首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several studies have documented that vegetation in the Sahel is highly dynamic and is affected by the prevailing climatic conditions, as well as by human use of the areas. However, little is known about vegetation dynamics in the large saline areas bordering the rivers of West Africa. Combining satellite imagery, the perception of local people and botanical information, this study investigated the vegetation dynamics and the drivers of vegetation changes in Fatick Province, Senegal. Satellite images showed a change in vegetation composition, i.e., a loss of tree cover and an increase in shrub cover, herbaceous cover and tans (highly saline areas with sparse vegetation). Although the trend was the same, the three villages had different vegetation histories. A survey of the woody vegetation showed that shrubs and young trees were dominating with relatively few large trees. Local people perceived a general decline of woody plants from 1993 to 2013. Among 60 species mentioned by local people, 90 % were declining and 10 % increasing. Together the three methods documented a decrease in density and diversity of the woody vegetation, mainly influenced by salinity and land use. The large numbers of young trees indicate a potential for regeneration of some, but not all, tree species. As many tree species appreciated by local people were reported to be declining, local communities have experienced a reduction of their natural resources. Based on villagers’ recommendations for improved vegetation management, we discuss possible contributions including reforestation, desalinization and environmental protection for restoration of the vegetation.  相似文献   

2.
Loss of forest cover is a likely consequence of climate change in many parts of the world. To test the vulnerability of eucalypt forests in Australia’s island state of Tasmania, we modelled tree canopy cover in the period 2070–2099 under a high-emission scenario using the current climate–canopy cover relationship in conjunction with output from a dynamically downscaled regional climate model. The current climate–canopy cover relationship was quantified using Random Forest modelling, and the future climate projections were provided by three dynamically downscaled general circulation model (GCM) simulations. Three GCMs were used to show a range of projections for the selected scenario. We also explored the sensitivity of key endemic and non-endemic Tasmanian eucalypts to climate change. All GCMs suggested that canopy cover should remain stable (proportional cover change <10 %) across ~70 % of the Tasmanian eucalypt forests. However, there were geographic areas where all models projected a decline in canopy cover due to increased summer temperatures and lower precipitation, and in addition, all models projected an increase in canopy cover in the coldest part of the state. The model projections differed substantially for other areas. Tasmanian endemic species appear vulnerable to climate change, but species that also occur on the mainland are likely to be less affected. Given these changes, restoration and carbon sequestration plantings must consider the species and provenances most suitable for future, rather than present, climates.  相似文献   

3.
The increasing demand for agricultural commodities is a major cause of tropical deforestation. However, pressure is increasing for greater sustainability of commodity value chains. This includes the demand to establish new crop plantations and pasture areas on already deforested land so that new forest clearing for agriculture is minimized. Where tree crops are planted as part of agroforestry systems on deforested land, this amounts to a form of re-agro-forestation which can generate environmental benefits in addition to crop production. Here, we discuss a case where agroforestry systems based on cocoa (Theobroma cacao) are being established on crop and pasture land in the south of Pará state, Brazilian Amazon. The adoption of cocoa by farmers and ranchers of the region is stimulated by the coincidence of (1) favorable prospects for cocoa on the national and international markets including the expectation of a global cocoa supply gap; (2) environmental policies obliging land owners to reforest excess cleared land with native trees, with agroforests based on the native cocoa tree being an economically attractive option; and (3) biophysical conditions (especially soil fertility) favorable for growing cocoa in part of the region. We show that in the state of Pará at least 1.26 million hectares of naturally high-fertility soils in deforested areas outside legally protected and indigenous lands are potentially suitable for cocoa production with low agrochemical inputs, sufficient to make a significant contribution to closing the predicted supply gap. Their actual suitability depends on their state of degradation after years of pasture use and the availability of technologies and finance to convert them into tree crop agroforests. We discuss the significant environmental benefits of pasture re-agro-forestation with cocoa-based systems, including reduced emissions of up to 135 Mg of carbon per hectare compared to the historically common scenario of planting cocoa after forest clearing. We identify important research questions related to the scaling up of this practice and the maximization of its environmental benefits. We conclude that the coincidence of the afore-mentioned factors could drive a re-agro-forestation frontier in this part of the Amazon, with potential for positive outcomes in terms of commodity production while generating social and environmental benefits.  相似文献   

