首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uranium is a redox active contaminant of concern to both human health and ecological preservation. In anaerobic soils and sediments, the more mobile, oxidized form of uranium (UO(2)(2+) and associated species) may be reduced by dissimilatory metal-reducing bacteria. Despite rapid reduction in controlled, experimental systems, various factors within soils or sediments may limit biological reduction of U(VI), inclusive of competing electron acceptors and alterations in uranyl speciation. Here we elucidate the impact of U(VI) speciation on the extent and rate of reduction, and we examine the impact of Fe(III) (hydr)oxides (ferrihydrite, goethite, and hematite) varying in free energies of formation. Observed pseudo first-order rate coefficients for U(VI) reduction vary from 12 +/- 0.60 x 10(-3) h(-1) (0 mM Ca in the presence of goethite) to 2.0 +/- 0.10 x 10(-3) h(-1) (0.8 mM Ca in the presence of hematite). Nevertheless, dissolved Ca (at concentrations from 0.2 to 0.8 mM) decreases the extent of U(VI) reduction by approximately 25% after 528 h relative to rates without Ca present. Imparting an important criterion on uranium reduction, goethite and hematite decrease the dissolved concentration of calcium through adsorption and thus tend to diminish the effect of calcium on uranium reduction. Ferrihydrite, in contrast, acts as a competitive electron acceptor and thus, like Ca, decreases uranium reduction. However, while ferrihydrite decreases U(VI) in solutions without Ca, with increasing Ca concentrations U(VI) reduction is enhanced in the presence of ferrihydrite (relative to its absence)-U(VI) reduction, in fact, becomes almost independent of Ca concentration. The quantitative framework described herein helps to predict the fate and transport of uranium within anaerobic environments.  相似文献   

2.
Detoxification of Cr(VI) through reduction has been considered an effective method for reclaiming Cr-contaminated soil, sediment, and waste water. Organic matter is widely distributed in soil and aquatic systems; however, low Cr(VI) reduction rates inhibit the adoption of Cr reduction technologies by industry. Scientists have been aware of Cr(VI) reduction catalyzed by soil minerals; however, most of the studies focused on using semiconductors as catalysts with UV irradiation to accelerate the redox reactions. The objective of this study was to evaluate the rates of Cr(VI) reduction by fluorescence light in the presence of organic materials with or without specific soil minerals. Experimental results showed that dissolved organic compounds reduced Cr(VI) slowly under laboratory light; however, Cr(VI) reduction was greatly enhanced when growth chamber light was applied. Low photon flux (i.e., laboratory light) only enhanced Cr(VI) reduction by organics when Fe(III) was also present, because the Fe(II)-Fe(III) redox couple accelerated electron transfer and decreased electrostatic repulsion between reactants. Laboratory light was required to initiate Cr(VI) reduction catalyzed by TiO2; nonetheless, light-catalyzed Cr(VI) reduction by smectite and ferrihydrite could occur only when greater light energy was provided with a growth chamber light. Our results suggest a potential pathway for Cr(VI) reduction using naturally occurring organic compounds and colloids in acidic water systems or in surface soils when light is available.  相似文献   

3.
Removal of uranium(VI) from contaminated sediments by surfactants   总被引:1,自引:0,他引:1  
Uranium(VI) sorption onto a soil collected at the Melton Branch Watershed (Oak Ridge National Laboratory, TN) is strongly influenced by the pH of the soil solution and, to a lesser extent, by the presence of calcium, suggesting specific chemical interactions between U(VI) and the soil matrix. Batch experiments designed to evaluate factors controlling desorption indicate that two anionic surfactants, AOK and T77, at concentrations ranging from 60 to 200 mM, are most suitable for U(VI) removal from acidic soils such as the Oak Ridge sediment. These surfactants are very efficient solubilizing agents at low uranium concentrations: ca. 100% U(VI) removal for [U(VI)]o,sorbed = 10(-6) mol kg-1. At greater uranium concentrations (e.g., [U(VI)]o,sorbed = ca. 10(-5) mol kg-1), the desorption efficiency of the surfactant solutions increases with an increase in surfactant concentration and reaches a plateau of 75 to 80% of the U(VI) initially sorbed. The most probable mechanisms responsible for U(VI) desorption include cation exchange in the electric double layer surrounding the micelles and, to a lesser extent, dissolution of the soil matrix. Limitations associated with the surfactant treatment include loss of surfactants onto the soil (sorption) and greater affinity between U(VI) and the soil matrix at large soil to liquid ratios. Parallel experiments with H2SO4 and carbonate-bicarbonate (CB) solutions indicate that these more conventional methods suffer from strong matrix dissolution with the acid and reduced desorption efficiency with CB due to the buffering capacity of the acidic soil.  相似文献   

