of goods and services; the regulation of the relationship between man and the environment; and the promotion of general socio-economic change.
While developed countries have been able to manage production factors and promote, enact and enforce regulatory legislation, most developing countries face serious restrictions either to managing drought situations or to enforcing any kind of legislation intended to deal either with the impact of drought or with the artificial situations reinforcing these impacts.  相似文献   

19.
Surface mining followed by reclamation to pasture is a major driver of land use and cover change in Appalachia. Prior research suggests that many aspects of ecosystem recovery are either slow or incomplete. We examined ecosystem structure—including soil physical and chemical properties, arbuscular mycorrhizal fungal (AMF) infectivity and community composition, and plant diversity and community composition—on a chronosequence of pasture-reclaimed surface mines and a non-mined pasture in northern West Virginia. Surface mining and reclamation dramatically altered ecosystem structure. Some aspects of ecosystem structure, including many measures of soil chemistry and infectivity of AMF, returned rapidly to levels found on the non-mined reference site. Other aspects of ecosystem structure, notably soil physical properties and AMF and plant communities, showed incomplete or no recovery over the short-to-medium term. In addition, invasive plants were prevalent on reclaimed mine sites. The results point to the need for investigation on how reclamation practices could minimize establishment of exotic invasive plant species and reduce the long-term impacts of mining on ecosystem structure and function.  相似文献   

20.
Land abandonment is a major issue worldwide. In Argentina, the Monte Desert is the most arid rangeland, where the traditional conservation practices are based on successional management of areas excluded to disturbances or abandoned. Some areas subjected to this kind of management may be too degraded, and thus require active restoration. Therefore, the aim of this study was to assess whether passive succession-based management is a suitable approach by evaluating the status of land degradation in a protected area after 17–41 years of farming abandonment. Soil traits and plant growth forms were quantified and compared between sites according to time since abandonment and former land use (cultivation and grazing). Two variables were calculated using the CORINE-CEC method, i.e., potential (PSER) and actual (ASER) soil erosion risk. PSER indicates the erosion risk when no vegetation is present, while ASER includes the protective role of vegetation cover. Results showed that land use history had no significant effect on plant growth forms or soil traits (p > 0.05). After more than 25 years since abandonment of farming activities, soil conditions and vegetation cover had improved, thus having a lower ASER. Nevertheless, the present soil physical crusts may have delayed the full development of vegetation, enhancing erosion processes. Overall, this study indicates that succession-based management may not be the best practice in terms of conservation. Therefore, any effort for conservation in the Monte Desert should contemplate the current status of land degradation and potential vegetation recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号