4.
With globalization, virtual exchanges of natural resources embodied in traded commodities redistribute geographically land use and its environmental impacts. Benefits of national forest protection may be undermined at the global-scale by leakage through international trade. We studied land use displacement associated with national policies to protect forests in Bhutan. This case study provides a simple situation: a dominant forest cover almost unaffected by agricultural expansion, a rural economy dominated by the primary sector, centralized forest conservation policies, and a dominant trading partner. We assessed the net effects at the international level of the Bhutanese forest protection policies by accounting for trade in wood products with India. Our results show that these policies have been effective in maintaining a high forest cover, but have been accompanied by an increasing displacement of forest use to India. In 1996–2011, the difference between the total volume of wood imported from India and the total volume exported from Bhutan—i.e., the net displacement—corresponds to 27 % of the total volume consumed in Bhutan. In 2011, 68 % of the total forest area required to produce the wood consumed in Bhutan was located in India. The wood imported by Bhutan was likely originating from tree plantations in the northeastern Indian states. Since Bhutan has few tree plantations and very valuable natural forests, the net international-level ecological impacts of this land use displacement is arguably positive. Most of the wood imports of Bhutan were wood charcoal for its emerging chemical industries. This case of displacement reflects functional upgrading in the value-chain rather than an externalization of consumption-based environmental costs. Through its government policies, Bhutan has managed to support its economic development while protecting its forests and leapfrogging the negative impacts on forests generally associated with the early stages of modernization.  相似文献   

5.
Natural resource degradation in highland regions is of increasing concern to the global community due to its role in aggravating poverty and the loss of environmental services to local and downstream users. The integration of trees into smallholder farming systems has been promoted as a means to enhance rural livelihoods while reversing the degradation of soil, water, biodiversity and related environmental services. Yet in addition to these benefits, negative impacts of trees on certain stakeholders or system components have also accompanied such efforts—suggesting that important trade-offs accompany afforestation. This paper presents a methodology for diagnosing problems stemming from cultivation of certain tree species in specific landscape niches. Data derived from the application of this methodology in two sites in the eastern African highlands are presented. Participatory diagnoses of landscape-level problems suggest that the negative impact of trees on water resource availability and crop yield are of critical concern to smallholder farmers. Ethnoecological data highlight the properties of different tree species that determine their suitability to specific farm and landscape niches. These data point to important opportunities for more socially- and environmentally-optimal integration of indigenous and exotic tree species into agricultural landscapes, and highlight the critical importance of local knowledge in forging solutions appropriate to contemporary realities.  相似文献   

6.
树木年轮宽度指标在气候重建中发挥了重要的作用,可是在温暖湿润的地区,利用树木年轮宽度重建古气候遇到了困难。因此寻找其他代用指标就成为一项急迫而重要的任务。一些研究发现,树轮稳定碳同位素可以发挥重要的作用。但是,是否所有的树种的树轮碳同位素对气候的响应都同样的敏感,还需要通过大量的研究分析工作来验证。为了了解温暖湿润的亚热带季风区马尾松树轮δ13C对气候响应的敏感性,选取了南京紫金山的两个马尾松树盘,进行了树轮δ13C的分析,建立了1939~2002和1955~2002年两个树轮δ13C变化序列。与降水、温度、相对湿度、光照时数、风速等气候指标进行了相关分析。结果表明:(1)马尾松树轮δ13C对于气候的响应是敏感的,可以作为气候变化的代用指标;(2)坡向对于马尾松树轮δ13C对气候的响应敏感性也有一定的影响,树轮δ13C平均值西南坡比东南坡高,西南坡比东南坡对月平均最低和最高温度的响应更敏感;(3)紫金山马尾松树轮δ13C与该地区生长季(尤其是夏、秋季)的月平均气温、月平均最高气温和日照时数呈正相关,而与月平均最低气温、降水量、空气相对湿度呈负相关  相似文献   