4.
The biogeochemistry related to iron- and sulfate-reducing conditions influences the fate of contaminants such as petroleum hydrocarbons, trace metals, and radionuclides (i.e., uranium) released into the subsurface. An understanding of these processes is imperative to successfully predict the fate of contaminants during bioremediation scenarios. A series of flow-through sediment column experiments were performed to determine if the commencement of sulfate-reducing conditions would occur while bioavailable Fe(III) was present and to determine how the bioreduction of a contaminant (uranium) was affected by the switch from iron-dominated to sulfate-dominated reducing conditions. The results presented herein demonstrated that, under biostimulation, sulfate reduction can commence even though a significant pool of bioavailable Fe(III) is present. In addition, the rate of U(VI) reduction was not negatively affected by the commencement of sulfate-reducing conditions.  相似文献   

5.
The conventional chemical reduction-precipitation technique in the removal of Cr(VI) from contaminated groundwater involves a two-step process whereby Cr(VI) is first reduced to Cr(III) at an acidic pH by a reducing agent and in a subsequent step, Cr(III) is precipitated as insoluble hydroxide at an alkaline pH. In a variation of this method, Fe(II) is added electrochemically to the Cr(VI) containing water. From a pure iron electrode, Fe(2+) ions are released into the solution and bring forth the reduction of Cr(VI). At the cathode, H(2)O is reduced whereby the OH(-) ions entering the solution keep the pH of the solution in the alkaline range. This latter fact greatly facilitates simultaneous reduction of Cr(VI) to Cr(III) and co-precipitation of hydroxides of trivalent Cr and Fe. On the basis of a set of experimental data, it is shown that this process is both thermodynamically and kinetically efficient, meaning, with the electrochemical method, rapid and nearly complete removal of Cr(VI) from a groundwater source with both high and low levels of Cr-contamination can be achieved. These factors make the electrochemical process superior to the conventional chemical process in remediation of Cr-contaminated groundwater.  相似文献   

6.
The oxidative remobilization of uranium from biogenic U(IV) precipitates was investigated in bioreduced sediment suspensions in contact with atmospheric O2 with an emphasis on the influence of Fe(II) and pH on the rate and extent of U release from the solid to the aqueous phase. The sediment was collected from the U.S. Department of Energy Field Research Center (FRC) site at Oak Ridge, Tennessee. Biogenic U(IV) precipitates and bioreduced sediment were generated through anaerobic incubation with a dissimilatory metal reducing bacterium Shewanella putrefaciens strain CN32. The oxidative remobilization of freshly prepared and 1-yr aged biogenic U(IV) was conducted in 0.1 mol/L NaNO3 electrolyte with variable pH and Fe(II) concentrations. Biogenic U(IV)O2(s) was released into the aqueous phase with the highest rate and extent at pH 4 and 9, while the U remobilization was the lowest at circumneutral pH. Increasing Fe(II) significantly decreased U remobilization to the aqueous phase. From 70 to 100% of the U in the sediments used in all the tests was extractable at the experiment termination (41 d) with a bicarbonate solution (0.2 mol/L), indicating that biogenic U(IV) was oxidized regardless of Fe(II) concentration and pH. Sorption experiments and modeling calculations indicated that the inhibitive effect of Fe(II) on U(IV) oxidative remobilization was consistent with the Fe(III) oxide precipitation and U(VI) sorption to this secondary phase.  相似文献   

