首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Abstract:  Commercial and subsistence fisheries pressure is increasing in the Gulf of California, Mexico. One consequence often associated with high levels of fishing pressure is an increase in bycatch of marine mammals and birds. Fisheries bycatch has contributed to declines in several pinniped species and may be affecting the California sea lion ( Zalophus californianus ) population in the Gulf of California. We used data on fisheries and sea lion entanglement in gill nets to estimate current fishing pressure and fishing rates under which viable sea lion populations could be sustained at 11 breeding sites in the Gulf of California. We used 3 models to estimate sustainable bycatch rates: a simple population-growth model, a demographic model, and an estimate of the potential biological removal. All models were based on life history and census data collected for sea lions in the Gulf of California. We estimated the current level of fishing pressure and the acceptable level of fishing required to maintain viable sea lion populations as the number of fishing days (1 fisher/boat setting and retrieving 1 day's worth of nets) per year. Estimates of current fishing pressure ranged from 101 (0–405) fishing days around the Los Machos breeding site to 1887 (842–3140) around the Los Islotes rookery. To maintain viable sea lion populations at each site, the current level of fishing permissible could be augmented at some sites and should be reduced at other sites. For example, the area around San Esteban could support up to 1428 (935–2337) additional fishing days, whereas fishing around Lobos should be reduced by at least 165 days (107–268). Our results provide conservation practitioners with site-specific guidelines for maintaining sustainable sea lion populations and provide a method to estimate fishing pressure and sustainable bycatch rates that could be used for other marine mammals and birds .  相似文献   

2.
Abstract:  Fishers, scientists, and resource managers have made substantial progress in reducing bycatch of sea turtles, seabirds, and marine mammals through physical modifications to fishing gear. Many bycatch-avoidance measures have been developed and tested successfully in controlled experiments, which have led to regulated implementation of modified or new fishing gear. Nevertheless, successful bycatch experiments may not translate to effective mitigation in commercial fisheries because experimental conditions are relaxed in commercial fishing operations. Such a difference between experimental results and real-world results with fishing fleets may have serious consequences for management and conservation of protected species taken as bycatch. We evaluated preimplementation experimental measures and postimplementation efficacy from primary and gray literature for three case studies: acoustic pingers that warn marine mammals of the presence of gill nets, turtle excluder devices that reduce bycatch of turtles in trawls, and various measures to reduce seabird bycatch in longlines. Three common themes to successful implementation of bycatch reduction measures are long-standing collaborations among the fishing industry, scientists, and resource managers; pre- and postimplementation monitoring; and compliance via enforcement and incentives.  相似文献   

3.
Abstract: Many populations of marine megafauna, including seabirds, sea turtles, marine mammals, and elasmobranchs, have declined in recent decades due largely to anthropogenic mortality. To successfully conserve these long‐lived animals, efforts must be prioritized according to feasibility and the degree to which they address threats with the highest relative impacts on population dynamics. Recently, Wilcox and Donlan (2007, Frontiers in Ecology and the Environment) and Donlan and Wilcox (2008, Biological Invasions) proposed a conservation strategy of “compensatory mitigation” in which fishing industries offset bycatch of seabirds and sea turtles by funding eradication of invasive mammalian predators from the terrestrial reproductive sites of these marine animals . Although this is a creative and conceptually compelling approach, we find it flawed as a conservation tool because it has narrow applicability among marine megafauna, it does not address the most pervasive threats to marine megafauna, and it is logistically and financially infeasible. Invasive predator eradication does not adequately offset the most pressing threat to most marine megafauna populations—fisheries bycatch. For seabird populations, fisheries bycatch and invasive predators infrequently are overlapping threats. Invasive predators have limited population‐level impacts on sea turtles and marine mammals and no impacts on elasmobranchs, all of which are threatened by bycatch. Implementing compensatory mitigation in marine fisheries is unrealistic due to inadequate monitoring, control, and surveillance in the majority of fleets. Therefore, offsetting fisheries bycatch with eradication of invasive predators would be less likely to reverse population declines than reducing bycatch. We recommend that efforts to mitigate bycatch in marine capture fisheries should address multiple threats to sensitive bycatch species groups, but these efforts should first institute proven bycatch avoidance and reduction methods before considering compensatory mitigation.  相似文献   