7.
Increasing rates of deforestation in tropical forests have been linked to agriculturalists. A critical concern generating debate is how well communities of trees recover into a more species rich ecosystem after restoration planting. The aim of the study was to evaluate the pattern of recovery of communities of tree, assess the influence of Acanthus pubescens, Lantana camara and Pennisetum purpureum, on the recovery as well as how restoration planting facilitates recruitment of other native tree seedlings along a gradient of forest restoration in Kibale National Park, Uganda after evictions of illegal settlers. We studied six restoration forests ranging in age from 3 to 16 years, naturally regenerating and three primary forests. Our results showed that recovery with natural regeneration was more effective than restoration planting although the latter enhanced recruitment of other native tree seedling. Tree recovery was generally correlated with age so that species density and diversity increased although at different rates. A reverse pattern was found for dominance but no clear pattern was found for tree density (individual/ha). Communities of tree showed directional patterns of change however community composition were still distinct among the different forests. A. pubescens, L. camara and P. purpureum negatively correlated with species density, tree density and diversity but a positive correlation was found for dominance. Restoration planting can reestablish forests with high species density, tree density and diversity, but this is dependent on age and the extent of the herbs, grasses and shrubs cover in tropical forests.  相似文献   

8.
As savannas are widespread across northern Australia and provide northern rangelands, the sustainable use of this landscape is crucial. Both fire and grazing are known to influence the tree-grass character of tropical savannas. Frequent fires open up the tree layer and change the ground layer from perennials to that dominated by annuals. Annual species in turn produce copious quantities of highly flammable fuel that perpetuates frequent, hot fires. Grazing reduces fuel loads because livestock consumes fuel-forage. This trade-off between fire and grazing was modelled using a spatially explicit, process-orientated model (SAVANNA) and field data from fire experiments performed in the Victoria River District of northern Australia. Results of simulating fire (over 40 years) with minimal or no grazing pressure revealed a reduction in the shrub and woody plants, a reduction in grasses, and no influence on the tree structure given mild fires. While mature trees were resistant to fire, immature trees, which are more likely associated with the shrub layer, were removed by fire. The overall tree density may be reduced with continual burning over longer time periods because of increasing susceptibility of old trees to fire and the lack of recruitment. Increases in stocking rates created additional forage demands until the majority of the fuel load was consumed, thus effectively suppressing fire and reverting to the grazing and suppressed fire scenario where trees and shrubs established.  相似文献   

9.
Studies of nest-site selection and reproduction are essential for bird species assessment and conservation. We compared breeding habitats and random sites within a secondary cavity-nesting bird, Yellowrumped Flycatcher (Ficedula zanthopygia), in a 5-year studying period in northeast China. We also modeled the effects of factors on daily nest survival rates. The flycatcher nest cavities were mostly located in tree trunks, with only 15% found in limbs. They often located their nests in east and south direction (45°–180°) with dense canopy cover surrounding the nest trees. Yellow-rumped Flycatcher nest-site selection appears to be nonrandom, such that they select nest sites with higher tree density and higher canopy closure. Yellowrumped Flycatcher daily nest survival rate was 0.9731 ± 0.007. Daily nest survival increased with increasing percent cover of canopy closure and decreased with the distance closing to the edges. The causes for nest failure were mainly nest usurpation by other secondary cavity-nesters. Predation rate and the competition for cavities with other secondary cavity-nesters may constrain the ability of Yellow-rumped Flycatchers to optimize nest nest-site selection.  相似文献   

10.
Past increase of atmospheric CO2 involves significant contributions from both fossil and biospheric sources. The latter are controversial, partly because these CO2 releases may be balanced by accelerated regrowth following clearing of some forests, while others were being converted to agricultural or other nonforest land. A simulation model was used to reconstruct changes since 1860 and project four hypothetical future scenarios of CO2 injection to 2460. Nineteen compartments and their exchanges of carbon were considered. Areal extents of tropical forests, other wooded ecosystems, and nonforests were incorporated into the model. Rapidly and slowly exchanging pools of carbon per unit area were projected by integrating income-loss differential equations numerically. Estimated cumulative releases of CO2 from fossil fuels (plus cement) near 120 Pg of carbon (1 Pg = 1015 g) from 1860 to 1970 were assumed to equal the prompt plus delayed releases due to forest clearing. Limits of exploitable forest area and biomass were evaluated and found to contribute much less future CO2 than usable fossil fuels. Ultimate release from the latter (7500±2500 Pg C) could increase atmospheric CO2 manyfold: doubling the assumed 1860 levels as early as (1) the year 2032 for assumed early fossil-use scenarios and (2) the year 2045 for late fossil-use scenarios. Depending on the poorly known parametes that were programmed to constrain the organic production rates, cumulative storage, and the response of plants and soils to enhanced atmospheric CO2, biospheric storage might reach higher levels for all scenarios than the estimates given here. However, maximizing such storage in real life would require much closer understanding and wiser management of ecosystems than history has shown.  相似文献   