7.
This study investigated the feasibility of using a new adsorbent prepared from coconut coir pith, CP (a coir industry-based lignocellulosic residue), for the removal of uranium [U(VI)] from aqueous solutions. The adsorbent (PGCP-COOH) having a carboxylate functional group at the chain end was synthesized by grafting poly(hydroxyethylmethacrylate) onto CP using potassium peroxydisulphate-sodium thiosulphite as a redox initiator and in the presence of N,N'-methylenebisacrylamide as a crosslinking agent. IR spectroscopy results confirm the graft copolymer formation and carboxylate functionalization. XRD studies confirm the decrease of crystallinity in PGCP-COOH compared to CP, and it favors the protrusion of the functional group into the aqueous medium. The thermal stability of the samples was studied using thermogravimetry (TG). Surface charge density of the samples as a function of pH was determined using potentiometric titration. The ability of PGCP-COOH to remove U(VI) from aqueous solutions was assessed using a batch adsorption technique. The maximum adsorption capacity was observed at the pH range 4.0-6.0. Maximum removal of 99.2% was observed for an initial concentration of 25mg/L at pH 6.0 and an adsorbent dose of 2g/L. Equilibrium was achieved in approximately 3h. The experimental kinetic data were analyzed using a first-order kinetic model. The temperature dependence indicates an endothermic process. U(VI) adsorption was found to decrease with an increase in ionic strength due to the formation of outer-sphere surface complexes on PGCP-COOH. Equilibrium data were best modeled by the Langmuir isotherm. The thermodynamic parameters such as DeltaG(0), DeltaH(0) and DeltaS(0) were derived to predict the nature of adsorption. Adsorption experiments were also conducted using a commercial cation exchanger, Ceralite IRC-50, with carboxylate functionality for comparison. Utility of the adsorbent was tested by removing U(VI) from simulated nuclear industry wastewater. Adsorbed U(VI) ions were desorbed effectively (about 96.2+/-3.3%) by 0.1M HCl. The adsorbent was suitable for repeated use (more than four cycles) without any noticeable loss of capacity.  相似文献   

8.
The ever-increasing growth of biorefineries is expected to produce huge amounts of lignocellulosic biochar as a byproduct. The hydrothermal carbonization (HTC) process to produce biochar from lignocellulosic biomass is getting more attention due to its inherent advantage of using wet biomass. In the present study, biochar was produced from switchgrass at 300 °C in subcritical water and characterized using X-ray diffraction, fourier transform infra-red spectroscopy, scanning electron micrcoscopy, and thermogravimetric analysis. The physiochemical properties indicated that biochar could serve as an excellent adsorbent to remove uranium from groundwater. A batch adsorption experiment at the natural pH (~3.9) of biochar indicated an H-type isotherm. The adsorption data was fitted using a Langmuir isotherm model and the sorption capacity was estimated to be ca. 2.12 mg of U g(-1) of biochar. The adsorption process was highly dependent on the pH of the system. An increase towards circumneutral pH resulted in the maximum adsorption of ca. 4 mg U g(-1) of biochar. The adsorption mechanism of U(VI) onto biochar was strongly related to its pH-dependent aqueous speciation. The results of the column study indicate that biochar could be used as an effective adsorbent for U(VI), as a reactive barrier medium. Overall, the biochar produced via HTC is environmentally benign, carbon neutral, and efficient in removing U(VI) from groundwater.  相似文献   

9.
Removal of selenate from water by zerovalent iron   总被引:1,自引:0,他引:1  
Zerovalent iron (ZVI) has been widely used in the removal of environmental contaminants from water. In this study, ZVI was used to remove selenate [Se(VI)] at a level of 1000 microg L(-1) in the presence of varying concentrations of Cl-, SO(2-)4, NO(-)3, HCO(-)3, and PO(3-)4. Results showed that Se(VI) was rapidly removed during the corrosion of ZVI to iron oxyhydroxides (Fe(OH)). During the 16 h of the experiments, 100 and 56% of the added Se(VI) was removed in 10 mM Cl- and SO(2-)4 solutions under a closed contained system, respectively. Under an open condition, 100 and 93% of the added Se(VI) were removed in the Cl- and SO(2-)4 solutions, respectively. Analysis of Se species in ZVI-Fe(OH) revealed that selenite [Se(IV)] and nonextractable Se increased during the first 2 to 4 h of reaction, with a decrease of Se(VI) in the Cl- experiment and no detection of Se(VI) in the SO(2-)4 experiment. Two mechanisms can be attributed to the rapid removal of Se(VI) from the solutions. One is the reduction of Se(VI) to Se(IV), followed by rapid adsorption of Se(IV) to Fe(OH). The other is the adsorption of Se(VI) directly to Fe(OH), followed by its reduction to Se(IV). The results also show that there was little effect on Se(VI) removal in the presence of Cl- (5, 50, and 100 mM), NO(-)3 (1, 5, and 10 mM), SO(2-)4 (5 mM), HCO(-)3 (1 and 5 mM), or PO(3-)4 (1 mM) and only a slight effect in the presence of SO(2-)4 (50 and 100 mM), HCO(-)3 (10 mM), and PO(3-)4 (5 mM) during a 2-d experiment, whereas 10 mM PO(3-)4 significantly inhibited Se(VI) removal. This work suggests that ZVI may be an effective agent to remove Se from Se-contaminated agricultural drainage water.  相似文献   