4.
The interspecific preferences of fishes for different depths and habitats suggest fishers could avoid unwanted catches of some species while still effectively targeting other species. In pelagic longline fisheries, albacore (Thunnus alalunga) are often caught in relatively cooler, deeper water (>100 m) than many species of conservation concern (e.g., sea turtles, billfishes, and some sharks) that are caught in shallower water (<100 m). From 2007 to 2011, we examined the depth distributions of hooks for 1154 longline sets (3,406,946 hooks) and recorded captures by hook position on 2642 sets (7,829,498 hooks) in the American Samoa longline fishery. Twenty‐three percent of hooks had a settled depth <100 m. Individuals captured in the 3 shallowest hook positions accounted for 18.3% of all bycatch. We analyzed hypothetical impacts for 25 of the most abundant species caught in the fishery by eliminating the 3 shallowest hook positions under scenarios with and without redistribution of these hooks to deeper depths. Distributions varied by species: 45.5% (n = 10) of green sea turtle (Chelonia mydas), 59.5% (n = 626) of shortbill spearfish (Tetrapturus angustirostris), 37.3% (n = 435) of silky shark (Carcharhinus falciformis), and 42.6% (n = 150) of oceanic whitetip shark (C. longimanus) were caught on the 3 shallowest hooks. Eleven percent (n = 20,435) of all tuna and 8.5% (n = 10,374) of albacore were caught on the 3 shallowest hooks. Hook elimination reduced landed value by 1.6–9.2%, and redistribution of hooks increased average annual landed value relative to the status quo by 5–11.7%. Based on these scenarios, redistribution of hooks to deeper depths may provide an economically feasible modification to longline gear that could substantially reduce bycatch for a suite of vulnerable species. Our results suggest that this method may be applicable to deep‐set pelagic longline fisheries worldwide. Compensaciones entre Captura, Captura Accesoria y Valores Asentados en la Pesquera de Línea Larga de Samoa Americana  相似文献   

5.
Abstract:  Bycatch—the incidental catch of nontarget species—is a principal concern in marine conservation and fisheries management. In the eastern Pacific Ocean tuna fishery, a large fraction of nonmammal bycatch is captured by purse-seine gear when nets are deployed around floating objects. We examined the spatial distribution of a dominant species in this fishery's bycatch, the apex predator silky shark ( Carcharhinus falciformis ), from 1994 to 2005 to determine whether spatial closures, areas where fishing is prohibited, might effectively reduce the bycatch of this species. We then identified candidate locations for fishery closures that specifically considered the trade-off between bycatch reduction and the loss of tuna catch and evaluated ancillary conservation benefits to less commonly captured taxa. Smoothed spatial distributions of silky shark bycatch did not indicate persistent small areas of especially high bycatch for any size class of shark over the 12-year period. Nevertheless, bycatch of small silky sharks (<90 cm total length) was consistently higher north of the equator during all years. On the basis of this distribution, we evaluated nearly 100 candidate closure areas between 5°N and 15°N that could have reduced, by as much as 33%, the total silky shark bycatch while compromising only 12% of the tuna catch. Although silky sharks are the predominant species of elasmobranchs caught as bycatch in this fishery, closures also suggested reductions in the bycatch of other vulnerable taxa, including other shark species and turtles. Our technique provides an effective method with which to balance the costs and benefits of conservation in fisheries management. Spatial closures are a viable management tool, but implementation should be preceded by careful consideration of the consequences of fishing reallocation.  相似文献   

6.
Abstract: Within 19 years the nesting population of leatherback turtles (Dermochelys coriacea) at Parque Nacional Marino Las Baulas declined from 1500 turtles nesting per year to about 100. We analyzed the effects of fishery bycatch and illegal harvesting (poaching) of eggs on this population. We modeled the population response to different levels of egg harvest (90, 75, 50, and 25%) and the effect of eradicating poaching at different times during the population decline. We compared effects of 90% poaching with those of 20% adult mortality because both of these processes were present in the population at Las Baulas. There was a stepwise decline in number of nesting turtles at all levels of egg harvest. Extirpation times for different levels of poaching ranged from 45 to 282 years. The nesting population declined more slowly and survived longer with 20% adult mortality (146 years) than it did with 90% poaching (45 years). Time that elapsed until poaching stopped determined the average population size at which the population stabilized, ranging from 90 to 420 nesting turtles. Our model predicted that saving clutches lost naturally would restore the population when adult mortality rates were low and would contribute more to population recovery when there were short remigration intervals between nesting seasons and a large proportion of natural loss of clutches. Because the model indicated that poaching was the most important cause of the leatherback decline at Las Baulas, protecting nests on the beach and protecting the beach from development are critical for survival of this population. Nevertheless, the model predicted that current high mortality rates of adults will prevent population recovery. Therefore, protection of the beach habitat and nests must be continued and fishery bycatch must be reduced to save this population.  相似文献   