11.
Mangrove forests in the tropics and subtropics grow in saline sediments in coastal and estuarine environments. Preservation of mangrove forests is important for many reasons, including the prevention of coastal erosion and seawater intrusion; the provision of spawning, nursery, and feeding grounds of diverse marine biota; and for direct use (such as firewood, charcoal, and construction material)—all of which benefit the sustainability of local communities. However, for many mangrove areas of the world, unsustainable resource utilization and the profit orientation of communities have often led to rapid and severe mangrove loss with serious consequences. The mangrove forests of the Takalar District, South Sulawesi, are studied here as a case area that has suffered from degradation and declining spatial extent during recent decades. On the basis of a post-classification comparison of change detection from satellite imagery and a survey of households, we provide an estimate of the mangrove change in the Takalar District during 1979–2011 and the consequences of those changes. Mangrove forest areas were reduced by 66.05 % (3344 hectares) during the 33-year period of analysis, and the biggest annual negative change in dense mangrove forest cover (8.37 %) occurred during the period 2006–2011. The changes were caused mainly by the mangrove clearing and conversion to aquaculture, and consequences have been increasing forest degradation, coastal abrasion, seawater intrusion, a decline in fish capture, a reduction in juvenile shrimp and milkfish, and outbreaks of shrimp disease. On the other hand, the clearing and impoundment of mangrove forests for shrimp and seaweed culture have provided a source of foreign exchange and new opportunities for employment in the study area.  相似文献   

12.
The “Artificial mussel” (AM), a novel passive sampling technology, was used for the first time in Australia in freshwater to monitor and assess the risk of trace metals (Cd, Cu, Hg, Pb, and Zn). AMs were deployed at 10 sites within the Goulburn–Murray Water catchments, Victoria, Australia during a dry year (2009–2010) and a wet year (2010–2011). Our results showed that the AMs accumulated all the five metals. Cd, Pb, Hg were detected during the wet year but below detection limits during the dry year. At some sites close to orchards, vine yards and farming areas, elevated levels of Cu were clearly evident during the dry year, while elevated levels of Zn were found during the wet year; the Cu indicates localized inputs from the agricultural application of copper fungicide. The impacts from old mines were significantly less compared ‘hot spots’. Our study demonstrated that climate variability (dry, wet years) can influence the metal inputs to waterways via different transport pathways. Using the AMs, we were able to identify various ‘hot spots’ of heavy metals, which may pose a potential risk to aquatic ecosystems (sub-lethal effects to fish) and public (via food chain metal bioaccumulation and biomagnification) in the Goulburn–Murray Water catchments. The State Protection Policy exempted artificial channels and drains from protection of beneficial use (including protection of aquatic ecosystems) and majority of sites (‘hot spots’) were located within artificial irrigation channels.  相似文献   

13.
A potential hazard to Beijing was revealed due to the accumulation trend of heavy metals in agricultural soils with sewage irrigation, which results in metal contamination and human exposure risk. Samples including soils and plants were collected to assess the impacts of sewage irrigation on the irrigated farming area of Beijing. Concentrations of the five elements Cd, Cr, Cu, Zn, and Pb were determined in samples to calculate the accumulation factor and to establish a basis for environmental protection and the suitability of sewage irrigation for particular land use in the urban-rural interaction area of Beijing. Using reference values provided by the Beijing Background Research Cooperative Group in the 1970s, the pollution load index (PLI), enrichment factor (EF), and contamination factor (CF) of these metals were calculated. The pollution load indices (sewage irrigation land 3.49) of soils indicated that metal contamination occurred in these sites. The metal enrichment (EF of Cd 1.8, Cr 1.7, Cu 2.3, Zn 2.0, Pb 1.9) and the metal contamination (CF of Cd 2.6, Cr 1.5, Cu 2.0, Zn 1.7, Pb 1.6) showed that the accumulation trend of the five toxic metals increased during the sewage irrigation as compared with the lower reference values than other region in China and world average, and that pollution with Cd, Cu, Zn, and Pb was exacerbated in soils. The distributions of these metals were homogeneous in the irrigation area, but small-scale heterogeneous spatial distribution was observed. Irrigation sources were found to affect heavy metal distributions in soils. It was suggested that heavy metal transfer from soils to plants was a key pathway to human health exposure to metal contamination. However, with the expansion of urban areas in Beijing, soil inhalation and ingestion may become important pathways of human exposure to metal contamination.  相似文献   