10.
Chromium has become an important soil contaminant at many sites, and facilitating in situ reduction of toxic Cr(VI) to nontoxic Cr(III) is becoming an attractive remediation strategy. Acceleration of Cr(VI) reduction in soils by addition of organic carbon was tested in columns pretreated with solutions containing 1000 and 10 000 mg L(-1) Cr(VI) to evaluate potential in situ remediation of highly contaminated soils. Solutions containing 0,800, or 4000 mg L(-1) organic carbon in the form of tryptic soy broth or lactate were diffused into the Cr(VI)-contaminated soils. Changes in Cr oxidation state were monitored through periodic micro-XANES analyses of soil columns. Effective first-order reduction rate constants ranged from 1.4 x 10(-8) to 1.5 x 10(-7) s(-1), with higher values obtained for lower levels of initial Cr(VI) and higher levels of organic carbon. Comparisons with sterile soils showed that microbially dependent processes were largely responsible for Cr(VI) reduction, except in the soils initially exposed to 10 000 mg L(-1) Cr(VI) solutions that receive little (800 mg L(-1)) or no organic carbon. However, the microbial populations (< or = 2.1 x 10(5) g(-1)) in the viable soils are probably too low for direct enzymatic Cr(VI) reduction to be important. Thus, synergistic effects sustained in whole soil systems may have accounted for most of the observed reduction. These results show that acceleration of in situ Cr(VI) reduction with addition of organic carbon is possible in even heavily contaminated soils and suggest that microbially dependent reduction pathways can be dominant.  相似文献   

11.
Effective and low-cost strategies for remediating chromium (Cr)-contaminated soil are needed. Chromium(VI) leaching from contaminated soil into ground water and surface water threatens water supplies and the environment. This study tested indigenous Cr(VI) microbial transformation in batch systems at 10 degrees C in the presence of various electron acceptors. The effects of carbon addition, spiked Cr(VI), and mixing highly contaminated soil with less contaminated soil were investigated. The results indicated that Cr(VI) can be biotransformed in the presence of different electron acceptors including oxygen, nitrate, sulfate, and iron. Sugar addition had the greatest effect on enhancing Cr(VI) removal. Less dissolved organic carbon (DOC) was consumed per amount of Cr(VI) transformed under anaerobic conditions [0.8-93 mg DOC/mg Cr(VI)] compared with aerobic conditions [1.4-265 mg DOC/mg Cr(VI)]. Toxicity of high concentrations (< 160 mg/L) of spiked Cr(VI) were not evident. At Cr(VI) concentrations > 40 mg/L, aerobic conditions promoted faster Cr(VI) reduction than anaerobic conditions with nitrate or sulfate present. Biotransformation of Cr(VI) in highly contaminated soil (22,000 mg Cr/kg) was facilitated by mixing with less-contaminated soil. The study results provide a framework for evaluating indigenous Cr(VI) microbial transformation and enhance the ability to develop strategies for soil treatment.  相似文献   

12.
Sulfate-reducing bacteria (SRB) that could grow on modified Postgate C medium (PC) containing chromium(VI) were isolated from industrial wastewaters and their chromium(VI) reduction capacities were investigated as a function of changes in the initial pH values, chromium, sulfate, NaCl and reactive dye concentrations. The optimum pH value at 50 mg l(-1) initial chromium(VI) concentration was determined to be 8. Chromium(VI) reduction by SRB was investigated at 22.7-98.4 mg l(-1) initial chromium(VI) concentrations. At the end of the experiments, the mixed cultures of SRB were found to reduce within 2-6 days more than 99% of the initial chromium(VI) levels, which ranged from 22.7 to 74.9 mg l(-1). The effects of the initial 0-9.0 g l(-1) concentrations of disodium sulfate and 0-6% (w/v) concentrations of NaCI to chromium reduction showed that the lowest concentrations of sulfate and NaCI were the best for chromium reduction in the PC medium including 50 mg l(-1) chromium(VI). Chromium(VI) reduction in 50 mg l(-1) and 25-100 mg l(-1) Remazol Blue, Reactive Black B or Reactive Red RB containing media were also investigated. In the experiments, 25-30% of the initial dye concentrations and 95% of the chromium(VI) was removed from the medium at the end of 72-h and 24-h incubation periods, respectively.  相似文献   