7.
Although holistic conservation addressing all sources of mortality for endangered species or stocks is the preferred conservation strategy, limited budgets require a criterion to prioritize conservation investments. We compared the cost‐effectiveness of nesting site and at‐sea conservation strategies for Pacific leatherback turtles (Dermochelys coriacea). We sought to determine which conservation strategy or mix of strategies would produce the largest increase in population growth rate per dollar. Alternative strategies included protection of nesters and their eggs at nesting beaches in Indonesia, gear changes, effort restrictions, and caps on turtle takes in the Hawaiian (U.S.A.) longline swordfish fishery, and temporal and area closures in the California (U.S.A.) drift gill net fishery. We used a population model with a biological metric to measure the effects of conservation alternatives. We normalized all effects by cost to prioritize those strategies with the greatest biological effect relative to its economic cost. We used Monte Carlo simulation to address uncertainty in the main variables and to calculate probability distributions for cost‐effectiveness measures. Nesting beach protection was the most cost‐effective means of achieving increases in leatherback populations. This result creates the possibility of noncompensatory bycatch mitigation, where high‐bycatch fisheries invest in protecting nesting beaches. An example of this practice is U.S. processors of longline tuna and California drift gill net fishers that tax themselves to finance low‐cost nesting site protection. Under certain conditions, fisheries interventions, such as technologies that reduce leatherback bycatch without substantially decreasing target species catch, can be cost‐effective. Reducing bycatch in coastal areas where bycatch is high, particularly adjacent to nesting beaches, may be cost‐effective, particularly, if fisheries in the area are small and of little commercial value. Rentabilidad de Estrategias de Conservación Alternativas Aplicadas a Tortugas Laúd del Pacífico  相似文献   

8.
Fisheries bycatch is a critical threat to sea turtle populations worldwide, particularly because turtles are vulnerable to multiple gear types. The Canary Current is an intensely fished region, yet there has been no demographic assessment integrating bycatch and population management information of the globally significant Cabo Verde loggerhead turtle (Caretta caretta) population. Using Boa Vista island (Eastern Cabo Verde) subpopulation data from capture–recapture and nest monitoring (2013–2019), we evaluated population viability and estimated regional bycatch rates (2016–2020) in longline, trawl, purse-seine, and artisanal fisheries. We further evaluated current nesting trends in the context of bycatch estimates, existing hatchery conservation measures, and environmental (net primary productivity) variability in turtle foraging grounds. We projected that current bycatch mortality rates would lead to the near extinction of the Boa Vista subpopulation. Bycatch reduction in longline fisheries and all fisheries combined would increase finite population growth rate by 1.76% and 1.95%, respectively. Hatchery conservation increased hatchling production and reduced extinction risk, but alone it could not achieve population growth. Short-term increases in nest counts (2013–2021), putatively driven by temporary increases in net primary productivity, may be masking ongoing long-term population declines. When fecundity was linked to net primary productivity, our hindcast models simultaneously predicted these opposing long-term and short-term trends. Consequently, our results showed conservation management must diversify from land-based management. The masking effect we found has broad-reaching implications for monitoring sea turtle populations worldwide, demonstrating the importance of directly estimating adult survival and that nest counts might inadequately reflect underlying population trends.  相似文献   

9.
An ecosystem approach to fisheries management is a widely recognized goal, but describing and measuring the effects of a fishery on an ecosystem is difficult. Ecological information on the entire catch (all animals removed, whether retained or discarded) of both species targeted by the fishery and nontarget species (i.e., bycatch) is required. We used data from the well-documented purse-seine fishery for tunas (Thunnus albacares, T. obesus, and Katsuwonus pelamis) in the eastern tropical Pacific Ocean to examine the fishery's ecological effects. Purse-seine fishing in the eastern tropical Pacific is conducted in 3 ways that differ in the amount and composition of target species and bycatch. The choice of method depends on whether the tunas are swimming alone (unassociated sets), associated with dolphins (dolphin sets), or associated with floating objects (floating-object sets). Among the fishing methods, we compared catch on the basis of weight, number of individuals, trophic level, replacement time, and diversity. Floating-object sets removed 2-3 times as much biomass as the other 2 methods, depending on how removal was measured. Results of previous studies suggest the ecological effects of floating-object sets are thousands of times greater than the effects of other methods, but these results were derived from only numbers of discarded animals. Management of the fishery has been driven to a substantial extent by a focus on reducing bycatch, although discards are currently 4.8% of total catch by weight, compared with global averages of 7.5% for tuna longline fishing and 30.0% for midwater trawling. An ecosystem approach to fisheries management requires that ecological effects of fishing on all animals removed by a fishery, not just bycatch or discarded catch, be measured with a variety of metrics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号