14.
This study quantified land use/land cover (LULC) changes in Pearl River Delta (PRD) of South China and its impact on regional climate over the last two decades. The LULC change analyses were accomplished by applying a change detection method to a set of Landsat imagery and ancillary data acquired from 1970s to 2000. The results indicate that the urban expansion is the prevailing LULC change in the PRD. Impact of LULC change on regional climate was simulated by using a mesoscale climate model. Two different land cover datasets circa 1990 and 2000 were input to the model to investigate the impact of urbanization on regional weather and climate condition in summer 2005. The simulation results show that rapid urban expansion can substantially alter regional climate conditions in the PRD region including monthly mean temperature, precipitation, moisture, and surface heat fluxes.  相似文献   

15.
Nitrogen fertilization (N) is commonly known as a main source of direct nitrous oxide (N2O) emission from agricultural soils. An area of 38 % of the total land surface of Poland was covered by agricultural soils in 2009. In this paper, we aimed at analyzing data regarding the land exploitation for 13 selected subareas of Poland between 1960 and 2009. Seven out of the 13 subareas studied are located in the West (area A), and six subareas are located in southeast of Poland (area B). The total area covered by large farms (>20 ha) differed largely, between area A (10.6 %) and area B (0.9 %) in 2009. Both areas varied in terms of the amount of fertilizers used annually, average crop yield and crop structure. Average direct emissions of N2O from agricultural soils were 1.66 ± 0.09 kg N2O–N ha?1 a?1 for area A, 1.39 ± 0.07 kg N2O–N ha?1 a?1 for area B and 1.46 ± 0.07 kg N2O–N ha?1 a?1 for the whole country between 1960 and 2009.  相似文献   

16.
District Swat is part of the high mountain Hindu-Kush Himalayan region of Pakistan. Documentation and analysis of land use change in this region is challenging due to very disparate accounts of the state of forest resources and limited accessible data. Such analysis is, however, important due to concerns over the degradation of forest land leading to deterioration of the protection of water catchments and exposure of highly erodible soils. Furthermore, the area is identified as hotspot for biodiversity loss. The aim of this paper is to identify geophysical and geographical factors related to land use change and model how these relationships vary across the district. For three selected zones across the elevation gradient of the district, we analyse land use change by studying land use maps for the years 1968, 1990 and 2007. In the high-altitude zone, the forest area decreased by 30.5 %, a third of which was caused by agricultural expansion. In the mid-elevation zone, agriculture expanded by 70.3 % and forests decreased by 49.7 %. In the lower altitudes, agriculture expansion was 129.9 % consuming 31.7 % of the forest area over the forty-year time period. Annual deforestation rates observed were 0.80, 1.28 and 1.86 % in high, mid and low altitudes, respectively. In the high-altitude ecosystems, accessibility (distance to nearest road and city) had no significant role in agriculture expansion; rather land use change appears significantly related to geophysical factors such as slope, aspect and altitude. In the low-elevation zone, accessibility was the factor showing the closest association with agriculture expansion and abandonment. The analysis illustrates that land use change processes vary quite considerably between different altitudinal and vegetation cover zones of the same district and that environmental constraints and stage of economic development provide important contextual information.  相似文献   

17.
Identifying the patterns of land cover change (LCC) and their main proximate causes and underlying driving forces in tropical rainforests is an urgent task for designing adequate management and conservation policies. The Lachuá region maintains the largest lowland rainforest remnant in Guatemala, but it has been highly deforested and fragmented during the last decades. This is the first paper to describe the patterns of LCC and the associated political and socioeconomic factors in the region over the last 50 years. We estimated spatial and temporal variations in LCC from a random sample of 24 1-km2 landscape plots during three time periods (1962–1987, 1987–2006, and 2006–2011) and evaluated how they were related to some important proximate causes and underlying driving forces. During the study period, 55 % of forest cover disappeared, at an annual rate of 1.6 %. The deforestation rate increased from 0.6 % (during the first study period) to 2.8 % (last period), but there was very high spatial variation. Landscape plots located outside conservation areas and close to roads lost between 80 and 100 % of forest cover, whereas the forest cover in landscapes located within protected areas remained intact during the study period. The establishment of new human settlements, roads, and annual crops was the main proximate cause during the first period, but during the second and third periods, open areas were mainly created to establish cattle pastures. Because ~75 % of forest cover has disappeared outside the protected areas, the conservation of this biodiversity hot spot will depend on the expansion of protected areas, and the promotion of forest regrowth and alternative biodiversity-friendly land uses in the landscape matrix.  相似文献   