13.
Leaching mechanisms of Cr(VI) from chromite ore processing residue   总被引:1,自引:0,他引:1  
Batch leaching tests, qualitative and quantitative x-ray powder diffraction (XRPD) analyses, and geochemical modeling were used to investigate the leaching mechanisms of Cr(VI) from chromite ore processing residue (COPR) samples obtained from an urban area in Hudson County, New Jersey. The pH of the leaching solutions was adjusted to cover a wide range between 1 and 12.5. The concentration levels for total chromium (Cr) and Cr(VI) in the leaching solutions were virtually identical for pH values >5. For pH values <5, the concentration of total Cr exceeded that of Cr(VI) with the difference between the two attributed to Cr(III). Geochemical modeling results indicated that the solubility of Cr(VI) is controlled by Cr(VI)-hydrocalumite and Cr(VI)-ettringite at pH >10.5 and by adsorption at pH <8. However, experimental results suggested that Cr(VI) solubility is controlled partially by Cr(VI)-hydrocalumite at pH >10.5 and by hydrotalcites at pH >8 in addition to adsorption of anionic chromate species onto inherently present metal oxides and hydroxides at pH <8. As pH decreased to <10, most of the Cr(VI) bearing minerals become unstable and their dissolution contributes to the increase in Cr(VI) concentration in the leachate solution. At low pH ( <1.5), Cr(III) solid phases and the oxides responsible for Cr(VI) adsorption dissolve and release Cr(III) and Cr(VI) into solution.  相似文献   

14.
Chromium(VI)-containing sorbents in the form of sludge or solid residue from treatment processes are often landfilled or used as fill materials, therefore the long-term stability of metal binding is important. The reduction of Cr(VI)–Cr(III) through heat treatment may be a useful detoxification method. After heating at 500, 900, 1000, and 1100 °C for 4 h, the transformation of chemical states of chromium on 105 °C-dried, 7.9% Cr(VI)-doped TiO2 powders was studied on the basis of surface area measurements, scanning electron microscopy (SEM) images, X-ray diffraction (XRD), and extended X-ray absorption fine structure (EXAFS) spectra. It was shown that Cr(VI) was reduced to Cr(III) in the Cr(VI)-doped samples after heating within 500–900 °C. The present results also suggested that the chromium octahedral was bridged to the titanium tetrahedral and was incorporated in TiO2 minerals formed after 1000 °C treatment.  相似文献   

15.
New highly fluorinated monodentate and bidentate phosphine oxide compounds of the type {CF(3)(CF(2))(n)CH(2)CH(2)}(3)PO (n = 5, 9) and [{CF(3)(CF(2))(5)CH(2)CH(2)}(2)P(O)CH(2)CH(2)P(O){CH(2)CH(2)(CF(2))(5)CF(3)}] have been prepared. Their ability to extract a number of metals and radionuclides from aqueous solutions into perfluorinated solvents has been established and the extractable species investigated. All extractants extract the metals As(V), Cd(II), Co(II), Cr(VI), Hg(II), Pb(II), and Sn(II) with >75% removal. In addition, the radioisotopes (90)Sr(II), (133)Ba(II), and U(VI) have been investigated, whilst (59)Fe(III) has been used to model the extraction of plutonium. (133)Ba(II) shows a high distribution ratio for monodentate phosphine oxides, whilst for UO(2)(2+) and (59)Fe(III) bidentate phosphine oxides are superior.  相似文献   

16.
The effect of two wetland plants, Typha latifolia L. (cattail) and Phragmites australis (Cav.) Trin. ex Steud (common reed), on the fate of Cr(VI) in wetland sediments was investigated using greenhouse bench-scale microcosm experiments. The removal of Cr(VI) was monitored based on the vertical profiles of aqueous Cr(VI) in the sediments. The Cr(VI) removal rates were estimated taking into account plant transpiration, which was found to significantly concentrate dissolved species in the sediments. After correcting for evapotranspiration, the actual Cr(VI) removal rates were significantly higher than would be inferred from uncorrected profiles. On average, the Cr(VI) removal rates were 0.005 to 0.017 mg L(-1) d(-1), 0.0003 to 0.08 mg L(-1) d(-1), and 0.004 to 0.13 mg L(-1) d(-1) for the control, T. latifolia, and P. australis microcosms, respectively. The fate of the removed Cr(VI) was examined by determining the quantity and chemical speciation of the Cr in the sediment and plant materials. Chromium(III) was the dominant form of Cr in both the sediment and plants, and precipitation of Cr(III) in the sediment was the major pathway responsible for the disappearance of aqueous Cr(VI) from the pore water. Incubation results showed that abiotic reduction was the primary mechanism underlying Cr(VI) removal in the microcosm sediments. Organic compounds produced by plants, including root exudates and mineralization products of dead roots, are thought to be the factor that is either directly or indirectly responsible for the gap between Cr(VI) removal efficiencies in the sediments of the vegetated and unvegetated microcosms.  相似文献   

17.
含Cr(Ⅵ)废水生物处理技术及其影响因素   总被引:4,自引:0,他引:4  
本文综述了微生物还原处理含价铬的废水的研究进展。讨论了影响微生物还原Cr(Ⅵ)因素包括生物体密度、初始Cr(Ⅵ)的浓度、碳源、pH、温度、溶解氧、氧化还原电位、含氧阴离子和金属离子。微生物还原Cr(Ⅵ)技术作为一种富有创新的研究应用于Cr(Ⅵ)污染的环境恢复。  相似文献   

18.
Lead (Pb) sorption onto oxide surfaces in soils may strongly influence the risk posed from incidental ingestion of Pb-contaminated soil. Lead was sorbed to model oxide minerals of corundum (alpha-Al(2)O(3)) and ferrihydrite (Fe(5)HO(8).4H(2)O). The Pb-sorbed minerals were placed in a simulated gastrointestinal tract (in vitro) to simulate ingestion of Pb-contaminated soil. The changes in Pb speciation were determined using extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge spectroscopy (XANES). Both corundum (sorption maximum of 2.13 g kg(-1)) and ferrihydrite (sorption maximum of 38.6 g kg(-1)) have been shown to sorb Pb, with ferrihydrite having a very high affinity for Pb. The gastric bioaccessible Pb for corundum was >85% for corundum when the concentration of Pb was >200 mg kg(-1). Bioaccessible Pb was not detectable at 4. However, much of the sorbed Pb will become bioaccessible under gastric conditions (pH 1.5-2.5) if this soil is ingested. Caution should be used before using these materials to remediate a soil where soil ingestion is an important exposure pathway.  相似文献   

19.
The widespread use of chromium (Cr) has a deleterious impact on the environment. A number of pathways, both biotic and abiotic in character, determine the fate and speciation of Cr in soils. Chromium exists in two predominant species in the environment: trivalent [(Cr(III)] and hexavalent [Cr(VI)]. Of these two forms, Cr(III) is nontoxic and is strongly bound to soil particles, whereas Cr(VI) is more toxic and soluble and readily leaches into groundwater. The toxicity of Cr(VI) can be mitigated by reducing it to Cr(III) species. The objective of this study was to examine the effect of organic carbon sources on the reduction, microbial respiration, and phytoavailability of Cr(VI) in soils. Organic carbon sources, such as black carbon (BC) and biochar, were tested for their potential in reducing Cr(VI) in acidic and alkaline contaminated soils. An alkaline soil was selected to monitor the phytotoxicity of Cr(VI) in sunflower plant. Our results showed that using BC resulted in greater reduction of Cr(VI) in soils compared with biochar. This is attributed to the differences in dissolved organic carbon and functional groups that provide electrons for the reduction of Cr(VI). When increasing levels of Cr were added to soils, both microbial respiration and plant growth decreased. The application of BC was more effective than biochar in increasing the microbial population and in mitigating the phytotoxicity of Cr(VI). The net benefit of BC emerged as an increase in plant biomass and a decrease in Cr concentration in plant tissue. Consequently, it was concluded that BC is a potential reducing amendment in mitigating Cr(VI) toxicity in soil and plants.  相似文献   

20.
Inorganic contaminants are found in water, wastewaters, and industrial effluents and their oxidation using iron based oxidants is of great interest because such oxidants possess multi-functional properties and are environmentally benign. This review makes a critical assessment of the kinetics and mechanisms of oxidation reactions by ferrates (Fe(VI)O(4)(2-), Fe(V)O(4)(3-), and Fe(IV)). The rate constants (k, M(-1) s(-1)) for a series of inorganic compounds by ferrates are correlated with thermodynamic oxidation potentials. Correlations agree with the mechanisms of oxidation involving both one-electron and two-electron transfer processes to yield intermediates and products of the reactions. Case studies are presented which demonstrate that inorganic contaminants can be degraded in seconds to minutes by ferrate(VI) with the formation of non-toxic products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号