18.
Land use and cover conversions as well as climatic factors drive current and future threats to freshwater systems. Research from the United States and across the globe has focused on already threatened and degraded freshwater systems, whose recovery requires significant investments. Attention must also be directed to monitoring freshwater systems that may appear robust, yet are likely to face enhanced vulnerabilities in the future due to climate and land use and cover changes. Such proactive monitoring can help identify problems early and provide potential solutions. In this study, we consider the case of Sebago Lake and its watershed in southern Maine; a region that has experienced significant population growth and development activity. Land use, socioeconomic change and water quality trends are monitored over a 20-year period using Landsat imagery, census, water quality and precipitation data. Our results indicate that Developed Land within the watershed has increased from 5.4 % of the total land area in 1987 to 8.9 % in 2009 with associated increases in population and housing activity. Sebago Lake’s water quality indicators from 1990 to 2010 show a directional trend concomitant with this change. The increase in Developed Land is likely to place additional pressures on water quality in the future. The analysis also indicates that precipitation trends play an important role in water quality variability for Sebago Lake. Predicted changes to climatic factors including enhanced spring time precipitation or earlier ice-out conditions combined with further land use change may play an influential role in determining water quality. The analysis highlights emerging areas of concern and reiterates the essential role of proactively monitoring vulnerable systems to help mitigate future threats.  相似文献   

19.
Delivering on the Promise of Agroforestry   总被引:1,自引:0,他引:1  
Agroforestry – the traditional practice of growing trees on farms for the benefit of the farm family and for the environment – was brought from the realm of indigenous knowledge into the forefront of agricultural research less than two decades ago. It was promoted widely as a sustainability-enhancing practice that combines the best attributes of forestry and agriculture. Based on principles of natural resource management and process-oriented research, agroforestry is now recognized as an applied science, that is instrumental in assuring food security, reducing poverty and enhancing ecosystem resilience at the scale of thousands of smallholder farmers in the tropics.Trees on farms provide both products and services: they yield food, fuelwood, fodder, timber and medicines, which farm families can use at home or take to market to bring in much-needed cash; they replenish organic matter and nutrient levels in soils and they help control erosion and conserve water. The International Centre for Research in Agroforestry, and its partners, are working to integrate the functions of trees with policy and institutional improvements that aim at facilitating wide-scale adoption by farmers.Two examples described in this paper are replenishing soil fertility in sub-Saharan Africa using short-term improved tree and shrub fallows and the results of agroforestry research to support significant land tenure policy in southeast Asia.Although just one option in sustainable land-use, science-based agroforestry has the potential to produce economically, socially and environmentally sound results for the billions of people who depend on this ancient practice and modern science.  相似文献   

20.
There has been a significant lack of land cover change studies in relation to deforestation in the Democratic People’s Republic of Korea (North Korea). The purpose of this study is to characterize deforestation in North Korea through land cover change trajectory and spatial analysis. We used three 30-m gridded land cover data sets for North Korea representing the conditions of the late 1980s, 1990s, and 2000s, respectively, as well as a digital elevation model. We examined the land cover trajectories during the two decades, i.e., which land cover became which at the pixel level. In addition, we calculated topographic characteristics of deforested pixels. Major findings from the study are summarized as follows: (1) net forest loss in North Korea was negligible in the latter decade compared to the former (>5000 km2), whereas other land cover changes were still active; (2) as a result of deforestation, forest land cover became mostly agricultural, particularly in the latter decade (95 %); (3) expansion of agricultural land cover continued during the time, increasing by >42 %; and (4) elevation and slope of deforested areas decreased slightly in the latter decade. The key contribution of the study is that it has demonstrated which land cover became which at the 30-m pixel level, complementing existing studies that examined overall forest stock in North Korea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号